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These notes are aimed at providing a useful compendium for an introductory study of Luttinger
liquids and bosonization. Here I will collect material from many sources, including the books by
Bruus and Flensberg (BF, Chap. 19) and by Altland and Simons (AS, Chap. 4). For the students
interested in diving deeper into the physics of 1D models, there are many books and references
about it, for example Giamarchi’s book [1], this very good paper by Cazalilla [2], this review [3] and
the Bible of bosonization [4].

I. INTRODUCTION

One-dimensional (1D) quantum systems offer an intriguing arena to study many exotic phenomena which often do
not have a clear counterpart in higher dimensions. Many systems can be engineered that, at low enough temperature,
behave like 1D systems: they include nanowires, chains and ladders of trapped atoms, photonic waveguides, and even
the edges of particular 2D materials, such as quantum Hall systems and topological insulators.

The peculiarity of 1D systems, in my opinion, is given by three main aspects:

� The role of interactions.- If you consider a classical 1D system of two non-interacting particles on a line, in
relative motion with each other, these particles necessarily cross at a certain point in the past or in the future.
This is very different from 2D and 3D system and emphasizes that, during their evolution, these particles must
at a certain point get close to each other. Therefore, when considering local interactions, their role cannot be
neglected. This is, at a very basic level, the reason for which interactions are hardly “weak” in 1D systems and
very often the perturbative strategies to deal with interactions are less effective in 1D than in 2D and 3D.

� Exactly solvable models.- Despite the problems of perturbative strategies, there is a large class of interacting
problems that can be exactly solved in 1D systems. They are called “integrable models” and their study is
beyond the scope of these notes. However it is interesting to note that often these exactly solvable models
offer a very good starting point to describe more general systems that can be defined, on an effective level, as
perturbed versions of known solvable models. In these notes we will deal with Luttinger liquids which define
a class of systems that can be described starting from the exactly solvable Tomonaga-Luttinger model, which
describes interacting fermions with a linear dispersion.

� Critical points and conformal invariance.- The critical points of the renormalization group are gapless
models that display scale invariance. In 1D, a system invariant under scaling is also conformally invariant.
By exploiting this mathematical property it is possible to give a full classification of all the gapless models in
1+1D (conformal field theory). This goes totally beyond the scope of these notes, but it is at the basis of many
strategies to solve interacting 1D problems.

The aim of the techniques we will describe in these notes is the description of interacting 1D models. The
difficulty in dealing with interacting models can be appreciated by considering the difference between non-interacting
and interacting fermions. A non-interacting model of fermions can be expressed in terms of a Hamiltonian which is
quadratic in the fermionic operators. In the worst-case scenario, such Hamiltonian will scale as L × L, where L is
the number of fermionic modes which is in general proportional with the size of the system. In case of translational
invariance things become even easier and the dispersion relations can be easily calculated. These quadratic models
include not only free fermions, but also mean field approximations such as the BdG equations. The scenario is
dramatically different when the Hamiltonian is not quadratic any longer. This is the situation, for example, when we
include quartic density-density interactions as in the following chain of spinless fermions:

H = −t
∑
r

(
c†r+1cr +H.c.

)
+ U

∑
r

c†rcrc
†
r+1cr+1 . (1)

Here the t term specified the kinetic energy, whereas the U term is a nearest-neighbor density-density interaction.
This kind of Hamiltonians may require, in the worst-case scenario, to diagonalize matrices of dimension 2L × 2L,
which is in general a very tough job. Our aim is to find effective tools for the description of this kind of problems.
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The family of Hamiltonians similar to (1), furthermore, do not describe only fermionic systems, but also many spin
systems through a non-local transformation called Jordan-Wigner. Therefore the techniques we will deal with are
very powerful and general and may be applied not only to fermionic but also to bosonic problems.

My aim is to cover the following topics in the next sections:

1. Non-interacting 1D Fermi systems and the 1D Dirac Hamiltonian: it is a necessary preliminary part.

2. The Luttinger liquid problem: we can solve a specific gapless interacting model of fermions in terms of free
bosons.

3. Phenomenological bosonization: what can we learn from the Luttinger model? How to rewrite fermionic fields?

4. Field-theoretical bosonization: technical dictionary to map fermionic fields into bosonic (vertex) operators.

5. Spin chains and Jordan-Wigner transformation: how can we apply bosonization to spin chains? The XXZ
example.

6. Sine-Gordon model and its RG.

II. PRELIMINARIES: 1D DIRAC HAMILTONIAN

The starting point of our analysis is a 1D non-interacting fermionic system. Therefore, it is important to understand
what we mean by 1D. Obviously our world is 3D, thus a description of a system in terms of a single space dimension
is an approximation. This approximation relies on the fact that, for low enough temperatures, and low enough energy
scales for the motion along the direction x̂, we can consider the degrees of freedom along the transverse directions ŷ
and ẑ frozen in their ground state. To specify better this idea, imagine that we have a box-shaped potential along ŷ
and ẑ such that V (y, z) = 0 in a rectangular region Ly ×Lz and very strong outside. What happens is that we obtain
two energy scales Ey,z proportional to 1/L2

y and 1/L2
z which separate the ground state of the transverse modes with

their first excited states. If Ly and Lz are small enough, we can assume that these gaps Ey,z are much larger than
the temperature, the kinetic energy of the particles along x̂ and the interactions among them. In practice Ey,z will
be the largest energy scale in our system, so large that, in the study of the low-energy physics, we can forget about
it. The same would be true with any confinement potential along the transverse direction which is strong enough: for
example, a harmonic confinement would define another energy scale ℏΩ and in the limit Ω → ∞ the system becomes
effectively 1D.

This kind of 1D approximation is very useful to describe a huge variety of physical systems, ranging from nanowires,
to chains or ladders of ultracold atoms, from optical waveguides to the edge states of 2D topological materials and
many many others.

Our prototype for a 1D system of non-interacting spinless fermions is the following:

H0 = −t
∑
r

[
c†r+acr +H.c.

]
+ µ

∑
r

c†rcr (2)

This Hamiltonian describes fermions hopping along a chain. The length a is the lattice spacing and it defines a natural
ultraviolet cutoff Λmax = π/a for the momenta, since the Brillouin zone is given by k ∈ [−π/a, π/a). In the following,
I will use very often units such that a = 1. µ is the chemical potential of the system. By doing a Fourier transform
we get:

H0 = −t
∑
k

2 cos k c†kck + µ
∑
k

c†kck (3)

Exercise II.1 Derive Eq. (3) from Eq. (2) by using the following definition for the fermionic operators:

cr =
1√
L

∑
k

eikrck (4)

For the most mathematically inclined: the exact result is obtained for periodic boundary conditions.
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From Eq. (3) we get that the dispersion relation is E(k) = −2t cos k and the chemical potential fixes the value of
the Fermi momentum:

−2t cos(kF ) + µ = 0 , ⇒ kF = arccos
( µ
2t

)
. (5)

In a system of length L with N fermions we have:

kF = π
N

L
≡ πρ0 (6)

where we defined the average density ρ0 = N/L.
When we consider the physics at low temperature and energies, we can linearize the dispersion relation close to the

“Fermi surface”: the “Fermi surface” is simply the pair of points k = ±kF . In a neighborhood of these points we can
approximate the dispersion with:

HL =
∑

k≈−kF

−vF (k + kF )c
†
kck , (7)

HR =
∑
k≈kF

vF (k − kF )c
†
kck , (8)

where we introduced the Fermi velocity:

vF =
∂E(k)

∂k

∣∣∣∣
k=kF

= 2t sin kF . (9)

To define a description in continuum space we introduce two fermionic chiral fields ψ̃L(x) and ψ̃R(x) such that we
obtain:

HL/R = ∓vF
∫
dx ψ̃†

L/R(x) (−i∂x ± kF ) ψ̃L/R(x) (10)

Exercise II.2 Verify that Eq. (10) is consistent with (7) and (8) through the definition:

ψ̃L/R(x) =

∫
dk√
2π
eikxcL/R(k) (11)

For the purpose of this exercise, consistently with the linearization of the spectrum, you may consider the integral
from −∞ to +∞.

It is useful to redefine the fields and the previous Hamiltonian by the following (gauge) transformation:

ψ̃L/R(x) = e∓ikF xψL/R(x) (12)

This definition splits the fields into two contributions: the terms e∓ikF x define the fast oscillating behavior of the
fields, namely it is a phase that changes on the length scale of a, whereas ψL/R(x) is a slow varying field which
is supposed to vary on length scales much larger than a. This is based on the assumption that the important low
energy physics is dictated by what happens at k ≈ ±kF .

Based on these definitions, we are now able to recast the Hamiltonian in the following form:

H0 = HL +HR =

∫
dx ivFψ

†
L∂xψL − ivFψ

†
R∂xψR (13)

Exercise II.3 Derive Eq. (13) from Eqs. (10) and (12).

If we introduce a spinor ψ = (ψL, ψR)
T
we finally obtain:

H0 =

∫
dx ivFψ

†σz∂xψ (14)

which is the 1D Dirac Hamiltonian. Here σz is the Pauli matrix. The corresponding Lagrangian is:

L =

∫
dx ψ† (i∂t − ivFσz∂x)ψ (15)



4

Exercise II.4 Verify that (14) derives from (15) through the standard relation H =
∑

a=L/R Πa∂tψa − L and

Πa = ∂L/∂(∂tψa).

Exercise II.5 The role of the transformation (12) (and the related boundaries for the values of k in the integrals)
may result not intuitive when we consider the fact that we are starting from a lattice model like Eq. (2). To
understand better why we can model the Fermi surface of Hamiltonian (2) with a Dirac cone, consider the
following model (Su-Schrieffer-Heeger model):

HSSH = −t1
∑
r

[
c†2r+ac2r +H.c.

]
− t2

∑
r

[
c†2r+2ac2r+a +H.c.

]
. (16)

Define a suitable unit cell, a suitable Brillouin zone, and calculate its spectrum. What happens for t1 = t2?

