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II. Preliminaries: 1D Dirac Hamiltonian

II.5 The SSH Mode
To understand better why we can model the Fermi surface of Hamiltonian:

Ĥ0 = −t
∑
r

[
ĉ†
r+aĉr + H.c.

]
+ µ

∑
r

ĉ†
r ĉr (1)

with a Dirac cone, consider the following model (Su-Schrieffer-Heeger model):

ĤSSH = −t1
∑
r

[
ĉ†

2r+aĉ2r + H.c.
]

− t2
∑
r

[
ĉ†

2r+2aĉ2r+a + H.c.
]

(2)

Define a suitable unit cell, a suitable Brillouin zone, and calculate its spectrum. What happens
for t1 = t2?

We start by noting that we will be assuming periodic boundary conditions. Choosing some arbitrary
reference point, the position of the r’th site can be written as an integer multiple of the lattice constant
a:

r = na (3)

Using this, we can write the Hamiltonian in a more easily interpreted form:

ĤSSH =
∑
n

[
−t1ĉ†

(2n+1)aĉ(2n)a − t2ĉ
†
(2n+2)aĉ(2n+1)a + H.c.

]
(4)

We now see that the hopping is between odd and even numbered sites. The appropriate unit cell (see
Fig. 1) must thus contain an even site (A) and an odd site (B), and thus we have a new lattice with
lattice contant1 ã ≡ 2a. We can then write the Hamiltonian in terms of a sum over unit cells.

ĤSSH =
∑
n

[
−t1ĉ†

n,B ĉn,A − t2ĉ
†
n+1,Aĉn,B + H.c.

]
(5)

Figure 1: The figure above shows a sketch SSH lattice. The lattice constant is
a, but there are two different hopping elements t1 and t2. Our choice of unit cell
(dashed square) has length 2a and has intra-cell hopping element t1, while t2 is the
inter-cell hopping element.

1This is important since the crystal momentum will be in terms of ã, i.e. kn = 2π
Nãn
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Using the Fourier convention ĉr = 1/
√
N
∑
k eikr ĉk, we can also define the even and odd-site operators

in the n’th cell as:

ĉn,A ≡ ĉ2na = 1√
N

∑
k

eik2naĉk,A (6a)

ĉn,B ≡ ĉ(2n+1)a = 1√
N

∑
k

eik(2n+1)aĉk,B (6b)

Since the lattice of unit cells is translation invariant, we expect the Hamiltonian to be simpler in
momentum space. Based on this we now rewrite the Hamiltonian using Eq. (6a):

ĤSSH =
[
−t1

(
1√
N

∑
k

e−ik(2n+1)aĉ†
k,B

)(
1√
N

∑
k′

eik2naĉk′A

)
−

t2

(
1√
N

∑
k

e−ik2(n+1)aĉ†
k,A

)(
1√
N

∑
k′

eik(2n+1)aĉk′B

)
+ H.c.

]
=

∑
k,k′

[
− t1ĉ

†
k,B ĉk′,Ae−ika 1

N

∑
n

e−i2na(k−k′)

︸ ︷︷ ︸
δk,k′

−t2ĉ†
k,Aĉk′,Be−i(2k−k′)a 1

N

∑
n

e−i2a(k−k′)

︸ ︷︷ ︸
δk,k′

+H.c.
]

(7)

Using the Kroenecker-delta’s and writing the Hermitian conjugate terms explicitly we have2:

ĤSSH =
∑
k

[
−t1ĉ†

k,B ĉk,Ae−ika − t1ĉ
†
k,Aĉk,Beika − t2ĉ

†
k,Aĉk,Be−ika − t2ĉ

†
k,B ĉk,Aeika

]
(8)

If we define the "spinor" ψ̂†
k ≡

(
ĉ†
k,A, ĉ

†
k,B

)
, we can write the Hamiltonian in matrix form as:

Ĥ =
∑
k

ψ̂†
k · hk · ψ̂k ≡

∑
k

(
ĉ†
k,A ĉ†

k,B

) [ 0 −t1eika − t2e−ika

−t1e−ika − t2eika 0

](
ĉk,A
ĉk,B

)
(9)

The matrix hk is Hermitian, and thus unitarily diagonalisable. If denote the appropiate unitary U , we
have:

Ĥ =
∑
k

ψ̂†
kUU †hkUU †ψk =

∑
k

(
U †ψ̂k

)†

︸ ︷︷ ︸
ˆ̃ψ†

k

[
U †hkU

]
︸ ︷︷ ︸[
E+ 0
0 E−

]
(
U †ψ̂k

)
︸ ︷︷ ︸

ˆ̃ψk

≡
∑
k,n

ˆ̃ψ†
k,n

ˆ̃ψk,nEk,n

where we have defined a new set of operators, and introduced a band index n = ± which simply labels
the entries in the diagonal matrix. The dispersion relation for the two bands can now be determined
by finding the eigenvalues of hk. To do so we solve the characteristic equation

det (hk − E1) = 0 ⇔

E2 −
(
−t1eika − t2e−ika

) (
−t1e−ika − t2eika

)
= 0 ⇔

E± = ±
√
t21 + t22 + t1t2e−2ika + t1t2e2ika (10)

We thus find that there are two bands with dispersion relations:

2For simplicity we take t1, t2 ∈ R
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Ek,± = ±
√
t21 + t22 + 2t1t2 cos(ãk) (11)

where we have recognised the appearance of the lattice constant ã = 2a. We note that having two
different hopping elements introduce two bands, separated by non-zero band gap ∆E = 2 |t1 − t2| (see
Fig. 3a, Fig. 3b or Fig. 2 for a sketches of the dispersion in three different schemes!).

Figure 2: The figure above shows a sketch Sketch of the dispersion relation Eq. (11)
in a single Brillouin zone (BZ). We see that for t1 = t2 (dashed blue) the dispersion
is gapless and is linear near the Fermi surface, while for t1 ̸= t2 (blasck solid) a
gap ∆E is opened (green solid) in the spectrum

For t1 = t2 the result should reduce to the usual single-band dispersion relation:

Ek = −2 |t| cos(ka) (12)

To see how Eq. (11) reduces to Eq. (12), we first set t1 = t2:

Ek,±|t1=t2=t = ±
√

2t2 + 2t2 cos(ãk) = 2 |t|
√

1
2 + 1

2 cos(ãk) (13)

Using the identity 2 cos2 (x
2
)

= 1 + cos(x) we find:

Ek,±|t1=t2=t = ±2 |t|
∣∣∣∣cos

(
kã

2

)∣∣∣∣ (14)

Let us now consider how this expression behaves in the extended zone scheme (see Fig. 3b for a sketch
of the gapped dispersion in the extended zone scheme), i.e. where we consider the lower band in the
first BZ and the upper band in the second BZ. Since the lattice constant is ã, when we use our odd-even
unit cell, we have: Ek,−|t1=t2=t = 2 |t| cos

(
kã
2

)
, |k| ≤ π

ã (1st BZ)
Ek,+|t1=t2=t = 2 |t| cos

(
kã
2

)
, π

ã ≤ |k| ≤ 2π
ã (2nd BZ)

(15)
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where we have used that the cosine is negative in the first BZ and positive in the second BZ. For a
tight binding model with only one hopping element, the unit cell only needs to contain one site and
has lattice constant a. In terms of a = ã/2, we see that Eq. (15) is just a convoluted way of writing the
expected dispersion relation in single BZ for a lattice with lattice constant a:

Ek,±|t1=t2=t = 2 |t| cos(ka), |k| ≤ π

a
(16)

So we find that the dispersion relation reduces to the expected result, when we consider the appropriate
lattice constant and the appropriate BZ.

(a) SSH Dispersion in Reduced Zone
Scheme

(b) SSH Dispersion in Extended Zone Scheme

Figure 3: Figure Fig. 3a Shows the dispersion relation Eq. (11) in the reduced zone
scheme. Fig. 3b shows the same dispersion relation in the extended zone scheme.
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IV. Phenomenological Bosonization

IV.2 Bosonization of Bosons
There is a second brutal approximation, which is less rigorous (but it may still be justified by RG
arguments): sometimes one can neglect the fluctuations of the density with respect to ρ0: ∂xθ(x) ≪ ρ0
in the prefactor of ψB. In this case:

ψ†
B ≈ √

ρ0e−iφ (17)

Consider the Hamiltonian:

H = 1
2m

�
dx
(
∂xψ

†
B

)
(∂xψB) + U

�
dx (ρ(x))2 (18)

IV.2.1 Bosonized Hamiltonian

By using this brutal approximation for ψB and:

ρ(x) = ρ0 − ∂xθ(x)
π

(19)

for ρ, express H as a function of φ and θ.

Using the given approximation for the bosonized field the kinetic term becomes:

H0[ϕ, θ] ≈ 1
2m

�
dx
(
∂x
(√

ρ0eiφ(x)
)) (

∂x
(√

ρ0e−iφ(x)
))

=

ρ0
2m

�
dx
(
ieiφ(x)∂xφ(x)

) (
−ie−iφ(x)∂xφ(x)

)
⇔

H0[ϕ, θ] ≈ ρ0
2m

�
dx (∂xφ(x))2 (20)

The density-density interaction becomes:

Hρ-ρ[φ, θ] ≈ U

�
dx
(
ρ0 − ∂xθ(x)

π

)2
= U

�
dx
[ 1
π2 (∂xθ(x))2 − 2ρ0

π
∂xθ(x) + ρ2

0

]
(21)

We now drop the constant term and the term linear in ∂xθ(x), since it can be integrated to a constant.
We thus find that under the brutal approximation Eq. (17) for the field, and the approximation Eq. (19)
for the density, the Hamiltonian becomes:

H[φ, θ] = 1
2π

�
dx
[
πρ0
m

(∂xφ)2 + 2U
π

(∂xθ)2
]

(22)

We see that this is the Hamiltonian for an interacting Luttinger liquid:

H = 1
2π

�
dx
[
uK (∂xφ)2 + u

K
(∂xθ)2

]
(23)
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where in this case:

K =
√

( πρ0
Um )/( 2U

π ) = π

√
ρ0
2m, u =

√(
πρ0
m

)(2U
π

)
=

√
2ρ0U

m

That is, the Luttinger parameter K and the superfluid velocity u corresponding to Eq. (22) are:

K = π

√
ρ0

2Um (24a)

u =

√
2ρ0U

m
(24b)

IV.2.2 Lagrangian and Equations of Motion

By using that ∂xθ/π and φ are canonically conjugate fields, find the Lagrangian for φ and its
equations of motion.