The equation of motions for the chiral fields are:

(i∂t − ivF∂x)ψL = 0 , ⇒ ψL(x+ vF t) , (17)

(i∂t + ivF∂x)ψR = 0 , ⇒ ψR(x− vF t) . (18)

This demonstrates indeed that the fields ψL and ψR depend only on x+vF t and x−vF t respectively, which justifies their
definition as “chiral”. It is useful to derive the correlation functions of these fields at zero temperature. Consistently
with the linear dispersion relation in Eq. (13), the corresponding Fermi sea is such that the occupied left and right
states have momenta k > 0 and k < 0 respectively. The left correlation function results:

〈
ψ†
L(y, t)ψL(x, 0)

〉
0
=

∫ ∞

−∞

dk

2π
e−iky+ikx

〈
eiHLtc†L(k)e

−iHLtcL(k)
〉
0
=∫ ∞

−∞

dk

2π
e−iky+ikxeiEGSt

〈
c†L(k)e

i(
∑

k vF kc†L(k)cL(k))tcL(k)
〉
0
=

∫ ∞

−∞

dk

2π
e−iky+ikxe−ivF kt Θ(k) → − 1

2π

i

y − x+ vF t
.

(19)

In this calculation we first applied a Fourier transform of the fields similar to Eq. (11) [applied to the fields ψ, which

have been translated in momentum space, though]. The time dependence of ψ†
L has been accounted for by introducing

a suitable unitary evolution ψ†
L(y, t) = eiHLtψ†

L(y, 0)e
−iHLt, with HL defined as in Eq. (13). The correlation function

is taken over the ground state, in which only states with positive momenta are occupied; its energy is EGS . By
applying the operator cL(k) for positive momenta, a hole excitation with energy vF k over the ground state is created,

such that in the second last step ei(
∑

k vF c†L(k)cL(k))t → e−i(EGS+vF k)t. For negative k, instead, the ground state is
annihilated. Therefore, we need to introduce the Heaviside step function Θ(k), and the time evolution results in the
phase e−ivF kt acquired by the excitation. The final integration can be performed by introducing a regularization e−bk

and sending b→ 0.

Analogously we get:

〈
ψ†
R(y, t)ψR(x, 0)

〉
0
=

∫ 0

−∞

dk

2π
e−ikye+ikvF teikx → − 1

2π

i

x− y + vF t
. (20)

The key aspect of these correlation functions is that they decay algebraically with the space and time distance, and
we will obtain again this behavior with the bosonized constructions in section V. These correlation functions have
been determined for the linearized field with an idealized Fermi sea. In the original picture, the momenta for left and
right movers would be translated by ∓kF respectively, without causing a qualitative change of the result.

We could refine better this result by considering that, in the original picture, the occupied right and left movers
had momenta 0 < k < kF and 0 > k > −kF respectively. By translating this from the ψ̃ to the ψ fields, we would
get integration intervals [−kF , 0] and [0, kF ] for ψR and ψL respectively, which would provide oscillating numerators
in the previous correlation functions, without affecting the algebraic decay. We will adopt a similar choice for the
momenta of the left and right modes in the next section.
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III. THE LUTTINGER MODEL

The bosonization technique allows us to describe interacting (thus quartic) models of fermions (but also interacting
bosonic systems) in terms of a quadratic Hamiltonian of bosonic operators. These bosonic operators are non-local in
the original fermionic ones, but provide a simple description of the system and are helpful to evaluate observables,
such as the correlation functions, and gain an approximate understanding of the phase diagrams of the original models
through renormalization group techniques. At the basis of the bosonized description lies the Luttinger model: a model
of interacting and linearly dispersing fermions that can be exactly solved. The solution of this problem was found
by Mattis and Lieb in 1965, but its final formalization in terms of bosonization was built in the ’70 (Coleman and
Mandelstam, Matthis and Luther, Haldane).

Let us start from a Hamiltonian of the form (1) where we consider a density-density interaction:

H = H0 +Hint ≡ H0 + U
∑
r

c†r+1cr+1c
†
rcr (21)

where H0 is the free Hamiltonian of Eq. (2) (to be precise the exactly solvable Luttinger liquid is obtained in the
case of the linear dispersion as in Eqs. (7,8)). The interaction term reads:

Hint = U
∑
r

c†r+1cr+1c
†
rcr =

∑
{k},r

U

L2
e−ik1(r+1)eik2(r+1)e−ik3reik4rc†k1

ck2
c†k3
ck4

=

=
U

L

∑
{k}

δ (k1 − k2 + k3 − k4) e
−i(k1−k2)c†k1

ck2
c†k3
ck4

. (22)

Here the Dirac δ imposes momentum conservation and it is convenient to define q ≡ k2 − k1 = k3 − k4. In this way
the interaction term assumes the general form:

Hint =
1

L

∑
k,k′,q

V (q)c†k−qckc
†
k′+qck′ . (23)

If we consider our results from the previous section we could redo this calculation by defining:

c†r =
1√
L

( ∑
k>−kF

e−i(k+kF )rc†R,k +
∑
k<kF

e−i(k−kF )rc†L,k

)
. (24)

Here, as in Eq. (13), I translated the momenta by ±kF for the left and right modes. With these notation, k = 0
corresponds to the Fermi surface, and I am considering new extrema in the summation to account for this translation.
If you substitute the previous equation into Hint you obtain 16 terms. Of these 16 terms, all the terms displaying a
fast oscillating behavior e±2ikF r or e±4ikF r vanish when summing along r due to momentum conservation. Only 6
terms remain, which display only a “slow” oscillating behavior and do not depend on kF . This is true for generic kF ,
for kF = π/2 (half-filling), 4kF = 2π and additional “umklapp” terms appear. For kF ̸= π/2, the explicit calculation

shows that the system conserves the chirality, namely c†RcR and c†LcL are conserved quantities.
These 6 terms can be distinguished into two groups: q ≈ 0 and q ≈ 2kF .

Exercise III.1 Show that the first kind, |q| ≪ kF , includes the two terms c†R,k+qcR,kc
†
L,k′−qcL,k′ , c†R,k+qcR,kc

†
R,k′−qcR,k′

and the two terms with L↔ R; and that for |q| ≈ 2kF , instead, one finds the last two terms c†L,k−qcR,kc
†
R,k′+q, cL,k′

and the opposite term with L↔ R and q → −q. These operators are discussed and represented in sections 19.4.1
- 19.4.3 of BF.

It is now useful to define, for |q| ≪ kF the following density operators:

ρR(q) =
∑

k>−kF

c†R,kcR,k+q , (25)

ρL(q) =
∑
k<kF

c†L,kcL,k+q . (26)
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Under the assumption that V (q) varies slowly with q (it is not strictly necessary, but it simplifies our discussion),
we can simply consider two scattering amplitudes V (q ≈ 0) and V (q ≈ 2kF ) and we obtain:

Hint ≈
U

L

∑
q

[V (0)− V (2kF )] [ρR(q)ρL(−q) + ρL(q)ρR(−q)] + V (0) [ρR(q)ρR(−q) + ρL(q)ρL(−q)] (27)

This is a general form meant as an example: for each specific problem (for example on the lattice) one can derive
the proper interaction coefficient. The key aspect is that the interaction is always quadratic in the density operators
ρ. More detail can be found in BF, section 19.4. Starting from a generic Hamiltonian, quadratic in the ρ operators,
we can solve it. The first step to do so is to calculate all the commutators

[
ρR/L(q), ρR/L(q

′)
]
. Let us check, as an

example:

[ρR(q), ρR(−q)] =
∑

k,k′>−kF

[
c†kck+q, c

†
k′ck′−q

]
=

∑
k,k′>−kF

c†kck+qc
†
k′ck′−q − c†k′ck′−qc

†
kck+q =

=
∑

k,k′>−kF

c†k′c
†
kck+qck′−q + δ(k′ − k − q)c†kck′−q − c†k′c

†
kck+qck′−q − δ(k′ − q − k)c†k′ck+q =

=
∑

k>max(−kF ,−kF−q)

c†kck −
∑

k>max(−kF ,−kF−q)

c†k+qck+q =

{
If q > 0

∑
−kF<k<−kF+q c

†
kck = q L

2π

If q < 0 −
∑

−kF<k<−kF−q c
†
kck = −|q| L

2π

=
qL

2π
(28)

The final result is justified by the fact that we are considering a state in which the single-particle right states are

occupied for k < 0 and we assume |q| ≪ kF . Therefore, c
†
kck|0⟩ = |0⟩ for the interval we are considering.

Exercise III.2 By following the previous example show that:

[ρR(q), ρR(−q′)] = δqq′
L

2π
q , [ρR(q), ρL(−q′)] = 0 , [ρL(q), ρL(−q′)] = −δqq′

L

2π
q (29)

The definition of the density operators ρ and their commutation relations allow us to introduce the following bosonic
operators:

bp =

√
2π

L|p|
(Θ(p)ρR(p) + Θ(−p)ρL(p)) , (30)

b†p =

√
2π

L|p|
(Θ(p)ρR(−p) + Θ(−p)ρL(−p)) ; (31)

where I introduced the Heaviside step function Θ(p).

Exercise III.3 Show that the b operators are honest bosonic operators that fulfill:[
bp, b

†
p′

]
= δpp′ (32)

It is important to emphasize that the b, b† operators are quadratic in the original fermionic operators and, in turn,
any interaction of the form (27) is quadratic in the operators b and b†. To summarize we see that:

For p > 0 : ρR(p) =

√
Lp

2π
bp , ρR(−p) =

√
Lp

2π
b†p , (33)

For p < 0 : ρL(p) =

√
L|p|
2π

bp , ρL(−p) =
√
L|p|
2π

b†p . (34)
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This implies:

1

L
V (p)ρR(−p)ρR(p) →

|p|
2π
V (p)b†pbp for p > 0 , (35)

1

L
V (p)ρL(−p)ρL(p) →

|p|
2π
V (p)b†pbp for p < 0 , (36)

1

L
V (p)ρR(−p)ρL(p) →

|p|
2π
V (p)b†pb

†
−p for p > 0 . (37)

With these rules one can diagonalize any interaction Hamiltonian of the previous forms in terms of bosons with a
linear dispersion. The major point now is to understand what happens to the kinetic part of the Hamiltonian H0. H0

is only quadratic in the fermionic operators c, c†, therefore it is a priori not clear how we can express it as a function of
the bosonic operators b, b†. To understand it, we must calculate the following commutator (we assume for simplicity
p0 > 0):

[bp0
, H0] =

[√
2π

Lp0
ρR(p0),

∑
k>−kF

vF kc
†
R,kcR,k

]
=

√
2π

Lp0

∑
k,k′>−kF

[
c†R,k′cR,k′+p0

, vF kc
†
R,kcR,k

]
=

=

√
2π

Lp0

∑
k,k′>0

vF (k − kF )
(
c†R,k′cR,kδ(k

′ + p0 − k)− δ(k − k′)c†R,kcR,k′+p0

)
=

=

√
2π

Lp0

 ∑
k>−kF+p0

vF kc
†
R,k−p0

cR,k −
∑

k>−kF

vF kc
†
R,kcR,k+p0

 =

=

√
2π

Lp0

∑
k>−kF

vF p0c
†
R,kcR,k+p0 = vF p0bp0 . (38)

Therefore we find that the commutator [bq, H0] is proportional to bq. This is the algebraic behavior of a simple
harmonic oscillator! Therefore we can redefine:

H0 =
∑
p ̸=0

vF |p|b†pbp . (39)

This relation tells us, essentially, that both the fermionic and this bosonic H0 generate the same time evolution.
This conclusion is surprising: we are stating that the quadratic Dirac Hamiltonian of the fermions is equivalent to a
quadratic Hamiltonian of the bosonic operators b and b†. Also this piece of the Hamiltonian defines bosons with a
linear dispersion. The final striking result, thus, is that the fermionic Hamiltonian H0 + Hint becomes a quadratic
and easily solvable Hamiltonian in terms of b, b† operators. This relies on the linear dispersion of the massless Dirac
Hamiltonian H0, but, in general, we know that this is the behavior expected in 1D fermionic systems close to their
Fermi surface. This is the solution of the Luttinger problem and it is the pillar of the bosonization techniques we
will discuss in the next sections. In particular, putting together Eqs. (35,36,37,39), we obtain an Hamiltonian of the
following form:

H(p) =
∑
p>0

|p|
(
b†p, b−p

)(vF + V (p)
2π

V (p)
2π

V (p)
2π vF + V (p)

2π

)(
bp
b†−p

)
; (40)

its spectrum can be derived through a Bogoliubov transformation of the b operators and it reads:

E(p) = |p|vF

√
1 +

V (p)

πvF
, (41)

such that the effective velocity of the system depends on the interaction V (p).

Exercise III.4 The Hamiltonian (27) gives rise to a slightly more general quadratic Hamiltonian than Eq. (40),
since the off-diagonal interaction terms ρRρL have different coefficients than the diagonal. Find the energy
spectrum for Eq. (27) as a function of V (0) and V (2kF ) by using Eqs. (33) and (34).
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IV. PHENOMENOLOGICAL BOSONIZATION

In the previous section we saw that an interacting model of spinless 1D fermions can be recast into a non-interacting
model of bosons and we derived this result in momentum space. In this section, instead, we will begin from a real space
description and we will focus on the role of the density operator, which constitutes, essentially, the main observable
of the system for a spinless model. This section is mostly inspired by Chap. 3 in [1].

Let us consider a 1D model of N spinless particles, either bosons or fermions, sitting in the positions {xj}. The
density operator can be defined as:

ρ(x) =

N∑
j

δ(x− xj) . (42)

We will label with L the system size such that, the average density is ρ0 = N/L. In the case of fermions we also
know ρ0 = kF /π. We define with d̄ = L/N = ρ−1

0 the average interparticle distance and, essentially, we may think
that, if the system is uniform enough, the positions xj will be only slightly displaced from their average position by
a fluctuation uj :

xj = d̄j + uj . (43)

Our purpose is to obtain a low-energy field theoretical description of this model and, to indirectly describe the density,
we define a so-called labeling field θl, which fulfills the condition:

θl(xj) = 2πj . (44)

The field θl(x), thus, is essentially counting the number of particle before the point x, but it is a continuous field. We
also impose that θl is monotonically increasing. We introduce the following function f :

f(x) = −i
(
eiθl(x) − 1

)
.

f vanishes for each x = xj . Therefore, we obtain:

δ (f(x)) =
∑

j∈zeros of f

1

|∂xf(xj)|
δ(x− xj) =

∑
j∈zeros of f

1

|∂xθ(xj)|
δ(x− xj) .

Therefore we can rewrite the density as:

ρ(x) =
∑
j

δ(x− xj) =
∑
j

|∂xθl(x)| δ(θl(x)− 2πj) (45)

Since we are considering θl monotonically increasing, we can avoid the modulo in this definition. Now we apply
Poisson’s summation formula and we obtain:

ρ(x) =
∂xθl(x)

2π

+∞∑
p=−∞

eipθl(x) . (46)

I remind that Poisson summation formula states:∑
n

s(t+ 2πn) =
1

2π

∑
k

ŝ

(
k

2π

)
eikt ;

where s and ŝ are a sufficiently regular function and its Fourier transform. At this point we redefine the labeling field
to emphasize the role of fluctuations and we set:

θl(x) = 2πρ0x− 2θ(x) = 2kFx− 2θ(x) , (47)
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where the last equality holds for fermions. This equation define the field:

θ(x) = −θl(x)
2

+ πρ0x . (48)

The density operator now reads:

ρ(x) =

(
ρ0 −

∂xθ(x)

π

)∑
p

ei2p(πρ0x−θ(x)) (49)

We observe that:

� Eq. (49) suggests [θ(x), θ(x′)] = 0, since we want the densities in different positions to commute.

� The slow oscillating part of the density, which is the dominating part if we do some local averaging, is:

ρ(x) = ρ0 −
∂xθ(x)

π
. (50)

So far we manipulated the definition of the density operator. In the next we will introduce the creation and
annihilation operators of the particles in the system. We will start from the bosonic case, which is less common but
a bit simpler, and then we will modify our result to describe the fermionic case.

A. Bosonization of bosons

We want to define a bosonic field ψB such that ρ(x) = ψ†
B(x)ψB(x), which is the standard definition of the density.

In particular, up to an irrelevant phase, we define:

ψ†
B(x) =

√
ρ(x)e−iφ(x) . (51)

This is a standard ansatz, based on the introduction of a phase field φ. You may have encountered a similar situation to
describe Cooper pairs in a superconductor, or a Bose-Einstein condensate. The equation (51) defines the bosonization

of a bosonic field, namely we are translating the bosonic field ψ†
B into the exponential of another bosonic field φ. This

exponential is technically called “vertex operator” in the conformal field theory literature. Since we are dealing with
bosons, we want to fulfill the following commutation relations:[

ψB(x), ψ
†
B(x

′)
]
= δ(x− x′) . (52)

Let us understand what this equation implies. From eqs. (51) and (52) we derive:

eiφ(x)
√
ρ(x)

√
ρ(x′)e−iφ(x′) −

√
ρ(x′)e−iφ(x′)eiφ(x)

√
ρ(x) = δ(x− x′) ; (53)

in particular, for x = x′ we get:

eiφ(x)ρ(x)e−iφ(x) − ρ(x) = δ(x− x′) , (54)

thus a good solution for our problem is given by imposing:[
ρ(x′), e−iφ(x)

]
= δ(x′ − x)e−iφ(x) . (55)

This indeed reveals that the operator e−iφ(x) creates a boson. In particular we can consider the slow varying modes
and we obtain: [

ρ0 −
∂xθ(x

′)

π
, e−iφ(x)

]
= δ(x′ − x)e−iφ(x) ; (56)

where ρ0 is just a constant. This shows that we can consider ∂xθ/π as the conjugate field of φ and, brutally, we
can think about ∂xθ/π = Πφ = −i∂φ. More properly, we can recast this relation into one of the fundamental
equations of bosonization: [

∂xθ(x
′)

π
, φ(x)

]
= −iδ(x− x′) . (57)
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This is the fundamental commutation relation relating the fields θ and φ. It is an equal-time commutation relation:
both the fields are here taken at the same time. It states indeed that ∂xθ/π is the canonically conjugate operator of
φ, thus ∂xθ(x) ∝ ∂tφ(x). In the following (also for the fermionic fields) we will always consider the relation (57) true.
To the purpose of doing calculations, it may be helpful to recast the fundamental equation (57) in a different form.

In this case there are several possibility (with pros and cons) and I choose the following convention:

[θ(x′), φ(x)] = −iπΘ(x′ − x) . (58)

Here I am using the Heaviside step function and I define it in the following way:

Θ(r) =

 Θ(r > 0) = 1
Θ(r = 0) = 0 for bosons ; Θ(r = 0) = 1/2 for fermions
Θ(r < 0) = 0

(59)

So far we considered the slow-oscillating modes only, but the fast-oscillating term do not change the picture. We have
indeed:

ei2pθ(x
′)eiφ(x) = eiφ(x)ei2pθ(x

′)ei2πpΘ(x′−x) ; (60)

this equation states that the fast-oscillating operators ei2pθ(x
′) commute with eiφ(x) when x ̸= x′. This is because, for

x ̸= x′, Θ = 0, 1. For x = x′, to be rigorous, further regularization would be needed. The previous prescription for
bosons, Θ(0) = 0, provides the correct result. Hereafter we assume that the equations (55,57) hold.

Exercise IV.1 Recall that the Campbell-Baker-Haussdorf formula reads:

eAeB = eA+B+ 1
2 [A,B]+... (61)

where, in our case, the . . . are never relevant because [A,B] will always be a number. Using the CBH formula
derive Eq. (60).

We are now in the position to rewrite our definition of ψ†
B as a function of φ and θ. From the previous equations

we get:

ψ†
B(x) =

√
ρ0 −

∂xθ(x′)

π

√∑
p

ei2p(πρ0x−θ(x))e−iφ(x) . (62)

To simplify we brutally exploit the fact that
√
δ = δ and we remember that the

∑
p was coming from the Poisson

summation. Therefore it follows:

ψ†
B(x) =

√
ρ0 −

∂xθ(x′)

π

∑
p

ei2p(πρ0x−θ(x))e−iφ(x) ; (63)

this is a sufficiently rigorous definition, based on all the commutation relations we derived so far, and it finally defines

the bosonic field ψ†
B in a fully bosonized form as a function of exponentials of φ and θ.