Hint: The canonical conjugation is the relation:[
∂x′θ(x′)

π
, φ(x)

]
= −iδ(x− x′) (25)

In this way you can obtain the canonical “momentum” operator Πφ such that:[
φ(x),Πφ(x′)

]
= iδ(x− x′) (26)

This allows you in turn to get the relation between Πφ and ∂tϕ needed in the Legendre trans-
formation to obtain the Lagrangian.

Comparing the canonical conjugation relation Eq. (25) and the canonical commutation relation
Eq. (26) we find the relation:

Πφ = ∂xθ

π
(27)

We now recall the duality relation:

∂xθ = K

u
∂tφ (28)

Using K and u from Eq. (24) the duality relation becomes:

∂xθ = π

2U ∂tφ (29)

The canonical mometum conjugate to φ then is:

Πφ = 1
2U ∂tφ (30)

Using the duality relation Eq. (29) Hamiltonian Eq. (22) can be expressed in terms of only φ:

H =
�

dx
[
ρ0
2m (∂xφ)2 + 1

4U (∂tφ)2
]

(31)
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We can now obtain the Lagrangian by performing a Legendre tranformation:

L =
�

dxΠφ∂tφ−H (32)

Using the canonical momentum Eq. (30) and the Hamiltonian Eq. (31), we find that the Lagrangian
is given by:

L =
�

dx
[ 1

4U (∂tφ)2 − ρ0
2m (∂xφ)2

]
(33)

To find the equations of motion, we first note that the Lagrangian density L corresponding to Eq. (33)
is:

L = 1
4U (∂tφ)2 − ρ0

2m (∂xφ)2 (34)

We also recall that the EOM for the field φ can be obtained from the Euler-Lagrange equation:

∂L
∂φ

− ∂x
∂L

∂ (∂xφ) − ∂t
∂L

∂ (∂tφ) = 0 (35)

We then have:

∂x

[
−ρ0
m
∂xφ

]
+ ∂t

[ 1
2U ∂tφ

]
= 0 ⇔

∂2
xφ− m

2ρ0U
∂2
t φ = 0 (36)

We now recognise that the coefficient in the second term is related to the superfluid velocity Eq. (24b),
and so we find that the EOM can be written:

(
∂x − 1

u2∂t

)
φ(x, t) = 0 (37)

We recognise this as the Klein-Gordon equation for a massless bosonic field.
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IV.4 Bosonization of Fermions
Consider the definition of the density operator:

ρ(x) = kF
π

− ∂xθ(x)
π

+ F.O. (38)

and its fast oscillating terms:

F.O. = i
2πa

[
e−2ikF xe2iθ(x) − e2ikF xe−2iθ(x)

]
= 1
πa

sin (2kFx− 2θ(x)) (39)

IV.4.1 Bosonization of Density-Density Interaction

Calculate the operator ρ(x)ρ(x′) with a suitable Taylor expansion to order (∂xθ)2. Consider
small distances x − x′ ≈ a, such that you can Taylor expand the fields ϕ and θ at first order,
and the exponential at second order to get the required terms in (∂xθ)2. In doing so, separate
fast and slow oscillating parts.

As a check: consider the density density interaction: Hint = Ũ
�

dxρ(x)ρ(x − a); for
kF ̸= π/2a, the slow oscillationg terms must yeild:

Hint,slow =
�

dx Ũ
π2 (1 − cos(2kFa)) (∂xθ)2 + Ũ

aπ2 sin(2kFa)∂xθ − 2ŨkF
π2 ∂xθ (40)

The second and third terms can be integrated out and give only a constant contribution (which
is zero for systems with a conserved number of particles!). Ũ has units of energy times distance
(Ũ = Ua)

Using the given approximation for the bosonized density operator, we have:

ρ(x)ρ(x′) =
(
ρ0 − ∂xθ(x)

π
+ F.O.(x)

)(
ρ0 − ∂x′θ(x′)

π
+ F.O.(x′)

)
=

ρ2
0 − ρ0

∂xθ(x)
π

− ρ0
∂x′θ(x′)

π
+ ∂xθ(x)

π

∂x′θ(x′)
π

+

ρ0F.O.(x′) + ρ0F.O.(x) − ∂xθ(x)
π

F.O(x′) − F.O.(x)∂
′
xθ(x′)
π

+ F.O.(x)F.O.(x′)

Where we have used that for Fermions ρ0 = kF/π. The only potentially slowly oscillating terms in the
above expressions are the ones with no factors of F.O. and the term with a product of fast oscillating
terms. Let us first consider simplest slowly oscillating terms. Since we assume that the field θ(x), and
ϕ(x) as well, wary slowly, and that a is a very small length, we make the approximation:

ρ2
0 − ρ0

∂xθ(x)
π

− ρ0
∂x′θ(x′)

π
+ ∂xθ(x)

π

∂x′θ(x′)
π

≈ ρ2
0 − 2ρ0

∂xθ(x)
π

+
(
∂xθ(x)
π

)2
(41)

Likewise we can approximate3:

ρ0F.O.(x′) + ρ0F.O.(x) − ∂xθ(x)
π

F.O(x′) − F.O.(x)∂x
′θ(x′)
π

≈ 2
πa

(
ρ0 − ∂xθ(x)

π

)
sin (2kFx− 2θ(x)) ,

(42)
3Here we truly just use the leading order approximation x ≈ x′. The reasoning is that not only is this term

fast oscillating at general fillings, but also at half filling, so it will not be relevant in any of the cases we consider,
even if we include the −2kFa phase shift stemming from x′ ≈ x− a
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where we have used that [∂xθ(x), θ(x′)] = 0 to collect the terms with the derivatives. Finally we turn
our attention to the final term:

F.O.(x)F.O.(x′) =
( i

2πa

)2 (
e−2ikF xe2iθ(x) − e2ikF xe−2iθ(x)

) (
e−2ikF x

′e2iθ(x′) − e2ikF x
′e−2iθ(x′)

)
=

− 1
(2πa)2

(
e−2ikF xe2iθ(x)e−2ikF x

′e2iθ(x′) + e2ikF xe−2iθ(x)e2ikF x
′e−2iθ(x′)

)
+

1
(2πa)2

(
e−2ikF xe2iθ(x)e2ikF x

′e−2iθ(x′) + e2ikF xe−2iθ(x)e−2ikF x
′e2iθ(x′)

)
Using that the field commute with themselves: [θ(x), θ(x′)] = 0, we can freely combine the exponentials:

F.O.(x)F.O.(x′) = − 1
(2πa)2

(
e−2i(kF (x+x′)−θ(x)−θ(x′)) + e2i(kF (x+x′)−θ(x)−θ(x′))

)
+

1
(2πa)2

(
e−2ikF (x−x′)e2i(θ(x)−θ(x′)) + e2ikF (x−x′)e−2i(θ(x)−θ(x′))

)
The terms in the first parentheses are fast oscillating. Using once again that the fields are assumed
slowly oscillating, i.e. θ(x′) ≈ θ(x), and using4 x+ x′ = 2x+ a the fast oscillating term becomes:

− 1
(2πa)2

(
e−2i(kF (x+x′)−θ(x)−θ(x′)) + e2i(kF (x+x′)−θ(x)−θ(x′))

)
≈ − 2

(2πa)2 cos (4kFx− 4θ(x) + 2kFa)

(43)

Using the slow oscillation of the fields to make the first order expansion: θ(x) − θ(x′) ≈ a∂xθ(x), we
can then write the slowly oscillating terms as:

1
(2πa)2

(
e−2ikF (x−x′)e2i(θ(x)−θ(x′)) + e2ikF (x−x′)e−2i(θ(x)−θ(x′))

)
≈

1
(2πa)2

(
e−2ikF (x−x′)e2ia∂xθ(x) + e2kF i(x−x′)e−2ia∂xθ(x)

)
(44)

Since the fields wary slowly, the derivatives are small, and we can Taylor expands the exponentials:

e2ia∂xθ(x) ≈ 1 + 2ai∂xθ(x) − 2a2 (∂xθ(x))2 (45)
e−2ia∂xθ(x) ≈ 1 − 2ai∂xθ(x) − 2a2 (∂xθ(x))2 (46)

The slowly oscillating term then is:

1
(2πa)2

(
e−2ikF (x−x′)e2ia∂xθ(x) + e2kF i(x−x′)e−2ia∂xθ(x)

)
≈

1
(2πa)2

(
2 cos(2kFa) + 4a sin(2kFa)∂xθ(x) − 4a2 cos(2kFa) (∂xθ(x))2

)
(47)

Combining all of the above we find that we get three types of contributions: First there are constant
terms which can be removed by shifting the reference energy. Next there are slowly oscillating terms

4Note, unlike the fast oscillating term Eq. (39), we now need to use x+ x′ = 2x+ a. If we didn’t include the
a in the density-density interaction, we would have a term like cos(4kFx− 4θ(x)), which at half filling results in
a different sign due to the lack 2kFa phase shift!
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(S.O.). Finally there are the fast oscillation (F.O.) terms:

ρ(x)ρ(x− a) ≈ ρ2
0 + 1

2(πa)2 cos(2kFa)︸ ︷︷ ︸
cont.