Very often one assumes that the fast oscillating modes with p ̸= 0 are totally negligible with respect to the p = 0
contribution. This is an assumption dictated by renormalization group considerations and scaling dimensions, and it
is usually very well justified. On a practical level, keeping into account the higher harmonics p ̸= 0 allows for a better
description of systems in which the free-particle dispersion is not linear and may account for interesting multi-particle
processes. However these elements are usually negligible because, by averaging over space, the fast oscillating terms
e±2ipπρ0x go to zero very fast. Therefore one usually considers only the p = 0 term.

Exercise IV.2 There is a second brutal approximation, which is less rigorous (but it may still be justified by
RG arguments): sometimes one can neglect the fluctuations of the density with respect to ρ0: ∂xθ ≪ ρ0 in the

prefactor of ψB. In this case ψ†
B ≈ √

ρ0e
−iφ. Consider the Hamiltonian:

H =
ℏ2

2m

∫
dx
(
∂xψ

†
B

)
(∂xψB) + U

∫
dx (ρ(x))

2
(64)

1. By using this brutal approximation for ψB and Eq. (50) for ρ, express H as a function of φ and θ.
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2. By using that ∂xθ/π and φ are canonically conjugate fields, find the Lagrangian for φ and its equations of
motion.

Hint: the canonical conjugation is the relation Eq. (57). In this way you can obtain the canonical “momentum”
operator Π such that [φ(x),Π(x′)] = iℏδ(x− x′). This allows you in turn to get the relation between Π and ∂tφ
needed in the Legendre transformation to obtain the Lagrangian.

B. Bosonization of fermions

We want now to define fermionic operators ψ and ψ† as a function of the fields φ and θ. To this purpose a useful

choice is to maintain valid the equation (57), and modify the bosonic operators ψB and ψ†
B to get fermionic rather

than bosonic equal-time commutation relations:{
ψ(x), ψ†(x′)

}
= δ(x− x′) . (65)

The way we proceed is based on the Campbell-Baker-Hausdorff formula: in the bosonic case, in Eq. (60) we saw
that the exponentials ei2pθ entering the definition (63) of the bosonic field ψB commute with the operator eiφ; this is
because 2p is even. If we modify 2p→ 2p+1, instead, we obtain, for x′ > x an anticommutation relation. We exploit
this observation and we define the fermionic field in the following way:

ψ†(x) =

√
ρ0 −

∂xθ(x′)

π

∑
p

ei(2p+1)(πρ0x−θ(x))e−iφ(x) . (66)

For x ̸= x′ we can evaluate:

{
ψ(x), ψ†(x′)

}
=

√
ρ0 −

∂xθ(x′)

π

∑
p

ei(2p+1)(πρ0x
′−θ(x′))e−iφ(x′)eiφ(x)

∑
p′

ei(2p
′+1)(πρ0x−θ(x))

√
ρ0 −

∂xθ(x)

π
+

+ eiφ(x)
∑
p′

ei(2p
′+1)(πρ0x−θ(x))

√
ρ0 −

∂xθ(x)

π

√
ρ0 −

∂xθ(x′)

π

∑
p

ei(2p+1)(πρ0x
′−θ(x′))e−iφ(x′) . (67)

To calculate this we consider (57) and the relation [φ(x), φ(x′)] = 0; therefore, we can modify the first line in Eq. (67)

by moving the operator eiφ(x) on the extreme left and the operator e−iφ(x′) on the extreme right. These operators
commute with each other and, furthermore [eiφ(x), ∂xθ(x

′)] = 0 for x ̸= x′ (from eq. (57)). Therefore, when we try
to recast the first line of (67) in a form ordered as its second line, we acquire the following phases from the CBH
formula:

e(2p+1)[θ(x′),φ(x)]e(2p
′+1)[φ(x′),θ(x)] = e−i(2p+1)πΘ(x′−x)+i(2p′+1)Θ(x−x′) = −1 , for x ̸= x′ . (68)

Here I applied equation (58), and the result is given for any p, p′ integer. This demonstrates that indeed Eq. (65)
holds for x ̸= x′. Also in this case, the situation for x = x′ would require additional regularization, and, for the
moment, we neglect this technical aspect. It is easy to see, though, that there is some contribution proportional to
the δ(x − x′) appearing due to [∂xθ, φ]. From this, we conclude that the field (66) fulfills the commutation relation
(65), and we rewrite it in the following form:

ψ†(x) =
∑
p≥0

√
ρ0 −

∂xθ(x)

π
ei(2p+1)(kF x−θ(x))e−iφ(x) +

√
ρ0 −

∂xθ(x)

π
e−i(2p+1)(kF x−θ(x))e−iφ(x) (69)

where I am separating modes with a positive and negative momentum and I used kF = πρ0.
At this point it is useful to introduce two approximations, similarly to what we did for the bosonic case:

1. We assume that the p = 0 terms in Eq. (69) dominate over all the others. This is justified based on renormal-
ization group results we will study later. The main idea behind it is that the terms with p ̸= 0 provide only
minor (negligible) corrections to the correlation functions of the fields, thus, in the end, to the expectation value
of any observable. To consider only the terms in e±ikF x is essentially related to consider physical systems, as a
function of the fields ψ,ψ†, in which the dispersion relation of the free fermions is well approximated by a linear
behavior. In some special and not very common cases, one uses higher harmonics to include non-linear effects
in the dispersion, or to model multi-particle scattering processes. From now on, however, we will always deal
with the “standard” prescription that includes only the e±ikF x contributions.
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2. In the definition of these fields we consider the density fluctuation ∂xθ/π negligible with respect to ρ0.

Under these two approximations, I can slightly modify my former definition of the fermionic fields (I change some
constant phases and the normalization) and I redefine:

ψ†(x) = N
[
eikF xe−i(φ(x)+θ(x)) + e−ikF xe−i(φ(x)−θ(x))

]
. (70)

By comparing this definition with our results for the Dirac field, you realize that the first term in (70) is the creation
operator for the left movers, whereas the second term refers to the right modes. In particular I define the so-called
“vertex operators”:

ψ†
L = Ne−i(φ(x)+θ(x)) , ψ†

R = Ne−i(φ(x)−θ(x)) . (71)

About the normalization N , from the previous equation we expect N ∝ √
ρ0 ∝ d̄−1/2 where d̄ is the average particle

separation. I observe that a better way of normalizing ψ† is obtained by substituting d̄ with the lattice spacing a,
meant as the shortest length scale (UV cutoff). In any case, for reasonable systems d̄ and a are of the same order of
magnitude.

It is useful to observe that we defined ψ† based on the commutation relations (65) and (57). Following our
redefinition of the fields in Eq. (70), it is useful to address the form of the density operator, which allows us to fix
the value of the normalization N . Let us consider x > x′ and define:

ρ(x) = lim
x→x′

ψ†(x)ψ(x′) . (72)

This is a sort of “point-splitting” procedure which helps in regularizing the definition of the operator. We get:

ψ†(x)ψ(x′) = N2
[
eikF (x−x′)e−i(φ+θ)(x)ei(φ+θ)(x′) + e−ikF (x−x′)e−i(φ−θ)(x)ei(φ−θ)(x′)+

+ eikF (x+x′)e−i(φ+θ)(x)ei(φ−θ)(x′) + e−ikF (x+x′)e−i(φ−θ)(x)ei(φ+θ)(x′)
]
, (73)

where the first line includes the slow-varying modes and the second the fast-oscillating terms (FO). Instead of taking
the limit x → x′, we consider a situation in which x− x′ = d̄. Our assumption is that the slow-varying fields do not
change much on a length scale of d̄ (or equivalently of a), therefore we can apply a first-order Taylor expansion of the
fields:

θ(x) ≈ θ(x′) + d̄∂xθ(x
′) , φ(x) ≈ φ(x′) + d̄∂xφ(x

′) . (74)

From the previous equations we get:

ψ†(x)ψ(x′) ≈ N2
[
eikF d̄−i(∂xφ+∂xθ)d̄+

1
2 [θ(x),φ(x′)] + e−ikF d̄−i(∂xφ−∂xθ)d̄− 1

2 [θ(x),φ(x′)] + FO
]
≈

≈ N2
[
−i
(
1 + ikF d̄− i(∂xφ+ ∂xθ)d̄

)
+ i
(
1− ikF d̄− i(∂xφ− ∂xθ)d̄

)
+ FO

]
= 2N2kF d̄− 2N2∂xθd̄+ FO . (75)

In conclusion we recover that, for d̄ (or a) small enough, the fluctuations of the density operator are still proportional
to ∂xθ. We fix N2 = 1/2πd̄ in such a way that we obtain:

ρ(x) =
kF
π

− ∂xθ(x)

π
+ FO ; (76)

this is consistent with Eqs. (49) and (50). An important thing to observe is that N =
√
1/2πd̄, which means that

ψ†(x) scales with d̄−1/2 which is consistent with the correlation functions of the Dirac theory calculated at the end of
Sec. II. This will be discussed better in the next section, after a proper analysis of the bosonic fields φ and θ.

Exercise IV.3 Consider the definition of the density operator (76). Apply the CBH formula and verify that the
leading contribution of the fast oscillating terms results:

FO =
i

2πd̄

[
e−2ikF xe2iθ(x) − e2ikF xe−2iθ(x)

]
. (77)

For practical purposes, when dealing with lattice systems, we will typically substitute d̄→ a in the normalization
of these fermionic fast-oscillating terms.
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Exercise IV.4 Consider the definition of the density operator (76) and its fast oscillating terms in Eq. (77).

1. Calculate the operator ρ(x)ρ(x′) with a suitable Taylor expansion to order (∂xθ)
2. Consider small distances

x− x′ ≈ a, such that you can Taylor expand the fields φ and θ at first order, and the exponential at second
order to get the required terms in (∂xθ)

2. In doing so, separate fast and slow oscillating parts.

2. What happens for kF = π/2a?

As a check: consider the density density interaction Hint = Ũ
∫
dx ρ(x)ρ(x − a); for kF ̸= π/2a, the slow

oscillating terms must yield:

Hint,slow =

∫
dx

Ũ

π2
(1− cos(2kFa)) (∂xθ)

2
+

Ũ

aπ2
sin(2kFa)∂xθ −

2ŨkF
π2

∂xθ (78)

The second and third terms can be integrated out and give only a constant contribution (which is zero for systems

with a conserved number of particles!). Ũ has units of energy times distance (differently from U in Eq. (21)).

V. FIELD-THEORETICAL (AXIOMATIC) BOSONIZATION

In this section I finally give you the main rules to translate fermionic into bosonic fields. These are justified by our
phenomenological analysis of the previous section and here I will try to analyze on a more mathematical basis these
rules and their implications. The main prescription to bosonize the (spinless) fermionic field is the one we derived in
the previous section:

ψ†(x) =
1√
2πa

[
eikF xe−i(φ(x)+θ(x)) + e−ikF xe−i(φ(x)−θ(x))

]
, (79)

ψ(x) =
1√
2πa

[
e−ikF xei(φ(x)+θ(x)) + eikF xei(φ(x)−θ(x))

]
, (80)

where a labels the lattice spacing of the system (the inverse of the UV cutoff in the momenta). To be able to use
this prescription, we need four fundamental rules (we already saw two of them, the other two will be derived in this
section):

1. CBH formula:

eAeB = eA+B+ 1
2 [A,B] (81)

In our case [A,B] is always a number, therefore this is enough.

2. Commutation relations of the bosonic fields:[
∂xθ(x

′)

π
, φ(x)

]
= −iδ(x− x′) ⇒ [θ(x′), φ(x)] = −iπΘ(x′ − x) (82)

Keep in mind that (57) is more fundamental than (58); the latter is my arbitrary but useful choice.

3. Correlation function of vertex operators:〈
ei

∑
j ajφ(xj)+i

∑
k bkθ(xk)

〉
= exp

[
−
∑

j a
2
j

2

〈
φ(xj)

2
〉
−
∑

k b
2
k

2

〈
θ(xk)

2
〉

−
∑
j<j′

ajaj′ ⟨φ(xj)φ(xj′)⟩ −
∑
k<k′

bkbk′ ⟨θ(xk)θ(xk′)⟩

 =

= exp

−1

2

〈∑
j

ajφ(xj)

2〉
− 1

2

〈(∑
k

bkθ(xk)

)2〉 (83)



14

4. Correlation functions of the bosonic fields:

⟨φ(x)φ(0)⟩ ≈ − 1

2K
lnx , ⟨θ(x)θ(0)⟩ ≈ −K

2
lnx . (84)

These four equations are what you need to operate with bosonization on a practical level. In the next section we will
extend them to the spinful case to really gain a complete set of tools. By looking at the third and fourth of these
equations, you see that they are meant to calculate correlation functions. Thus they will allow you to predict the
behavior of most of the observables. Here I introduced the so-called Luttinger parameter K (sometimes it is also
called g) which, as we will see at the end of the section, is meant to codify the interactions amplitude.

A. From the lattice to bosonization

A standard situation which is often encountered is the bosonization of an interacting lattice model, as in the case
of Eq. (21). In the lattice formulations, the hopping amplitudes J and U are energy scales, and the bosonization
procedure must be consistent with their dimensionality. In particular, in going from the lattice to the continuum we
may approximate:

−t
∑
r

[
c†rcr+a +H.c.

]
→ −t

∫
dx

a

[
c†xcx+a +H.c.

]
→ −t

∫
dx
[
ψ†(x)ψ(x+ a) + H.c.

]
. (85)

In the notation of Eqs. (79,80) the factor 1/a has already been included in the field definition. This results in ψ†ψ
being a density operator (not a number operator). Concerning the interactions, some additional care is required. Let
us consider Hint in Eq. (21):

U
∑
r

c†r+acr+ac
†
rcr → U

∫
dx

a
c†x+acx+ac

†
xcx →

∫
dx aUρ(x+ a)ρ(x) ; (86)

where in the last step, we applied c†xcx → aρ(x). The operator ρ, then, can be expressed based on Eq. (76).
In the next, we will discuss more in detail the properties of the bosonic fields θ and φ, and their correlations.

B. Massless Klein-Gordon fields

Our starting point is inspired by the results of the previous sections: in Sec. III we saw that the exact solution of
the Luttinger model is given by a free bosonic problem with linear dispersion and from exercises IV.2 and IV.4 you
should already be convinced that Hamiltonians including the terms (∂xφ)

2 and (∂xθ)
2 are particularly important.

Therefore we consider the following Lagrangian in Minkowski space:

L =
ℏ
2π

∫
dx

(∂tθ)
2

u
− u(∂xθ)

2 . (87)

From now on I set ℏ = 1. u is a velocity and you can consider it as the Fermi velocity of the Fermionic model you
want to describe. From this Lagrangian we derive:

∂t
∂L

∂(∂tθ)
+ ∂x

∂L
∂(∂xθ)

= 0 (88)

⇒ ∂2t θ − u2∂2xθ = 0 (89)

⇒ (∂t − u∂x) (∂t + u∂x)θ = 0 (90)

Equation (89) is the massless Klein-Gordon equation and it obviously implies E2 = u2p2 (as in the massless Dirac
equation). It can be rewritten in the form (90) to emphasize that there will be a right and a left solution (as in the
massless Dirac equation). From the previous Lagrangian we define the conjugate field:

Π =
∂L

∂(∂tθ)
=

ℏ
πu
∂tθ. (91)
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The canonical quantization procedure implies:

[Π(x), θ(x′)] =

[
ℏ
πu
∂tθ(x), θ(x

′)

]
= −iℏδ(x− x′) . (92)

Now we define the dual field of θ, which not surprisingly is φ. In order to be the dual field of θ, φ must fulfill the
following relations [they are valid for K = 1 only! See Eq. (120) for the general form]:

∂tθ = u∂xφ , ∂xθ =
∂tφ

u
. (93)

Exercise V.1 Verify that the requirements for the dual field are trivially compatible with the Klein-Gordon
equation (89).

Based on the equations (93), let us verify the chiral behavior of the vertex operators. Let us define right and left
bosonic fields as appering in equation (79,80):

φR = φ− θ , φL = φ+ θ . (94)

From all the previous equation we derive:

(∂t + u∂x)φR = ∂tφ− u∂xθ − ∂tθ + u∂xφ = 0 ; (95)

therefore we recover the result that φR depends on ut− x only. In the same way one verifies that φL is a function of
ut+ x only. Consistently with the Dirac field we conclude that right and left operators give rise to:

ψ†(x) =
1√
2πa

[
e−ikF xe−iφR + eikF xe−iφL

]
. (96)

Let us proceed by defining the Hamiltonian of the system:

H =

∫
dxΠ(x)(∂tθ)(x)− L =

ℏ
2π

∫
dx

(∂tθ)
2

u
+ u(∂xθ)

2 =
ℏu
2π

∫
dx (∂xφ)

2 + (∂xθ)
2 . (97)

For u = vF , this corresponds to the Dirac Hamiltonian. The duality relations between θ and φ allow to express this
Hamiltonian as a function of φ only and also φ fulfills the Klein-Gordon equation. Therefore we obtain:

∂2t φ− u2∂2xφ = 0 ⇒ ∂t∂xθ − ∂x∂tθ = 0 ⇒ ∂tρ(x) + ∂x
∂tθ

π
= 0 . (98)

The last equation becomes the continuity equation for the system if we impose the following definition of the current:

j = −∂tθ
π

= −u∂xφ
π

. (99)

C. Correlation functions

In order to estimate the expectation value of any observable, we need to calculate the correlation functions of the
physical fermionic fields which, in turn, are determined by the correlation functions of the bosonic fields φ and θ. In
the following we are going to derive the equations (83) and (84) which are necessary for this purpose.

For the calculation of the correlation functions we heavily rely on the fact that the free Lagrangian corresponds to
a Gaussian partition function. Let us rewrite the Lagrangian in Euclidean time τ = it, we get:

L =
1

2π

∫
dx

(∂tθ)
2

u
− u(∂xθ)

2 → − 1

2π

∫
dx

(∂τθ)
2

u
+ u(∂xθ)

2 . (100)

We define the partition function as:

Z(0) =

∫
Dθ exp

[
− 1

2π

∫
dk dω θ(−k)

(
ω2

u
+ uk2

)
θ(k)

]
, (101)



16

where we are using the short-hand notation θ(−k) = θ(−ω,−k), given by a Fourier transform on both time and space.
It is convenient to define a generating function (see Sec. 3.2 of Flensberg’s notes):

Z(η) =

∫
Dθ exp

[
−
∫
dk dω

1

2π
θ(−k)

(
ω2

u
+ uk2

)
θ(k) + η(−k)θ(k)

]
, (102)

again with the convention η(−k) = η(−ω,−k). The correlation function of the θ field in momentum space is given
by:

⟨θ(k)θ(−k)⟩ = lim
η→0

∂η(k)∂η(−k)
Z(η)

Z(0)
. (103)

Now let us exploit that Z is Gaussian and define the momentum space Green’s function:

G(k) =
πu

ω2 + u2k2
, (104)

with G(k) = G(−k). We get:

Z(η) =

∫
Dθ exp

[
−1

2

∫
dk dω

(
θ(k)

G1/2(k)
+G1/2(k)η(k)

)(
θ(−k)
G1/2(k)

+G1/2(k)η(−k)
)
+

1

2

∫
dk dω η(k)η(−k)G(k)

]
.