+ (48a)

1
aπ2 sin(2kFa)∂xθ(x) − 2ρ0

∂xθ(x)
π

+ 1
π2 (1 − cos(2kFa)) (∂xθ(x))2︸ ︷︷ ︸

S.O.

+ (48b)

2
πa

(
ρ0 − ∂xθ(x)

π

)
sin (2kFx− 2θ(x)) − 2

(2πa)2 cos (4kFx− 4θ(x) + 2kFa)︸ ︷︷ ︸
F.O.

(48c)

Dropping the constant terms since they just correspond to a shift in energy, we find that the density-
density product, including the fast oscillating terms, is given by:

ρ(x)ρ(x′)
∣∣
x−x′≈a ≈

( 1
aπ2 sin(2kFa) − 2kF

π2

)
∂xθ(x) + 1

π2 (1 − cos(2kFa)) (∂xθ(x))2 +

2
πa

(
ρ0 − ∂xθ(x)

π

)
sin (2kFx− 2θ(x)) − 2

(2πa)2 cos (4kFx− 4θ(x) + 2kFa) (49)

Using this result, we find that that the slowly oscillating part of a density-density interaction:

Hint = Ũ

�
dxρ(x)ρ(x− a) (50)

can be described by the bosonized Hamiltonian:

Hint,slow =
�

dx Ũ
π2 (1 − cos(2kFa)) (∂xθ)2 + Ũ

( 1
aπ2 sin(2kFa)∂xθ − 2kF

π2

)
∂xθ (51)

which is what we should expect.

IV.4.2 Interaction at Half-Filling

What happens for kF = π/2a?

At certain fillings, fast oscillating terms can become slowly oscillating. To understand this we must
first recall that we start from a discrete lattice model where the position is an integer multiple of the
lattice constant5, i.e. x = ja, j ∈ Z. this means that at half filling, where kF = π/2a we have:

kFx = j
π

2 , at half filling (52)

Consequently, if a terms is oscillating at a frequency, 4j′kF , j
′ ∈ Z, we will have kFx = n2π, n ∈ Z.

This means that any complex exponential depending on 4kFx will simply be equal to unity at half

5This point is technically subtle. In the continuum model x is of course not an integer, and it is therefore
not clear why the fast oscillation should simply give unity. It is possible to account for the special behaviour at
half filling by including an additional term in the continuum Hamiltonian involving an interaction of the density
and a periodic potential, but that is beyond the scope of this solution.
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filling, and therefore doesn’t oscillate fast! This is exactly the case for the last of the fast oscillating
terms in the density-density interaction Eq. (49)

− 2
(2πa)2 cos (4kFx− 4θ(x) + 2kFa)

∣∣∣∣∣
kF = π

2a

= 2
(2πa)2 cos(4θ(x)) (53)

This term oscillated slowly at half filling, and will not simply average out any more if we integrate over
position, as is the case in the Hamiltonian. We will return to the physical interpetation of this term in
Problem V.3.3.

Page 11 of 33



ACMT 2022, Blok 3: Hand-in 2, due May 31st

V. Field-Theoretical (Axiomatic) Bosonization

V.3 Details on the bosonization of fermions
Consider a one dimensional chain of fermions with generic kF ̸= π/2a and a nearest-neighbor interaction
as in Hamiltonian:

Ĥ = Ĥ0 + Ĥint ≡ Ĥ0 + U
∑
r

ĉ†
r+aĉr+aĉ

†
r ĉr (54)

V.3.1 Bosonization of Nearest Neighbor Chain of Fermions

Based on the standard bosonization prescription:

ψ†(x) = 1√
2πa

[
eikF xe−i(φ(x)+θ(x)) + e−ikF xe−i(φ(x)−θ(x))

]
, (55a)

ψ(x) = 1√
2πa

[
e−ikF xei(φ(x)+θ(x)) + eikF xei(φ(x)−θ(x))

]
(55b)

and the result Eq. (40), derive the slow-oscillating part of the Hamiltonian as a function of θ
and φ, starting from the free Hamiltonian Ĥ0 and adding the interaction. Use a second order
Taylor expansion considering the lattice spacing a as a small parameter. verify that you get:

H =
�

dx 2ta sin(kFa)
2π

[
(∂xφ)2 + (∂xθ)2

]
+
�

dx U

π2 (1 − cos(2kFa)) (∂xθ)2 (56)

First we take the continuum limit of Eq. (1) by following the pescription6:

∑
r

→
� dx

a
(57a)

cr →
√
aψ(x) (57b)

nr = c†
rcr → aρ(x) (57c)

The continuum description of H0 then becomes:

H0 = −t
�

dx
[
ψ†(x+ a)ψ(x) + H.c.

]
+ µ

�
dxρ(x) (58)

The chemical potential term, when bozonized according to Eq. (38), only gives a constant term and a
term linear in ∂xθ(x), so we will simply drop it7. To make the connection to our earlier results clearer
we assume periodic boundary conditions, so that we may freely shift the variables and consider:

H0 = −t
�

dx
[
ψ†(x)ψ(x− a) + H.c.

]
(59)

6Note that in our convention, due to the a−1/2 prefactor in Eq. (55), the factors of a−1 needed to convert
the sum to an integral are already included in the fields.

7We could also say that for simplicity we we consider a system with a fixed number of particles, i.e. which
can’t exchange particles with a reservoir, and therefore we drop the chemical potential term.

Page 12 of 33



ACMT 2022, Blok 3: Hand-in 2, due May 31st

We now want to bosonize the hopping term, which using x′ = x− a, requires that we find:

ψ†(x)ψ(x′) = 1
2πa

[
eikF xe−i(φ(x)+θ(x)) + e−ikF xe−i(φ(x)−θ(x))

] [
e−ikF x

′ei(φ(x′)+θ(x′)) + eikF x
′ei(φ(x′)−θ(x′))

]
=

1
2πa

[
eikF (x−x′)e−i(φ(x)+θ(x))ei(φ(x′)+θ(x′)) + e−ikF (x−x′)e−i(φ(x)−θ(x))ei(φ(x′)−θ(x′))+

eikF (x+x′)e−i(φ(x)+θ(x))ei(φ(x′)−θ(x′)) + e−ikF (x+x′)e−i(φ(x)−θ(x))ei(φ(x′)+θ(x′))
]

To further reduce this expression we must combine the exponentials. However, the fields θ and ϕ
don’t commute, but satisfy the commutation relation:[

θ(x), φ(x′)
]

= −iπΘ(x− x′) (60)

Since the commutator of θ and φ is number, we can use the following version of the BCH lemma:

eAeB = eA+B+ 1
2 [A,B] (61)

First let us consider the terms proportional to e±ikF (x−x′), i.e. the slowly oscillating ones:

1
2πa

[
eikF (x−x′)e−i(φ(x)+θ(x))ei(φ(x′)+θ(x′)) + e−ikF (x−x′)e−i(φ(x)−θ(x))ei(φ(x′)−θ(x′))

]
=

1
2πa

[
eikF ae−i(ϕ(x)−ϕ(x′)+θ(x)−θ(x′))−i π

2 + e−ikF ae−i(φ(x)−φ(x′)+θ(x′)−θ(x))+i π
2
]

(62)

where we have used the commutators:

[−i (φ(x) + θ(x)) , i (φ(x− a) + θ(x− a))] = [φ(x), θ(x− a)]︸ ︷︷ ︸
0

+ [θ(x), φ(x− a)]︸ ︷︷ ︸
−iπ

= −iπ (63)

[−i (φ(x) − θ(x)) , i (φ(x− a) − θ(x− a))] = − [φ(x), θ(x− a)]︸ ︷︷ ︸
0

− [θ(x), φ(x− a)]︸ ︷︷ ︸
−iπ

= iπ (64)

Next we expand the fields, assuming that they are slowly oscillating and a is small:

θ(x) − θ(x− a) ≈ a∂xθ(x) (65a)
φ(x) − φ(x− a) ≈ a∂xφ(x) (65b)

Using the Taylor expansions of the fields, and rewriting the phases e±i π
2 = ±i we get:

1
2πa

[
eikF ae−i(ϕ(x)−ϕ(x′)+θ(x)−θ(x′))−i π

2 + e−ikF ae−i(φ(x)−φ(x′)+θ(x′)−θ(x))+i π
2
]

≈
1

2πa
[
−ieikF ae−ia(∂xθ(x)+∂xφ(x)) + ie−ikF aeia(∂xθ(x)−∂xφ(x))

]
≈

1
2πa

[
ie−ikF a

(
1 + ia∂xθ(x) − ia∂xφ(x) − a2

2 (∂xθ(x) − ∂xφ(x))2
)

−ieikF a

(
1 − ia∂xθ(x) − i∂xφ(x) − a2

2 (∂xθ(x) + ∂xφ(x))2
)]

(66)

Where we have used that the derivatives are small, to also expand the exponentials, to second order.
We thus find:

ψ†(x)ψ(x− a) ≈ −a sin(kFa)
2π

(
(∂xθ(x))2 + (∂xφ(x))2

)
− 1
π

(cos(kFa)∂xθ − i sin(kFa)∂xφ) +

i a2π cos(kFa){∂xθ, ∂xφ} + 1
πa

sin(kFa) + F.O. (67)
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where {A,B} ≡ AB +BA is the anti-commutator and F.O. is the fast oscillating term. Even though
we will neglect the fast oscillating terms ∼ e±i(x+x′), we now find them for the sake of completeness.
Using the same approach as for the slowly oscillating term we have:

F.O. = 1
2πa

[
eikF (x+x′)e−i(φ(x)+θ(x))ei(φ(x′)−θ(x′)) + e−ikF (x+x′)e−i(φ(x)−θ(x))ei(φ(x′)+θ(x′))

]
=

1
2πa

[
e−ikF (x+x′)e2iθ(x)+i π

2 + eikF (x+x′)e−2iθ(x)−i π
2
]

(68)

where we have used θ(x) + θ(x− a) ≈ 2θ(x) and have neglected φ(x) − φ(x− a) ≈ a∂xφ(x), since we
assume that the fields are large compared to the derivatives, which are small due to the slowly varying
fields. Finally we approximate8 x+ x′ = 2x+ a ≈ 2x, and find:

F.O. = 1
2πa

[
ie−i2kF xe2iθ(x)+i π

2 − iei2kF xe−2iθ(x)
]

(69)

We can now include the hermitian conjugate of Eq. (67), and after dropping the fast oscillating
terms we get:

ψ†(x)ψ(x− a) + H.c. ≈ −a

π
sin(kFa)

(
(∂xθ)2 + (∂xφ)2

)
− 2
π

cos(kFa)∂xθ + 2
πa

sin(kFa) (70)

We thus find that the bosonized hopping Hamiltonian is given by:

H0 =
�

dxat sin(kFa)
π

[
(∂xθ)2 + (∂xφ)2

]
(71)

where usual we drop the term linear in ∂xθ(x) and the constant term since they are unimportant.
Finally we turn our attention to the interaction term:

Hint = U
∑
r

c†
r+acr+ac

†
rcr = U

∑
r

n†
r+anr → U

�
dx aρ(x+ a)ρ(x) (72)

Shifting the variable of the integral by a, we can directly use the result from Problem IV.4.1. Doing
so we find that the bosonized Hamiltonian, when dropping constant and boundary terms, is given by:

H =
�

dx at sin(kFa)
π

[
(∂xφ)2 + (∂xθ)2

]
+
�

dx Ua

π2 (1 − cos(2kFa)) (∂xθ)2 (73)

Note that in this case U actually has dimension of energy.

8Note this is consistent with Eq. (39)
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V.3.2 Luttinger Parameter and Fermi Velocity

From Eq. (56) calculate the value of K and u as a function of U and vF , where:

vF = 2ta sin(kFa) (74)

is the Fermi velocity of the non-interacting model H0.

Using the trigonometric identity 1 − cos(x) = 2 sin2 (x
2
)
, and factoring out a 1/2π, we can rewrite

the Hamiltonian as:

H = 1
2π

�
dx 2ta sin(kFa)

[
(∂xφ)2 + (∂xθ)2

]
+ 1

2π

�
dx 4Ua

π
sin2(kFa) (∂xθ)2 (75)

Using the Fermi velocity vF = 2ta sin(kFa) for the non-interacting electrons, we can rewrite this as:

H = 1
2π

�
dx
[
vF (∂xφ)2 +

(
vF + Uv2

F

πat2

)
(∂xθ)2

]
(76)

To find the Luttinger parameter and Fermi velocity, recall that the Hamiltonian for the Luttinger liquid
is:

H = 1
2π

�
dx
(
uK (∂xφ)2 + u

K
(∂xθ)2

)
(77)

Comparing Eq. (76) to the Luttinger liquid Eq. (77), we find:

K =
√
Aφ
Bθ

, u =
√
AφBθ (78)

where Aφ is the coefficient of (∂xφ)2, and Bθ the coefficient of (∂xθ)2. Using these relations we find
that the luttinger parameter is given by:

K =
√√√√√ vF(

vF + Uv2
F

πat2

) = 1√
1 + UvF

πat2

(79)

We note that in the non-interacting limit:

lim
U→0

K = 1 (80)

If we consider a genuine continuum model, we can also take the strongly interacting limit9

lim
U→∞

K = 0 (81)

9Note that in general what constitutes the strongly interacting limit is a subtle matter. In essence, it depends
on what model we actually consider, i.e. did we start from a genuine continuum model or did we take the
continuum limit of a discrete model. If we start from a lattice model, K will be bound from below, with the
bound being set by the interaction range. Moral of the story: we can always trust the expression for K in the
weak interaction limit, while in the strong interaction limit we must think more carefully to avoid systematic
errors which arise when going from the lattice to the continuum.
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as we should expect for Fermions. The Fermi velocity is

u =

√√√√vF
(
vF + Uv2

F

πat2

)
= vF

√
1 + UvF

πat2
(82)

In the non-interaction limit this reduces to the Fermi-velocity for the tight-binding model:

lim
U→0

u = vF (83)

while in the strongly interacting limit the Fermi velocity diverges:

lim
U→∞

u = ∞ (84)

We have thus found that the Luttinger parameter and Fermi-velocity for interacting Fermions are:

K = 1√
1 + UvF

πat2

, u = vF

√
1 + UvF

πat2
(85)

V.3.3 Interaction at Half Filling

What is the additional (slow-oscillating) interaction term that appears for kF = π/2a

As we dicussed in Problem IV.4.2 fast oscillating terms become relevant at half filling, i.e. kF = π/2a
if they oscillate like e±i4kF x. Such terms arise from the density-density interaction, since 4 factors of ψ
or ψ†, or combinations thereof, are needed to get the required phase. The only fast oscillating term,
which arises when bosonizing Eq. (54), which become relevant at half filling, is again the contribution
to ρ(x)ρ(x′) in Eq. (53). This results in a sine-Gordon interaction term given by:

HUmklapp = 1
2π

�
dx U
aπ

cos(4θ(x)) (86)

This term is physically due to Umklapp scattering. To understand why this is the case, recall that the
fermionic field can be expressed in terms of right and left moving fields:

ψ†(x) = eikF xψ†
L + e−ikF xψ†

R, (87a)
ψ(x) = e−ikF xψL + eikF xψR (87b)

Since the density-density interaction is given by product ρρ = ψ†ψψ†ψ, we see that fast oscillating
terms which become relevant at half-filling are:

ρ(x)ρ(x′) = ei4kF (x+x′)ψ†
LψRψ

†
LψR + e−4ikF (x+x′)ψ†

RψLψ
†
RψL + . . . (88)

The term ∼ ψ†
Lψ

†
LψRψR describes two right moving electrons scattering into to left moving, while

the term ∼ ψ†
Rψ

†
RψLψL describes the opposite process. These are indeed both Umklapp processes,

but why are these processes important at half filling? The explanation lies in periodicity of the BZ.
At half filling the scattering process which changes the momentum k = kF → k′ = kF + 2kF and
k = kF → k′ = −kF are equivalent, due to the periodicity of the BZ. Consequently, exactly at half
filling the processes with momentum exchange 2kF can scatter two left movers into two right movers
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and vice versa, since they scatter from one half of the BZ and into the other, and thus obtain the
opposite momentum.

We now understand that the additional sine-gordon like interaction term Eq. (86), which becomes
relevant10 at half filling, i.e. kF = π

2a , is due to the fact that Umklapp scattering becomes important
at half filling11.

V.4 Bosonization of 1D p-wave SC
Let us now consider a superconducting system, to get a feeling about how to use all this machinary.
Take the previous chain (i.e. from Exercise IV.4 for kF ̸= π/2a. Let us suppose that our chain is put in
proximity with a p-wave superconductor. Therefore we include an additional term in the tight-binding
model:

HSC = −∆
∑
r

(
c†
rc

†
r+a + cr+acr

)
, (89)

with real ∆ > 0.

V.4.1 Bosonization of Superconducting Term

Find the bosonized description of the previous term (as usual, consider the lattice spacing a to
be a small parameter).

We start by taking the continuum limit of Eq. (89), following the usual prescription Eq. (57):

HSC = −∆
�

dx
[
ψ†(x)ψ†(x+ a) + H.c.

]
(90)

In terms of the bosonized fields Eq. (55), the pair creation operator is:

ψ†(x)ψ†(x+ a) = 1
2πa

[
eikF xe−i(φ(x)+θ(x)) + e−ikF xe−i(φ(x)−θ(x))

]
×[

eikF (x+a)e−i(φ(x+a)+θ(x+a)) + e−ikF (x+a)e−i(φ(x+a)−θ(x+a))
]

=
1

2πa
[
eikF ae−i(φ(x)−θ(x))e−i(φ(x+a)+θ(x+a)) + e−ikF ae−i(φ(x)+θ(x))e−i(φ(x+a)−θ(x+a))

eikF (2x+a)e−i(φ(x)+θ(x))e−i(φ(x+a)+θ(x+a))e−ikF (2x+a)e−i(φ(x)−θ(x))e−i(φ(x+a)−θ(x+a))
]

(91)

The terms oscillating like e±i2kF x are fast oscillating, so we will not consider them in detail. Next we
use the BCH lemma Eq. (61) to combine the exponentials in the slowly oscillating term:

1
2πa

[
eikF ae−i(φ(x)−θ(x))e−i(φ(x+a)+θ(x+a)) + e−ikF ae−i(φ(x)+θ(x))e−i(φ(x+a)−θ(x+a))

]
=

1
2πa

[
eikF ae−i(φ(x+a)+φ(x)+θ(x+a)−θ(x))−i π

2 + e−ikF ae−i(φ(x)+φ(x+a)+θ(x)−θ(x+a))+i π
2
]

(92)

10Or at least slow oscillating
11We will later see that when the interaction strength U is sufficiently strong, the Umklapp scattering is

relevant (in the RG sence) and leads to a phase transition to a Mott-like insulator
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where we have used:

[−i (φ(x) − θ(x)) ,−i (φ(x+ a) + θ(x+ a))] = − [φ(x), θ(x+ a)]︸ ︷︷ ︸
iπ

+ [θ(x), φ(x,+a)]︸ ︷︷ ︸
0

= −iπ (93)

[−i (φ(x) + θ(x)) ,−i (φ(x+ a) − θ(x+ a))] = [φ(x), θ(x+ a)]︸ ︷︷ ︸
iπ

− [θ(x), φ(x,+a)]︸ ︷︷ ︸
0

= iπ (94)