(105)
Therefore, we get, as expected:

⟨θ(k)θ(−k)⟩ = G(k) . (106)

Furthermore:

Z(η)

Z(0)
= exp

[
1

2

∫
dk dω η(k)η(−k)G(k)

]
. (107)

With a Fourier transform we obtain:

Z (η)

Z(0)
= exp

[
1

2

∫
d2x d2x′ η(x)G(x, x′)η(x′)

]
. (108)

We calculate now the correlation function:

G(x, τ, x′, τ ′) = ⟨θ(x, τ)θ(x′, τ ′)⟩ =
∫
dk dω

4π2
G(k)eiω(τ−τ ′)−ik(x−x′) =

∫
dk dω

4π2

πu

ω2 + u2k2
eiω(τ−τ ′)−ik(x−x′) =

=

∫ ∞

0

pdp

∫ 2π

0

dα

4π

1

p2
eipr cosα =

∫ ∞

0

dp
J0(pr)

2p
(109)

where we defined p⃗ = (ω/u,−k) and r⃗ = (u [τ − τ ′] , x− x′) such that r =
√
(x− x′)2 + u2(τ − τ ′)2. One of the

problems of massless Klein-Gordon fields is that this integral diverges for both p → 0 and p → ∞. Luckily we are
dealing with the effective description of a model on a lattice, which provides us with reasonable and physical cut-offs
Λmin = 2π/L and Λmax = 2π/a. Therefore the previous expression becomes (where I take this approximations from
Eq. 3.9 in [4]): ∫ Λmax

Λmin

dp
J0(pr)

2p
≈ −1

4
ln

(
r2 + Λ−2

max

Λ−2
min

)
≈ −1

2
ln r +

1

2
lnΛ−1

min . (110)

All the approximations we are exploiting here are valid only for a ≪ r ≪ L, which is the regime of validity of our
correlation functions. Totally different results would be obtained, for example, for small intervals Λmin ≲ Λmax (which
is not an interesting regime now, but will be useful in renormalization group calculations). Eq. (110) becomes Eq.
(84) at equal times; we can indeed conclude:

⟨θ(x)θ(x′)⟩ ≈ −1

2
ln |x− x′|+ const. , (111)

where the constant depends on the cutoffs, in particular on L. From the previous equations we also derive:〈
θ2(x)

〉
=

1

2
ln

(
Λmax

Λmin

)
. (112)
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Finally we note that the same relations apply to the field φ, since the Lagrangian is the same. In principle, there is
another correlation one should check and results:

⟨θ(x)φ(x′)⟩ ≈ −iπ
2
Θ(x− x′) ; (113)

this correlation does not carry much information but the usual commutation relation between θ and φ. For practical
purposes one can ignore it after considering the right phases given by the CBH formula.

Let us proceed now to calculate Eq. (83), which can be easily derived from the equations we already wrote. In

particular let us consider the correlations (108). In this equation we substitute η(x) = i
∑M

k=1 bkδ(x − xk) and we
look at the definition of Z(η); we get:〈

ei
∑

k bkθ(xk)
〉
= e

− 1
2

〈
(
∑

k bkθ(xk))
2
〉
= e−

1
2

∑
k b2k⟨θ2(xk)⟩−∑

k<k′ bkbk′⟨θ(xk)θ(x
′
k)⟩ . (114)

This demonstrates (83) for the part concerning θ. The same result is obtained for φ, thus leading to (83).
Let us consider in particular what happens with two vertex operators:〈

eiαφ(x1)e−iβφ(x2)
〉
= eαβ⟨φ(x1)φ(x2)⟩−α2+β2

2 ⟨φ2⟩ = eαβ(−
1
2 ln |x1−x2|)+const. =

A

|x2 − x1|αβ/2
; (115)

this shows how the bosonization techniques allows me to obtain the space dependent behavior of the correlation
functions, up to a non-universal constant (A in this case) which does not depend on the positions.
Now we can conclude by calculating the correlation functions of the fermionic fields; let us consider the following

example:

〈
ψ†
L(x

′)ψL(x)
〉
=

1

2πa

〈
e−i(φ+θ)(x′)ei(φ+θ)(x)

〉
=

−i
2πa

〈
e−i(φ(x′)−φ(x)+θ(x′)−θ(x))

〉
=

=
−iA
2πa

e⟨φ(x′)φ(x)⟩+⟨θ(x′)θ(x)⟩ = −iA
2πa

1

|x′ − x| 12+ 1
2

. (116)

Here A is a non-universal constant, and we recovered the result (20), which is a good sanity check. The predictions
of the correlation functions obtained by the bosonized fields match the Dirac theory in the free case.

Exercise V.2 Based on the calculation of correlation functions (consider simply left-left and right-right correla-
tions), verify that the approximation of neglecting p ̸= 0 in Eq. (69) is reasonable when considering large enough
|x− x′|. Observe also that the “average” correlation function G(r) =

∑
xG(x, x+ r) of fermionic observables in

a translationally invariant system helps to erase the fast-oscillating terms.

D. The Luttinger parameter

So far we considered the definition of the Hamiltonian of the system based on a non-interacting picture. The role
of interactions, however, is easily encoded in a parameter K, called the Luttinger parameter. Consider the modified
Hamiltonian:

H =
ℏvF
2π

∫
dxK(∂xφ)

2 +
(∂xθ)

2

K
(117)

where vF is the Fermi velocity of the interacting system. We can redefine:

φ′ =
√
Kφ , θ′ =

θ√
K
. (118)

In terms of these new fields, the previous Hamiltonian is mapped into a new non-interacting Hamiltonian:

H =
ℏvF
2π

∫
dx (∂xφ

′)2 + (∂xθ
′)2 . (119)
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The transformation from φ, θ to φ′, θ′ implies that the commutation relations for these fields are not canonical any
longer, and, for example, it modifies the duality relations:

∂tθ = KvF∂xφ , ∂xθ = K
∂tφ

vF
. (120)

Concerning density and current operators, consistently with the field construction (79,80), we have:

ρ = ρ0 −
∂xθ

π
= ρ0 −

K∂tφ

πvF
, (121)

j = −∂tθ
π

= −KvF∂xφ . (122)

It is important to stress, however, that the commutation equation (57) remains invariant, and, based on it, one can
derive the Lagrangian for φ or θ which is a non-interacting Lagrangian. Therefore we get:

⟨φ′(x)φ′(0)⟩ = −1

2
ln |x| = K ⟨φ(x)φ(0)⟩ , (123)

⟨θ′(x)θ′(0)⟩ = −1

2
ln |x| = 1

K
⟨θ(x)θ(0)⟩ . (124)

From this equations we conclude:

⟨φ(x)φ(0)⟩ = − 1

2K
ln |x| , (125)

⟨θ(x)θ(0)⟩ = −K
2
ln |x| . (126)

These trivial equations allows for the solution of the interacting problems: a system with K ̸= 1 is intrinsically
non-interacting and, despite that, we can represent it with quadratic Hamiltonians of the bosonic fields. The effects
of interactions are mostly encoded in the K parameter. For instance, by using Eqs. (125,126) it is easy to find the
dependence on K of the two-point correlation function (116). To understand better how the K parameters enters the
description of the interacting systems, consider the following key exercise.

Exercise V.3 Consider a one dimensional chain of fermions with generic kF ̸= π/2a and a nearest-neighbor
interaction as in Hamiltonian (21). Based on the standard bosonization prescription (79,80) and on the result
(78) (thus only the slow oscillating part of the interaction), derive the slow-oscillating part of the Hamiltonian
as a function of θ and φ, starting from the free Hamiltonian H0 and adding the interaction. Use a second order
Taylor expansion considering the lattice spacing a as a small parameter. Verify that you get:

H =

∫
dx

2ta sin kFa

2π

[
(∂xφ)

2 + (∂xθ)
2
]
+

∫
dx

Ũ

π2
(1− cos(2kFa)) (∂xθ)

2
. (127)

From this equation, calculate the value of K and the velocity u as a function of Ũ = Ua and vF , where vF =
(2ta/ℏ) sin kFa is the Fermi velocity of the non-interacting model H0.

What is the additional (slow-oscillating) interaction term that appears for kF = π/2a?

Let us now consider a superconducting system, to get a feeling about how to use all this machinary.

Exercise V.4 Take the previous chain for kF ̸= π/2a. Let us suppose that our chain is put in proximity with a
p-wave superconductor. Therefore we include an additional term in the tight-binding model:

Hsc = −∆
∑
r

(
c†rc

†
r+a + cr+acr

)
, (128)

with real ∆ > 0.

1. Find the bosonized description of the previous term (as usual, consider the lattice spacing a to be a small
parameter).

2. Based on Eq. (125), what is the scaling dimension of the operator you found in Hsc as a function of K?
When is it relevant?
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3. Consider a situation in which Hsc is relevant. Based on the bosonized description, what does it happen
when ∆ becomes large compared to the kinetic energy and interaction term (on a “semiclassical” level)?
In particular, what happens to the field φ? How many semiclassical minima of Hsc as a function of φ are
there?

4. What do you expect from correlations of the kind
〈
ψ†
R(x)ψ

†
L(x+ a)ψR(y)ψL(y + a)

〉
(consider only the

dominant term in the limit |x− y| ≫ a)?

5. Suppose now that the SC order parameter acquires a position dependent phase:

Hsc = −
∑
r

(
∆eiϕrc†rc

†
r+a +∆e−iϕrcr+acr

)
, (129)

with ∆ > 0 and ϕ≪ 1/a. What is the bosonized description of this interaction?

6. If ∆ is strong, what happens semiclassically to φ? Remember that the current is proportional to j ∝ ∂xφ.
What do you conclude?

7. Imagine to progressively increase ϕ: what happens to the kinetic energy? What happens to the current?

8. Imagine that ϕ increases a lot, such that vFϕ
2 ≳ ∆/a. What happens to the system? What do you expect

to see in the current?

9. If you consider that ϕ is proportional to a magnetic field ϕ ∝ B, can you relate the previous observations
with a known SC effect (even though we are only in 1D, and we do not truly have long-range superconducting
order)?

Exercise V.5 Let us consider the Hamiltonian:

H =
ℏv
2π

∫
dxK(∂xφ)

2 +
(∂xθ)

2

K
+A cos (αθ) +B cos (βφ) (130)

1. Determine for which values of the Luttinger parameter K the A and B terms are relevant/irrelevant in
the RG sense. Hint: split the cosines into exponentials to evaluate their scaling dimension through their
correlation functions.

2. This part is inspired by models with Zp symmetry [5]. Consider α = β =
√
2p with p ∈ N. For which values

of p is it possible that there exist a K such that both the terms are irrelevant?

3. What are, in your opinion, the implications on the phase diagram of such a system as a function of p and
K? Which gapped and gapless phases could you expect?

Exercise V.6 Calculate the Luttinger parameter K for the bosonic system in Ex. IV.2. For spinless bosonic
systems in the non-interacting limit, how does K behave?

Exercise V.7 Several one-dimensional systems can be modelled as locally interacting bosons. These systems in-
clude ultracold bosonic atoms in 1D optical lattices or 1D arrays of superconducting islands connected by Josephson
junctions, in which the Cooper pairs can be thought as bosons hopping on a discrete chain. To describe these
systems, we may consider the following model for bosons on a chain [Bose-Hubbard model]:

H = −t
∑
r

[
b†r+abr +H.c.

]
+ U

∑
r

n2r . (131)

Here the operators b and b† are standard bosonic operators and nr = b†rbr measures the number of particles in
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the site r. U > 0 represents a local repulsive interaction. In the following, let us assume that we can vary the
density of the system ρ0 = N/L =

∑
r nr/L as we wish.

1. Concerning the kinetic term, bosonize it through the basic approximation br → ψ =
√
ρ0e

iφ as in Ex. IV.2.
Concerning the interaction, consider nr = aρ and express the operator ρ via Eq. (49) by taking into account
the harmonics p = −1, 0, 1 only. Write the bosonized Hamiltonian, including the fast-oscillating terms that
you obtain in this way. You are supposed to find additional terms with respect to what you found in Ex.
IV.2.

2. Analyze the behavior of these additional interactions as a function of ρ0 and U . Focus on the ones potentially
more relevant in the RG sense. Based on the result of Ex. V.6, do you think there are regimes in which
these additional operators become relevant? For which values of ρ0 and U do you expect they may give rise
to phase transitions?

If you arrived here, the description you found is a quite elegant way of studying the Mott - superfluid phase
transitions in these systems.

VI. WHAT ABOUT THE SPIN?

So far we analyzed in detail the construction of fermionic operators for spinless fermions. Now we want to double
our description to account for this degree of freedom and, as we will see, this requires the introduction of a final
element, the set of so-called Klein factors κs.

Let us start by labelling with s = ↑, ↓ the spin degree of freedom. The natural way of extending our previous
construction is to double the number of bosonic fields: therefore we consider now two pairs of dual fields φs, θs.
We assume that fields with different spin commute with each other: essentially, what we are doing is to double the
previous construction to two species that, at first, are not interacting:

ψ†
s(x) =

1√
2πa

[
eikF xe−i(φs(x)+θs(x)) + e−ikF xe−i(φs(x)−θs(x))

]
, (132)

ψs(x) =
1√
2πa

[
e−ikF xei(φs(x)+θs(x)) + eikF xei(φs(x)−θs(x))

]
. (133)

Here a particular care must be devoted to the definition of the Fermi momentum: if the two spin species have the
same dispersion and are subject to the same chemical potential, the Fermi momentum is the same for both species
and it amounts to kF = πρ0/2 where, now, ρ0 = ρ0,↑ + ρ0,↓ = N/L where N is the total number of fermions and a
factor 1/2 has been introduced in kF to account for spin degeneracy. In other situations (for example in the presence
of spin-orbit coupling) the Fermi momenta may be different for the two species, and left and right movers may be
translated to different positions of the Brillouin zone. Therefore, before starting a bosonization procedure with spinful
fermions, it is always useful to check what are the values of the momenta which characterize the points in the Fermi
surface for left and right movers of the two spin species. In full generality, therefore, one should consider a set of four
Fermi momenta kF,L/R,s that must enter the previous definition. The commutation relations of the bosonic fields (82)
are now modified in the following way:[

∂xθs′(x
′)

π
, φs(x)

]
= −iδ(x− x′)δss′ ⇒ [θs′(x

′), φs(x)] = −iδss′πΘ(x′ − x) . (134)

This poses a problem: when we consider fermionic fields belonging to different species, they commute instead of
anticommuting. For example, [ψ↑, ψ↓] = 0, which is clearly wrong. We must correct this commutation relation. There
are several techniques to do so: the easiest way to solve this problem is the introduction of a set of operators κs which
are essentially “artificial” (meaning that they are mostly meant to keep track of the correct signs, but their physical
counterpart is not very clear) and obey the rules of the Clifford algebra:

{κs, κs′} = 2δss′ , κ2s = 1 , κs = κ†s = κ−1
s . (135)

You may recognize that these operators behave like virtual Majorana modes. If you need to account for larger spins
or many species, it is enough to extend the set of possible values of s by maintaining the previous rules. The correct
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definition of the fermionic operators now reads:

ψ†
s(x) =

κs√
2πa

[
eikF xe−i(φs(x)+θs(x)) + e−ikF xe−i(φs(x)−θs(x))

]
, (136)

ψs(x) =
κs√
2πa

[
e−ikF xei(φs(x)+θs(x)) + eikF xei(φs(x)−θs(x))

]
. (137)

Let me mention that other possibilities are known and a bit more physical to solve the commutation problem. The
main one exploits the introduction of a non-local fermionic parity operator by substituting the Klein factors in the
following way:

κ↑ → eiπN↓ , κ↓ → 1 . (138)

Here I am introducing the total number operator of down fermions πN↓ = θ↓(−∞)−θ↓(+∞)+const. which is consistent
with the rule we adopted ρ↓ = ρ0−∂xθ↓/π. For finite size systemsN↓ is indeed related to the difference of the boundary
conditions of the θ↓ field. The operator eiπN↓ is nothing else that the fermionic parity of the down fermions, therefore

it anticommutes with both ψ↓ and ψ†
↓, thus solving the problem of the commutation relations. The price we pay is

that eiπN↓ is a non-local operator, and it may be inconvenient to use it for several applications. Depending on the
system you may choose to adopt the more standard, but less intuitive Klein factors, or the introduction of this more
physical fermionic parity.

The physics of spinful fermions is obviously very rich. Here we focus on the specific case in which there is a
substantial symmetry between ↑ and ↓ particles, such that the system is invariant under this exchange. Therefore, in
this case, the spin species share the same parameters K and vF when we describe the problem without interactions
between up and down states. When we include the interaction between up and down states, the Hamiltonian of the
system usually assumes the general form:

H =
∑
s

vF
2π

∫
dx

[
K(∂xφs)

2 +
(∂xθs)

2

K

]
+

∫
dx [gφ(∂xφ↑)(∂xφ↓) + gθ(∂xθ↑)(∂xθ↓)] . (139)

Other interaction terms depending on the fields (rather than their derivatives) may appear. We focus, however, on
this quadratic part of the Hamiltonian. To diagonalize this Hamiltonian we introduce the so-called charge (ρ) and
spin (σ) fields:

θρ =
θ↑ + θ↓√

2
, θσ =

θ↑ − θ↓√
2

, (140)

φρ =
φ↑ + φ↓√

2
, φσ =

φ↑ − φ↓√
2

. (141)

This is essentially a canonical and unitary change of basis, which preserves the commutation relations.

Exercise VI.1 Verify all the commutation relations for the spin and charge fields based on the previous equations.

The meaning of these fields is to separate spin and charge degrees of freedom in such a way that: ρρ = −∂xθρ/π is the
total density of the system, jρ ∝ −∂xφρ/π is the total current; whereas ∂xθσ and ∂xφσ are related to the spin density
and current. In terms of the spin and charge degrees of freedom the Hamiltonian (139) assumes a diagonal form:

H =
∑

a=ρ,σ

1

2π

∫
dx

[
uaKa(∂xφa)

2 +
ua
Ka

(∂xθa)
2

]
, (142)

with:

Kρ/σ =

√
vFK2 ± πKgφ
vF ± πKgθ

, (143)

uρ/σ

2π
=

√(
vFK

2π
± gφ

2

)( vF
2πK

± gθ
2

)
. (144)

The second equation has a very important physical consequence: charge and spin degrees of freedom travel with
different velocities! More in general there is a perfect separation between charge and spin degrees of freedom: the two
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sectors are dictated by completely separated Hamiltonians. This demonstrates that, for interacting 1D system, the
quasiparticle excitations do not carry both a charge and a spin. Rather, there are two different kinds of excitations
for charge and spin. This is reflected also from the correlation functions of spin and density operators which decay in
general in different ways.

Exercise VI.2 Derive (142),(143) and (144) from (139).

VII. XXZ MODEL AND JORDAN-WIGNER TRANSFORMATION

When we began definining the bosonization procedure, we started from 1D fermionic models, which are typically
defined on a chain, and we set up their continuum limit through the Dirac model. In this section, we start again from
a chain model, but, this time, we consider a spin-1/2 quantum chain. In particular we analyze the so called XXZ
model, defined by the Hamiltonian:

HXXZ = −Jxy
∑
r

(σx,rσx,r+1 + σy,rσy,r+1) + Jz
∑
r

σz,rσz,r+1 , (145)

where we consider the system in the thermodynamic limit. Here the spin operators σi,r are Pauli operators acting
on the site r. Differently from fermionic chains, all the operators in different sites always commute. The XXZ model
describes several materials which behave, effectively, as 1D quantum antiferromagnets; for instance, neutron scattering
in SrCo2V2O8 displays the dispersion of many of the massive excitations in its antiferromagnetic phase [6].

Here we are interested in the theoretical basis of the study of this model. The objectives of the following analysis
are the following:

� Learn that spin chains (with suitable conservation rules) are equivalent to fermionic 1D systems (Jordan-Wigner
transformation). This will be very useful in the study of 1D fermionic systems with topological order.

� Understand that the sine-Gordon model is very general.

� Having a further example of the usefulness of renormalization group and scaling.

Most of the material in this section can be found in more detail in Chapter 6 of [1], and several other places.