Based on the assumption that the fields vary slowly over the small distance a, we can make the
approximations:

φ(x+ a) + φ(x) ≈ 2φ(x) (95)
θ(x+ a) − θ(x) ≈ a∂xθ(x) (96)

We then have:
1

2πa
[
eikF ae−i(φ(x+a)+φ(x)+θ(x+a)−θ(x))−i π

2 + e−ikF ae−i(φ(x)+φ(x+a)+θ(x)−θ(x+a))+i π
2
]

≈
1

2πa
[
−ieikF ae−i(2φ(x)+a∂xθ(x)) + ie−ikF ae−i(2φ(x)−a∂xθ(x))

]
≈

1
2πa

[
−ieikF ae−i2φ(x) + ie−ikF ae−i2φ(x)

]
(97)

where we have assumed that a∂xθ(x) is negligible compared to φ, again based on the assumption that
the fields vary slowly, but not that the fields are small! The bosonized pair-creation operator then is:

ψ†(x)ψ†(x+ a) = 1
2πa

[
ie−i(kF a+2φ(x) − iei(kF a−2φ(x))

]
+ F.O. (98)

Including the hermitian conjugate, and dropping the fast oscillating terms, we get:

ψ†(x)ψ†(x+ a) + H.c. = 1
2πa

[
ie−i(kF a+2φ(x)) − iei(kF a−2φ(x)) − iei(kF a+2φ(x)) + ie−i(kF a−2φ(x))

]
⇔
(99)

ψ†(x)ψ†(x+ a) + H.c. = 1
πa

[sin (kFa+ 2φ(x)) + sin (kFa− 2φ(x))] (100)

Using the trigonometric addition formula sin(x) + sin(y) = 2 sin
(
x+y

2

)
cos

(
x−y

2

)
, we can finally write

the Hamiltonian Eq. (90) in its bosonized form:

HSC = −2∆
πa

sin(kFa)
�

dx cos(2φ(x)) (101)

Alternatively we can write the Superconducting Hamiltonian in terms of vertex operators:

HSC = −g∆

�
dx
[
V∆(x) + V †

∆(x)
]
, V∆(x) ≡ ei2φ(x), g∆ ≡ ∆

πa
sin(kFa) (102)

which is more convenient when doing any RG analysis.

V.4.2 RG Analysis of Superconducting Perturbation

Based on ⟨φ(x)φ(0)⟩ = − 1
2K ln |x|, what is the scaling dimension of the operator you found in

HSC as a function of K? When is it relevant?
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We now wish to find the scaling dimension of the superconducting perturbation. To do so we
examine the scaling dimension of the vertex operators. To do so, we first find the correlation function
of the vertex operators, taken with respect to the unperturbed Luttinger liquid action:〈

V †
∆(x)V∆(0)

〉
=
〈
e−i2φ(x)e2iφ(0)

〉
(103)

Next we use [φ(x), φ(0)] to combine the exponentials. Furthermore, since the unperturbed Luttinger
liquid has a quadratic action, we can rewrite the correlation function exactly using a second order
cumulant expansion12:〈

V †
∆(x)V∆(0)

〉
=
〈
e−2i(φ(x)−φ(0))

〉
= e−2i⟨φ(x)⟩+2i⟨φ(0)⟩−2[⟨(φ(x)−φ(0))2⟩−⟨(φ(x)−φ(0))⟩2] (104)

Since the Luttinger liquid is transitionally invariant, the mean value is position independent:

⟨φ(x)⟩ = ⟨φ(0)⟩ (105)

So the correlation function simplifies to:〈
V †

∆(x)V∆(0)
〉

= e−2(⟨φ2(x)⟩+⟨φ2(0)⟩)︸ ︷︷ ︸
C

e4⟨φ(x)φ(0)⟩ = Ce− 2
K

ln|x| = C

|x|2/K
(106)

We thus find that the correlation function for the Vertex operators, is:〈
V †

∆(x)V∆(0)
〉

= C

|x|2/K
(107)

where C is a non-universal constant, i.e. it depends on the momentum cutoff, which is system dependent.
We now examine how the correlation function behaves under a rescaling:

x = bx′, b = 1 + dℓ (108)

Rescaling Eq. (107), we have:〈
V †

∆(x′)V∆(0)
〉

= Ce− 2
K

ln|x| = C

|bx′|2/K
⇔

〈
V †

∆(x′)V∆(0)
〉

= b− 2
K

C

|x′|2/K
(109)

Since the correlation function decays as a power law, the scaling dimension D∆ can be found from:〈
V †

∆(x′)V∆(0)
〉

= b−2D∆
〈
V ′†

∆ (x′)V ′
∆(0)

〉
(110)

Comparing Eq. (109) and Eq. (110) we find that the scaling dimension of the superconductor vertex
operator is:

V∆(x) = b−D∆V ′
∆(x′), D∆ = 1

K
(111)

12Recall that the second order cumulant expansion is: ⟨ex⟩0 = e⟨x⟩0+ 1
2 (⟨x2⟩−⟨x⟩2)
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To determine when the Superconducting perturbation is relevant, we examine how the coupling constant
g∆ behaves under the RG flow. This requires that we first find the RG equation, which we can obtain
as follows. First we note that the euclidean time action corresponding to the perturbation Eq. (101) is:

SSC = −g∆

�
dxdτ

[
V∆(x) + V †

∆(x)
]

(112)

Rescaling this action using Eq. (108) for x, and an analogous scaling for τ we have:

S ′
SC = −∆

�
dx′dτ ′ g∆b

2
[
b−D∆V ′

∆(x′) + b−D∆V ′†
∆ (x′)

]
= −

�
dx′dτ ′ g∆b

2−D∆
[
V ′

∆(x′) + V ′†
∆ (x′)

]
(113)

Comparing this to:

S ′
SC = −

�
dx′dτ ′ g′

∆

[
V ′

∆(x′) + V ′†
∆ (x′)

]
(114)

We find:

g′
∆ = b2−D∆g∆ (115)

For an infinitesimal rescaling b = 1 + dℓ we get:

g′
∆ = (1 + dℓ)2−D∆ g∆ = (1 + (2 −D∆)dℓ) g∆ ⇔

g′
∆ − g∆

dℓ = (2 −D∆)g∆ ⇒

dg∆(ℓ)
dℓ = (2 −D∆)g∆ (116)

We thus have the RG equation:

g∆(ℓ) = g∆(0)e(2−D∆)ℓ (117)

The perturbation is relevant when the exponential is growing, i.e. for D∆ < 2. We thus find that the
superconducting term Eq. (101) is:

HSC :
{

relevant, K > 1
2

irrelevant, K < 1
2

(118)

V.4.3 Strong ∆ limit

Consider a situation in which HSC is relevant. Based on the bosonized description, what happens
when ∆ becomes large compared to the kinetic energy and interaction term (on a “semiclassical”
level)? In particular, what happens to the field φ? How many semiclassical minima of HSC as
a function of φ are there?

We now consider the full Hamiltonian H = H0 +Hint +HSC, which we can write:

H = 1
2π

�
dx
(
vFK (∂xφ)2 + vF

K
(∂xθ)2

)
− 2g∆

�
dx cos(2φ(x)) (119)

Page 20 of 33



ACMT 2022, Blok 3: Hand-in 2, due May 31st

where K and vF are given in Eq. (85). In the limit ∆ ≫ U, t where the superconducting term will
dominate. If it is sufficiently large we can make a semi-classical approximation which will pin φ(x) to
the field configuration φs-c(x) which minimises the energy, i.e. the Hamiltonian HSC. How we minimise
the energy depends on the sign of the Hamiltonian, which is determined by −g∆ ∝ −∆ sin(kFa). Since
we assume ∆ > 0, and since sin(kFa) always is positive, as kF ∈ (0; πa ], we have −g∆ < 0 . Since
−g∆ < 0, we must maximise the cosine, to minimise the energy from the superconducting term, which
implies:

cos(2φ(x)) = 1 ⇒
2φ(x) = 2nπ, n ∈ Z ⇔
φ(x) = πn, n ∈ Z (120)

However, the integer n is actually limited to two values. To see this, we note that the bosonized
fields Eq. (55), are invariant under φ(x) → φ(x) + 2π, so the field φ(x) is only uniquely defined for
φ(x) ∈ [0; 2π). We thus find that when the superconducting term is much larger than the kinetic and
interaction term, the field φ is semi-classically pinned to a constant value:

φs-c(x) = πn, n = 0, 1 (121)

which minimises the energy of the superconducting term. Furthermore this means that all fluctuations
in φ are killed off, and due to the canonical relation Eq. (25) between φ and ∂xθ, the θ field will become
wildly fluctuating when φ is pinned; just as would be the case for e.g. momentum if the position is
measured! We see that there are two distinct values φ can be pinned to, but they are degenerate; both
the pinned field configurations lead to the same semi-classical minimum of the Hamiltonian:

Hs-c = −2L∆
πa

sin(kFa) (122)

where L is the length of the system.

V.4.4 Correlation function

What do you expect from correlations of the kind
〈
ψ†
R(x)ψ†

L(x+ a)ψR(y)ψL(y + a)
〉

(consider
only the dominant term in the limit |x− y| ≫ a?

First recall that the bosonized left and right moving fields are given by:

ψL(x) = 1√
2πa

ei(φ(x)+θ(x)) (123a)

ψR(x) = 1√
2πa

ei(φ(x)−θ(x)) (123b)

We now consider the pair-correlation function. Using Eq. (123a) we have:〈
ψ†
R(x)ψ†

L(x+ a)ψR(y)ψL(y + a)
〉

=
1

(2πa)2

〈
e−i(φ(x)−θ(x))e−i(φ(x+a)+θ(x+a))ei(φ(y)−θ(y))ei(φ(y+a)+θ(y+a))

〉
=

1
(2πa)2

〈
e−i(φ(x)+φ(x+a)−θ(x)+θ(x+a))−i π

2 ei(φ(y)+φ(y+a)+θ(y+a)−θ(y))−i π
2
〉

=

− 1
(2πa)2

〈
e−i(θ(x+a)−θ(x)+φ(x)+φ(x+a))ei(φ(y)+φ(y+a)+θ(y+a)−θ(y))

〉
(124)
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where we have combined the exponential using the BCH lemma and the commutators:

[−i(φ(x) − θ(x)),−i(φ(x+ a) + θ(x+ a))] = − [φ(x), θ(x+ a)]︸ ︷︷ ︸
iπ

+ [θ(x), φ(x+ a)]︸ ︷︷ ︸
0

= −iπ (125)

[i(φ(y) − θ(y)), i(φ(y + a) + θ(y + a))] = − [φ(y), θ(y + a)]︸ ︷︷ ︸
iπ

+ [θ(y), φ(y + a)]︸ ︷︷ ︸
0

= −iπ (126)

Next we wish to split the θ and φ fields, by rearranging the BCH Lemma:

eA+B = eAeBe− 1
2 [A,B] (127)

We then have:

− 1
(2πa)2

〈
e−i(θ(x+a)−θ(x)+φ(x)+φ(x+a))ei(φ(y)+φ(y+a)+θ(y+a)−θ(y))

〉
=

− 1
(2πa)2

〈
e−i(θ(x+a)−θ(x))e−i(φ(x)+φ(x+a))−i π

2 ei(φ(y)+φ(y+a))+i π
2 ei(θ(y+a)−θ(y))

〉
(128)

Since we consider the semi-classical limit where the field is pinned to a constant, i.e. ϕ(x) → φs-c, we
have:

φ(x) = φ(x+ a) = φ(y) = φ(y + a) = φs-c (129)

Consequently the middle factors in the correlation function are simply unity in the semi-classical
approximation:

e−i(φ(x)+φ(x+a))−i π
2 ei(φ(y)+φ(y+a))+i π

2 ≈ e−2iφs-c−i π
2 e2iφs-c+i π

2 = 1 (130)

Thus, when the φ field is semi-classically pinned the correlation function reduces to:〈
ψ†
R(x)ψ†

L(x+ a)ψR(y)ψL(y + a)
〉s-c

= − 1
(2πa)2

〈
e−i(θ(x+a)−θ(x))ei(θ(y+a)−θ(y))

〉
(131)

Since the average is with respect to the full action including the super conducting term, we can’t
evaluate the correlation exactly. Instead we do as follows. First we Taylor expanded the fields, by
assuming that they are slowly varying, and then we Taylor expand the exponentials in the resulting
derivatives of the fields, which are small:

− 1
(2πa)2

〈
e−i(θ(x+a)−θ(x))ei(θ(y+a)−θ(y))

〉
≈ − 1

(2πa)2

〈
e−ia∂xθ(x)eia∂yθ(y)

〉
≈

− 1
(2πa)2 ⟨(1 − ia∂xθ(x)) (1 + ia∂yθ(y))⟩ =

− 1
(2πa)2

(
1 − ia∂x ⟨θ(x)⟩ + ia∂y ⟨θ(y)⟩ + a2∂x∂y ⟨θ(x)θ(y)⟩

)
(132)

Since the perturbation HSC opens a gap in the spectrum of the Fermions, we expect that at large
separations |x− y| ≫ a, any correlations function should decay ∼ e−∆|x−y|, and consequently only the
leading order term is relevant. We thus find that when φ is semi-classically pinned, the correlation
function approaches a constant:

〈
ψ†
R(x)ψ†

L(x+ a)ψR(y)ψL(y + a)
〉

≈ − 1
(2πa)2 (133)
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To understand why this is reasonable, we note that we have almost calculated the pair-correlation
function, i.e. the correlation function of the order parameter for the superconductor13:〈

ψ†
Rψ

†
LψLψR

〉
∼
〈
∆̄∆

〉
, (134)

which indeed should approach a constant at large distances, when we are in the superconducting phase
which displays long range order14.

V.4.5 Bosonization of SC with Position Dependent Phase
Suppose now that the SC order parameter acquires a position dependent phase:

HSC = −
∑
r

(
∆eiϕrc†

rc
†
r+a + ∆e−iϕrcr+acr

)
, (135)

with ∆ > 0 and ϕ ≪ 1/a.

What is the bosonized description of this interaction?

Following the same steps as Problem V.4.1, we first go to the continuum limit:

HSC = −∆
�

dx
(
eiϕxψ†(x)ψ†(x+ a) + H.C.

)
(136)

Using Eq. (98), and dropping the fast oscillating terms, the bosonized Hamiltonian becomes:

HSC = − ∆
2πa

�
dx
[
ie−i(kF a+2φ(x)−ϕx) − iei(kF a−2φ(x))+ϕx − iei(kF a+2φ(x)−ϕx) + ie−i(kF a−2φ(x)+ϕx)

]
(137)

Writing this in terms of sines , and using the same trigonometric identity as before we find that the
bosonized form of the Hamiltonian, when the order parameter has a position dependent phase, is given
by:

HSC = −2∆
πa

sin(kFa)
�

dx cos(2φ(x) − ϕx) (138)

V.4.6 Strong ∆ limit revisited

If ∆ is strong, what happens semiclassically to φ? Remember that the current is proportional
to j ∝ ∂xφ. What do you conclude?

13Note the slightly different ordering of the fields compared to Eq. (133), which is there ensure that the
cooper-pair density

〈
∆̄∆

〉
→ n0 is positive. That is, the minus is Eq. (133) is cancelled by the minus which

follows from anti-commuting two of the fields.
14Here there is a small subtlety, namely should we expect ODLRO in 1+1D? Naively, we should not, since

the Mermin–Wagner theorem states that it is impossible for continuous symmetry breaking to occur and result
in order in less than 2 + 1D . However we can "circumvent" the Mermin-Wagner theorem in this case, since
the Hamiltonian we are considering isn’t truly the full one, but rather an effective one which arises from some
interaction in a truly 3+1D system. For example the pairing term can arise by surrounding a 1D wire with
a thick cylindrical 3D layer of superconducting material, in which case the pairing term will arise due to the
superconducting proximity effect.
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We once again consider the limit where ∆ ≫ t, U . Just as before, we make a semi-classical
approximation and minimise the pairing Hamiltonian with respect to φ. This implies:

cos(2φ(x) − ϕx) = 1 ⇔
2φ(x) − ϕx = 2nπ, n ∈ Z (139)

We again note that due to the invariance of the bosonized fields under a 2π shift of φ, there are only
allowed values for n, resulting in only two distinct semi-classical minima. We thus find that when ∆ is
sufficiently strong, the filed gets pinned to the semiclassical value:

φs-c(x) = ϕ

2x+ nπ, n = 0, 1 (140)

Importantly, the position dependent phase of the order parameter results in a semi-classical field
configuration which also depends on position. If we now recall that the current is given by:

j = −KvF∂xφ(x) (141)

Using Eq. (140), we find that:

js-c = −KvF∂x
(
ϕ

2x+ nπ

)
= −KvF

2 ϕ (142)

We thus see that when φ is pinned to the semiclassical field Eq. (140), the system develops a non-zero
current, if the order parameter has a spatially dependent phase15:

js-c = −KvF
2 ϕ (143)

V.4.7 Increasing ϕ

Imagine to progressively increase ϕ: what happens to the kinetic energy? What happens to
the current?

From Eq. (143) we see that the current grows linearly in ϕ, and thus progressively increasing ϕ
will likewise increase the current.

Next we note that the full Hamiltonian can be written purely in terms of φ by using the duality
relation:

∂xθ = K

vF
∂tφ (144)

Using this relation to rewrite the kinetic part Eq. (77) of the Hamiltonian, we have:

H = 1
2π

�
dx
(
vFK (∂xφ)2 + K

vF
(∂tφ)2

)
− 2∆
πa

sin(kFa)
�

dx cos(2φ(x) − ϕx) (145)

Using the semiclassical field Eq. (140) the Hamiltonian becomes:

H = 1
2π

�
dxvFK

ϕ2

4 −
�

dx2∆
πa

sin(kFa) (146)

15We could also write the current js-c = − u
2ϕ. where we have used Eq. (85), to rewrite KvF = u
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Denoting the system length L we thus find that the semiclassical Hamiltonian is:

Hs-c = KvFL

8π ϕ2︸ ︷︷ ︸
H0

− 2L∆
πa

sin(kFa)︸ ︷︷ ︸
HSC

(147)

We see the kinetic energy grows quadratically, i.e. ∼ ϕ2, so increasing ϕ also increases the kinetic energy.
We have thus found that both the current js-c and the kinetic energy Hs-c

0 increases with increasing ϕ:

js-c ∼ ϕ, Hs-c
0 ∼ ϕ2 (148)

V.4.8 Large ϕ limit

Imagine that ϕ increases a lot, such that vFϕ2 ≳ ∆/a. What happens to the system? What do
you expect to see in the current?

If ϕ is increases such that the kinetic energy becomes much larger than the superconducting term,
i.e. vFϕ2 ≫ ∆

a . In this limit, the kinetic term dominates over the superconducting pairing term,
and thus in our semiclassical approximation, we should minimise the kinetic term instead. From the
Hamiltonian Eq. (145), we see that all the kinetic terms depend on squared of derivatives, and thus
the kinetic energy is minimised by pinning φ(x) to a constant value, such that the derivatives vanish:

φs-c = φ0 (149)

However, when the field is pinned to a constant, the current Eq. (141) vanishes:

js-c ∝ ∂xφ0 = 0 (150)

We thus find that if ϕ is increased sufficiently we transition from superconducting phase to a normal
phase which does not carry supercurrent. The transition occurs when vFϕ

2 ∼ ∆/a, which results in
both the superconducting part and the kinetic part being equally relevant. Since all terms in the
Hamiltonian are relevant at the phase transition, it is non-trivial to analyse and beyond the scope of
this solution.

V.4.9 Critical Field

If you consider that ϕ is proportional to a magnetic field ϕ ∝ B, can you relate the previous
observations with a known SC effect (even though we are only in 1D, and we do not truly have
long-range superconducting order)?

We can now rephrase all of our above observations in terms of the magnetic field B. Firstly we see
that applying an external field breaks the spatial homogeneity of the superconducting order parameter,
and the resulting gradient in the phase of the order parameter result in a supercurrent. As the strength
of the external magnetic field B is increased the current increases in strength, until the field hits a
critical value Bc where the system makes a phase transition from a superconducting to a normal phase,
resulting in the supercurrent vanishing. All of the above is just what we expect from our previous
encounters with super-conductivity.
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V.5 Double sine-Gordon model
Let us consider the Hamiltonian:

H = v

2π

�
dx
(
K (∂xφ)2 + (∂xθ)2

K

)
+ 1

2π

�
dx (A cos(αθ) +B cos(βφ)) (151)

V.5.1 RG Analysis of Interaction Terms

Determine for which values of the Luttinger parameter K the A and B terms are relev-
ant/irrelevant in the RG sense.

Hint: split the cosines into exponentials to evaluate their scaling dimension through
their correlation functions.

Writing the Hamiltonian in terms of vertex operators we have:

H = v

2π

�
dx
(
K (∂xφ)2 + (∂xθ)2

K

)
+
�

dx
(
A

2 Vα + B

2 Vβ + H.c.
)
, Vα = eiαθ, Vβ = eiβφ (152)

To determine when the perturbations are relevant or irrelevant, we first find their scaling dimension.
To do so we consider the correlation functions. We start by recalling that the correlation functions for
the fields, with respect to the unperturbed Luttinger liquid action, are given by:

⟨φ(x)φ(0)⟩ = − 1
2K ln |x| (153a)

⟨θ(x)θ(0)⟩ = −K

2 ln |x| (153b)

and that
〈
φ2(x)

〉
= const. and

〈
θ2(x)

〉
= const. where the constants are different and non-universal.

The calculation of the vertex operator correlation function is now completely analogous to the one we
did in Problem V.4.2:〈

V †
α(x)Vα(0)

〉
=
〈
e−iαθ(x)eiαθ(0)

〉
= e− α2

2 (⟨θ2(x)⟩+⟨θ2(0)⟩)︸ ︷︷ ︸
Cα

eα2⟨θ(x)θ(0)⟩ = Cα

|x|
Kα2

2

(154)

〈
V †
β (x)Vβ(0)

〉
=
〈
e−iβφ(x)eiβφ(0)

〉
= e− β2

2 (⟨φ2(x)⟩+⟨φ2(0)⟩)︸ ︷︷ ︸
Cβ

eβ2⟨φ(x)φ(0)⟩ = Cβ

|x|
β2
2K

(155)

We thus have the long range correlation functions:〈
V †
α(x)Vα(0)

〉
= Cα

|x|
Kα2

2

(156a)

〈
V †
β (x)Vβ(0)

〉
= Cβ

|x|
β2
2K

(156b)

Since the correlations decay as power laws, we can simply read off the scaling dimensions Dα and Dβ

by using: 〈
V †
α/β(x)Vα/β(0)

〉
=

Cα/β

|x|2Dα/β
(157)
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We thus find the scaling dimensions:

Dα = Kα2

4 (158a)

Dβ = β2

4K (158b)

Now that we now the scaling dimensions, we want to find the RG equations for the coupling constants
A and B. To do so we note that the actions, in euclidean time, corresponding to the two perturbations
are:

SI,A = 1
2π

�
dxdτA

(
Vα + V †

α

)
(159a)

SI,B = 1
2π

�
dxdτA

(
Vβ + V †

β

)
(159b)

Rescaling the action we have:

S ′
I,A = 1

2π

�
dx′dτ ′b2A

(
b−DαV ′

α + b−DαV ′†
α

)
= 1

2π

�
dx′dτ ′Ab2−Dα︸ ︷︷ ︸

A′

(
V ′
α + V ′†

α

)
(160)

S ′
I,B = 1

2π

�
dx′dτ ′b2B

(
b−DβV ′

β + b−DβV ′†
β

)
= 1

2π

�
dx′dτ ′Bb2−Dβ︸ ︷︷ ︸

B′

(
V ′
β + V ′†

β

)
(161)

A′ = b2−DαA (162)
B′ = b2−DβB (163)

These equations have exatly the same form as Eq. (115), so following the same steps as before we find
that the RG flow of A and B is given by:

A(ℓ) = A(0)e(2−Dα)ℓ (164a)
B(ℓ) = B(0)e(2−Dβ)ℓ (164b)

Since e.g. A is relevant if it increases under the RG flow, we find that A is relevant if the exponent is
positive, ie. 2 > Dα, and likewise for B. Using the scaling dimensions Eq. (158) we thus find that the
relevance of the two sine-Gordon terms depend on the Luttinger parameter K as follows:

A :
{

Relevant, K < 8
α2

Irrelevant, K > 8
α2

, B :
{

Relevant, K > β2

8
Irrelevant, K < β2

8
(165)

The cases K = 8
α2 and K = β2

8 are marginal, and would require further analysis which is beyond the
scope of this solution.
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V.5.2 RG Analysis for Model With Zp Symmetry

This part is inspired by models with Zp symmetry. Consider α = β =
√

2p with p ∈ N. For
which values of p is it possible that there exist a K such that both the terms are irrelevant?

For α = β =
√

2p, the relevance criteria Eq. (165) become:

A :

Relevant, K < 4
p

Irrelevant, K > 4
p

, B :
{

Relevant, K > p
4

Irrelevant, K < p
4

(166)

For both the A and B term to be irrelevant we must have:
4
p
< K <

p

4

⇒ 4
p
<
p

4 ⇔

4 < p (167)

We thus find that both terms can be relevant is

p > 4 ⇒ A and B can be simultaneously irrelevant (168)

V.5.3 Phases Transition

What are, in your opinion, the implications on the phase diagram of such a system as a function
of p and K? Which gapped and gapless phases could you expect?

Based on Eq. (166) we now wish to analyse which phases of we can expect. If both A and B are
irrelevant, the system is just a Luttinger liquid and thus in a gapless phase. If the A term is irrelevant,
and the B term is relevant, the spectrum is gapped by the A-term perturbation. Likewise if the B
term is irrelevant, and the A term is relevant, the spectrum is gapped by the B-term perturbation.
If neither the A or B term are irrelevant, the most relevant term will gap the spectrum. Let us now
examine in more detail how the actual phase diagram will look. First let us consider the regions where
only one term or none are relevant:

■ For 4
p < K < p

4 , both perturbations are irrelevant and the system is gapless

■ For K < 4
p ∧K < p

4 , the A terms is relevant and the system is gapped.

■ For K > 4
p ∧K > p

4 , the B terms is relevant and the system is gapped

Finally let us consider the region p
4 < K < 4

p , where both terms increase with the RG flow. from
Eq. (164) we see that the term with the smallest scaling dimension will grow the fastest, and thus be
relevant. since Dα ∝ K and Dβ ∝ K−1, we see that:

■ For p
4 < K < 4

p ∧K < 1 the A term is most relevant and the system is gapped

■
p
4 < K < 4

p ∧K > 1 the B term is most relevant and the system is gapped

Combining all of these consideration we get the phase diagram in Fig. 4
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Figure 4: The figure above shows the K-p phase diagram for the double sine-Gordon
model when α = β =

√
2p. The system has three phases: a gapless phase (red), a phase

gapped by the A term (green) and a phase gapped by the B term (blue). Note that p is
an integer, so the contonius lines p

4 and 4
p are there for visual clarity.

V.6 Luttinger parameter for bosons

Calculate the Luttinger parameter K for the bosonic system in Exercise IV.2. For spinless
bosonic systems in the non-interacting limit, how does K behave?

Since we could we already calculated the Luttinger parameter back in Problem IV.2.1 and found
that it was given by Eq. (24a), which we for convinience restate here:

K = π

√
ρ0

2Um (169)

In the non-interacting limit U → 0 we find that the Luttinger parameter for spinless bosons diverges:

lim
U→0

K = ∞ (170)

We can now make the comparison between spinless Fermions and spinless Bosons16:

Bosons :
{

Weak interaction, K → ∞
Strong interaction, K → 0

, Fermions :
{

Weak interaction, K → 1
Strong interaction, K → 0

(171)

16Here we should stress that the strongly interacting limit has a subtlety: We are actually considering hardcore
Bosons, and these are equivalent to Fermions through the Jordan-Wigner transformation. This means that what
we refer to as the strongly interacting limit here actually corresponds not only to a large U , but also to having
sufficiently long range interactions!
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V.7 Bose Hubbard model
Several one-dimensional systems can be modelled as locally interacting bosons. These systems include
ultracold bosonic atoms in 1D optical lattices or 1D arrays of superconducting islands connected by
Josephson junctions, in which the Cooper pairs can be thought as bosons hopping on a discrete chain.
To describe these systems, we may consider the following model for bosons on a chain (Bose-Hubbard
model):

H = −t
∑
r

[
b†
r+abr + H.c.

]
+ U

∑
r

n2
r (172)

Here the operators b and b† are standard bosonic operators and nr = b†
rbr measures the number of

particles in the site r. U > 0 represents a local repulsive interaction. In the following, let us assume
that we can vary the density of the system ρ0 = N/L =

∑
r

nr/L as we wish.

V.7.1 Bosonization of the Bose-Hubbard Model
Concerning the kinetic term, bosonize it through the basic approximation br → ψ = √

ρ0eiφ as in
Exercise IV.2. Concerning the interaction, consider nr = aρ and express the operator ρ via:

ρ(x) =
(
ρ0 − ∂xθ(x)

π

)∑
p

ei2p(πρ0x−θ(x)) (173)

by taking into account the harmonics p = −1, 0, 1 only.

Write the bosonized Hamiltonian, including the fast-oscillating terms that you obtain in this
way. You are supposed to find additional terms with respect to what you found in Exercise IV.2

We start by taking the continuum limit of Eq. (172), which yields:

H = −t
�

dx
(
ψ†(x+ a)ψ(x) + H.c.

)
+ U

�
dxa (ρ(x))2 (174)

First let us consider the Kinetic term. Assuming as usual that the fields are slowly varying, we get:

ψ†(x+ a)ψ(x) = √
ρ0e−iφ(x+a)√ρ0eiφ(x) = ρ0e−i(φ(x+a)−φ(x)) ≈

ρ0e−ia∂xφ(x) ≈ ρ0

(
1 − ia∂xφ(x) − a2

2 (∂xφ)2
)

⇔

ψ†(x+ a)ψ(x) = ρ0

(
1 − ia∂xφ(x) − a2

2 (∂xφ)2
)

(175)

So the Bosonized from of the kinetic term is:

−t
�

dx
(
ψ†(x+ a)ψ(x) + H.c.

)
≈ 1

2π

�
dx
(
2πρ0ta

2 (∂xφ)2 − 4πtρ0
)

(176)

The last term is just a constant and therefore unimportant. Next we consider the interaction term. By
including the p = 0,±1 harmonics we get:

ρ2(x) =
(
ρ0 − ∂xθ

π

) [
1 + e2i(πρ0x−θ(x)) + e−2i(πρ0x−θ(x))

] (
ρ0 − ∂xθ

π

) [
1 + e2i(πρ0x−θ(x)) + e−2i(πρ0x−θ(x))

]
(177)
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Since [∂xθ(x), θ(x′)] = 0, and [θ(x), θ(x′)] = 0, we can freely commute all the terms and get:

ρ2(x) =
(
ρ0 − ∂xθ

π

)2 [
3 + e2i(πρ0x−θ(x)) + e−2i(πρ0x−θ(x)) + e4i(πρ0x−θ(x)) + e−4i(πρ0x−θ(x))

]
=(

ρ0 − ∂xθ

π

)2
[3 + 2 cos(2πρ0x− 2θ(x)) + 2 cos(4πρ0x− 4θ(x))] (178)

where the three comes from 1+e2i(πρ0x−θ(x))e−2i(πρ0x−θ(x))+e−2i(πρ0x−θ(x))e2i(πρ0x−θ(x)) = 3. Multiplying
everything out we find:

(ρ(x))2 = 3ρ2
0 − 3

π
∂xθ + 3

π2 (∂xθ)2 +

2ρ2
0 cos(2πρ0x− 2θ(x)) + 2ρ2

0 cos(4πρ0x− 4θ(x)) − 2
π

cos(2πρ0x− 2θ(x))∂xθ−
2
π

cos(4πρ0x− 4θ(x))∂xθ + 2
π

cos(2πρ0x− 2θ(x))(∂xθ)2 + 2
π

cos(4πρ0x− 4θ(x))(∂xθ)2 (179)

We note that the first term is constant, and thus unimportant. Likewise the linear term vanishes
when integrated, for a constant number of particles. The third term contributes to the kinetic part. In
general the remaining terms, those with cosines, are fast oscillating and thus average out, except when
the density and x are commensurate, which we will detail further in the next question. Dropping the
constant terms, we thus find the the bosonized Bose-Hubbard is given by:

H = 1
2π

�
dx
(

2πρ0ta
2 (∂xφ)2 + 6Ua

π
(∂xθ)2

)
+

Ua

�
dx
[
ρ2

0 cos(2πρ0x− 2θ(x)) + 2ρ2
0 cos(4πρ0x− 4θ(x)) − 2

π
cos(2πρ0x− 2θ(x))∂xθ−

2
π

cos(4πρ0x− 4θ(x))∂xθ + 2
π

cos(2πρ0x− 2θ(x))(∂xθ)2 + 2
π

cos(4πρ0x− 4θ(x))(∂xθ)2
]

(180)

For the interacting Luttinger liquid part of the Hamiltonian we have:

K =
√

(2πρ0ta2)/( 6Ua
π ) = π

√
ρ0at

3U , u =
√

(2πρ0ta2)
(6Ua

π

)
=
√

12ρ0Uta3

That is, the Luttinger parameter K and the superfluid velocity u are:

K = π

√
ρ0at

3U (181a)

u =
√

12ρ0Uta3 (181b)

Page 31 of 33



ACMT 2022, Blok 3: Hand-in 2, due May 31st

V.7.2 RG Analysis

Analyse the behaviour of these additional interactions as a function of ρ0 and U . Focus on the
ones potentially more relevant in the RG sense. Based on the result of Ex. V.6, do you think
there are regimes in which these additional operators become relevant? For which values of ρ0
and U do you expect they may give rise to phase transitions?

If you arrived here, the description you found is a quite elegant way of studying the
Mott - superfluid phase transitions in these systems.

As we noted before, all of the interaction terms are fast oscillating at general fillings, and thus
average out. However at commensurate filling the terms become slowly oscillating. We see that as
follows. Consider a system where there are an integer number n0 number of particles per site, e.g. 1
particle. In this case the density is:

ρ0 = N

L
= # sites · n0

# sites · a
= n0

a
, n0 ∈ N (182)

Recall again that the model we started by considering was discrete and thus the position is given by:

x = ja, j ∈ Z (183)

Furthermore, note that there are two types of fast oscillating terms: those that oscillate ∼ e±i2πρ0x

and those which oscillate like ∼ e±i4πρ0x. Importantly, when there is an integer number of particles
per site, both types do in fact not oscillate, but are unity:

e±i2πρ0x
∣∣∣
ρ0=n0/a

= e±i2πn0j = 1 (184)

e±i4πρ0x
∣∣∣
ρ0=n0/a

= e±i4πn0j = 1 (185)

We thus refer to integer filling as commensurate filling since ρ0x is an integer in this case. Importantly
we find that at commensurate filling the interactions are no longer fast oscillating:

H|ρ0=n0/a
= 1

2π

�
dx
(
KvF (∂xφ)2 + vF

K
(∂xθ)

)
+ Ua

�
dx
[
ρ2

0 cos(2θ(x)) + 2ρ2
0 cos(4θ(x))

− 2
π

cos(2θ(x))∂xθ − 2
π

cos(4θ(x))∂xθ + 2
π

cos(2θ(x))(∂xθ)2 + 2
π

cos(4θ(x))(∂xθ)2
]

We now need to figure out which interaction is most relevant. To do so recall that the cosine terms
can be written in terms of vertex operators Vγ = eiγθ, and that in general the scaling dimension Dγ is
found from:〈

V †
γ (x)Vγ(0)

〉
=
〈
e−iγθ(x)eiγθ(0)

〉
= e− γ2

2 (⟨θ2(x)⟩+⟨θ2(0)⟩)︸ ︷︷ ︸
Cγ

eγ2⟨θ(x)θ(0)⟩ = Cγ

|x|
Kγ2

2

⇒ (186)

Dγ = Kγ2

4 (187)

However some the the terms in the interaction Hamiltonian also depends on derrivatives which scale
like:

∂x = b−1∂x′ (188)
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and the bosonic fields which have trivial scaling in 1 + 1D. Taking into account the contribution to
the scaling from both the vertex operators and the derivatives, we find that the different Terms have
scaling dimensions:

Hint = Ua

�
dx

ρ2
0 cos(2θ(x))︸ ︷︷ ︸

D=K

+2ρ2
0 cos(4θ(x))︸ ︷︷ ︸

D=4K

− 2
π

cos(2θ(x))∂xθ︸ ︷︷ ︸
D=K+1

− 2
π

cos(4θ(x))∂xθ︸ ︷︷ ︸
D=4K+1

+ 2
π

cos(2θ(x))(∂xθ)2︸ ︷︷ ︸
D=K+2

+ 2
π

cos(4θ(x))(∂xθ)2︸ ︷︷ ︸
4K+1

 (189)

All of the terms have slightly different coupling constants but what matters is that they all have
an exponential RG flow g(ℓ) = g(0)e(2−D)ℓ, and thus the most relevant term is the one with the
smallest scaling dimension, which in this case is the one with scaling dimension D = K. Based on
these considerations we consider the Hamiltonian:

H|ρ0=n0/a
= 1

2π

�
dx
(
KvF (∂xφ)2 + vF

K
(∂xθ)

)
+ 1

2π

�
dx g cos(2θ(x)), g ≡ 2πUρ2

0a (190)

The relevance of the remaining interaction term is given by:

g :
{

Relevant, K < 2
Irrelevant, K > 2

(191)

We thus find that at commensurate filling, the system is in a gapless phase for K > 2 and a gapped
phase for K < 2. To interpret the phases recall that K ∝ U− 1

2 , and therefore K becomes smaller for a
stronger on-site interactions. This means that the gapped phase corresponds to the case where U is
large. Furthermore, since the Luttinger parameter K depends on the filling ρ0, we also expect that the
critical interaction strength Uc which separates the phases, must also depend on the filling. Physically
we can now understand that for sufficiently strong interactions (large U) and at commensurate filling
(aρ0 integer), the spectrum of the Bosons becomes gapped, and the system is in a Mott insulating
phase; for weak interactions (small U) the system is a gapless superfluid. Moreover, there are multiple
Mott-like insulating phases which depend on how many particles n0 are per site.

Figure 5: The figure above shows the K phase diagram for the Bose Hubbard model at
commensurate filling. At incommensurate filling the spectrum is always gapless. K.
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