A. How can we turn a spin chain into a fermionic model?

To begin our analysis of the Hamiltonian (145), let us first observe its symmetries. It is easy to see that the
Hamiltonian commutes with the following string symmetry:

Pz =
∏
r

σz,r = eiπ
∑

r(σz,r−1)/2 ; (146)

additionally, HXXZ also commutes with the analogous Px and Py operators. We observe that P 2
i = 1, such that each

of the Pi symmetries is a Z2 symmetry of the system.
It is a bit harder to show that the Hamiltonian also commutes with the operator:

Qz =
∑
r

σz,r , [HXXZ, Qz] = 0 . (147)

To show the previous commutation relation let us observe that Qz trivially commutes with the Jz term, and let us
focus on the Jxy term. It is convenient to introduce the single spin operators:

σ+ =
1

2
(σx + iσy) =

(
0 1
0 0

)
, (148)

σ− =
1

2
(σx − iσy) =

(
0 0
1 0

)
. (149)
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These operators are such that: [
σz, σ

±] = ±2σ± . (150)

Given these operators, we can rewrite:

σx,rσx,r+1 + σy,rσy,r+1 = 2
(
σ+
r σ

−
r+1 + σ−

r σ
+
r+1

)
. (151)

From the previous equations we derive:

[σz,r + σz,r+1, σx,rσx,r+1 + σy,rσy,r+1] = 2
[
σz,r + σz,r+1, σ

+
r σ

−
r+1 + σ−

r σ
+
r+1

]
=

= 4
(
σ+
r σ

−
r+1 − σ−

r σ
+
r+1 − σ+

r σ
−
r+1 + σ−

r σ
+
r+1

)
= 0 , (152)

and this proves that [Qz, HXXZ] = 0. Qz can be considered the generator of the rotations of all the spins around the
ẑ direction, therefore we get that, in general, all the operators eiαQz are symmetries of the system. This constitutes
a U(1) family of global symmetries. In the limit Jz = −Jxy we recover the Heisenberg model, which, instead, has a
full SU(2) rotation symmetry.

It is interesting to observe that, for |Jz| ≫ |Jxy| we expect the system to behave as a (gapped) antiferromagnet
(for Jz > 0) or ferromagnet (for Jz < 0), whereas the limit |Jxy| ≫ |Jz| is more complicated to deal with, and we
will focus on this regime in the following. For simplicity we will also restrict to Jz > 0 and Jxy > 0; the sign of Jxy,
however, is not influential because it can be flipped by a proper redefinition of the local basis of the even spins.

The Hamiltonian in terms of σ± and σz can be interpreted as a Hamiltonian of hard-core bosons, namely a chain of
(interacting) bosons in 1D, with an infinite onsite repulsion, such that, in each site, there can be either 0 or 1 bosons.
This mapping can simply be obtained from:

br = σ+
r , b†r = σ−

r , nr ≡ b†rbr =
1− σz,r

2
. (153)

The hard-core boson constraint is implied by the relations b2 = b†2 = 0. Hard-core boson operators commute if taken
on different sites, but the study of the bosonic Hamiltonian may be difficult due to the fact that we have an infinite
onsite repulsion. To overcome this problem the strategy is to map the XXZ model into a model of fermions instead.

The mapping is done by introducing fermionic spinless operators c†r and cr such that:

σz,r = 1− 2nr = 1− 2c†rcr = (−1)c
†
rcr . (154)

This means that |↑⟩r → |0⟩r and |↓⟩r → |1⟩r (this is the convention we choose here, the opposite convention can be
used as well with a bit of care). In particular this also implies:

Pz = (−1)
∑

r c†rcr , (155)

thus Pz is the fermionic parity (which must be conserved); and:

Qz = −2
∑
r

c†rcr + L (156)

which implies the conservation of the number of fermions. The main problem to be solved is the fact that {cr, c′r} = 0
whereas [br, b

′
r] = 0. To solve this problem we introduce the so-called Jordan-Wigner transformation:

c†r = σ−
r

∏
j<r

σz,j , (157)

cr = σ+
r

∏
j<r

σz,j . (158)

The string Lr =
∏

j<r σz,j is called Jordan-Wigner string and it enforces the correct anticommutation rules. Observe

that L2
r = 1. Crucially, the c and c† operators are non-local in terms of the spin operators: this is a key ingredient to

change their statistics from bosonic to fermionic. The Jordan-Wigner mapping, however, is a unitary mapping of the
Hilbert space from spins to fermions, and thus it preserves the spectrum of the system.
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Exercise VII.1 We derive the properties of the Jordan-Wigner transformation.

1. Calculate {σ±, σz} .

2. Using the previous relations, show that:

{cr1 , cr2} =
{
c†r1 , c

†
r2

}
=
{
c†r1 , cr2

}
= 0 , for r1 > r2 . (159)

3. Using the previous relations, show that: {
c†r, cr

}
= 1 . (160)

The previous commutation rules show that cr and c†r are properly defined fermionic operators. It is also possible
to derive the inverse transformation: from Eqs. (157) and (158) is easy to see that:

c†rcr = σ−σ+ =
1− σz,r

2
, (161)

consistently with Eq. (154). In particular we have:

Lr = (−1)
∑r−1

j=1 c†jcj (162)

such that the Jordan-Wigner string simply accounts for the fermionic parity of the system from the first site to the
site r − 1 (here I relaxed the thermodynamic limit just to be more precise; the Jordan-Wigner transformation works
straightforwardly with finite systems with open boundary conditions). From the previous relations we easily derive:

σ−
r = (−1)

∑r−1
j=1 c†jcjc†r , (163)

σ+
r = (−1)

∑r−1
j=1 c†jcjcr . (164)

Therefore we get:

σ−
r+1σ

+
r = c†r+1e

iπc†rcrcr = c†r+1cr . (165)

From Eqs. (154) and (165) we obtain:

HXXZ = −2Jxy
∑
r

(
c†r+1cr + c†rcr+1

)
+ 4Jz

∑
r

(
c†r+1cr+1 − 1

) (
c†rcr − 1

)
. (166)

This Hamiltonian corresponds to the Hubbard model (1) with t = 2Jxy and U = 4Jz up to a shift of the chemical
potential µ→ µ− 8Jz. We demonstrated that the XXZ model is thus equivalent to the Hubbard model through the
non-local Jordan-Wigner mapping.

We observe that the Jordan-Wigner mapping is, in general, non local: all the spin operators which do not commute
with Qz become non-local fermionic operators (due to the presence of a Jordan-Wigner string). However, local
operators which preserve Qz are mapped into local operators that preserve the fermionic number (like in the case of
Eq. (165)).

Once we understood that the XXZ model is nothing else than the Hubbard model, we are ready to bosonize it
following our strategy of the previous sections, and, in particular, you should have already calculated everything in
the Exercises IV.4 and V.3.

For the spin models that preserve Qz and do not have an explicit magnetic field term coupled to σz, the magne-
tization of the ground state vanishes, such that Qz|ψGS⟩ = 0. This implies, from Eq. (156) that the system is at
half-filling:

Qz|ψGS⟩ = 0 =⇒

(
L− 2

L∑
r=1

c†rcr

)
|ψGS⟩ = 0 =⇒ N

L
|ψGS⟩ =

1

2
|ψGS⟩ =⇒ kF =

π

2a
, (167)

where N =
∑

r c
†
rcr is the number of fermions in the system. Therefore, when analyzing this system it is crucial

to consider the umklapp term of the fermionic interaction, that arises from the fast oscillating terms in the density
operators with kF = π/2a.
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From the results of Ex. IV.3 and Ex. V.3, we get that the bosonized Hamiltonian for the XXZ model assumes the
form:

HXXZ =
1

2π

∫
dx
[
vFK(∂xφ)

2 +
vF
K

(∂xθ)
2
]
+

2Jz
π2a2

∫
dx cos (4θ) (168)

where the Luttinger parameter and the Fermi velocity can be approximated with the expression found in Ex. V.3. In
particular:

K ≈

√
πJxy

πJxy + 4Jz
. (169)

Otherwise consider that the XXZ model is integrable and the exact values for K and vF are known (see, for example,
Chap. 6 of [1]):

Jz
Jxy

= − cos
π

2K
. (170)

From the previous Hamiltonian, we understand that the sine-Gordon term is relevant when 4K < 2. Thus we
expect that:

� for K > 1/2, thus for small Jz, the interaction term is irrelevant and the system is gapless: we are in the
Luttinger Liquid phase.

� for K < 1/2, thus for large enough Jz, the interaction term opens a gap: the system is in the antiferromagnetic
phase. The field θ can be considered semiclassically pinned to one of the minima of cos(4θ), such that θ(x) can
be regarded as a constant, and the charge fluctuations ∂xθ ∼ 0 are strongly suppressed.

� The phase transition atK = 1/2 is called Berezinskii-Kosterlitz-Thouless (BKT) phase transition. It corresponds
to the Heisenberg symmetric point based on the exact solution (170). This is a very special critical point
in which the divergence of the correlation length is not algebraic but exponential and it corresponds to an
“infinite-order” phase transition. Due to the fact that the correlation length grows very fast when approaching
the critical point, the gapped phase is a bit peculiar: all the correlation functions should decay exponentially in
this phase but, sometimes, the correlation length is so large that could be measured only for irrealistically large
systems. A similar issue may characterize the gapless phase, in which all the correlations decay algebraically.
Mermin-Wagner theorem prevents this phase to be truly considered “ordered”, however, for certain 2D classical
ferromagnets, a finite magnetization is consistently measured and to verify the algebraic decay predicted by
the Mermin-Wagner theorem one should consider a sample “bigger than the state of Texas” (Bramwell and
Holdsworth, PRB 1994). The Mermin-Wagner theorem is definitely true, but, in many cases related to the
universality class of the sine-Gordon model, it is simply not relevant. More information can be found in AS
pages 471-474.

VIII. THE RENORMALIZATION GROUP ANALYSIS OF THE SINE-GORDON MODEL

A. General considerations about BKT transition

In the previous sections we obtained that both the fermionic spinless chain at half filling and the XXZ model fall in
the universality class of the sine-Gordon model and, therefore, display a particular phase transition between a gapless
and a gapped phase called Berezinskii-Kosterlitz-Thouless, which, as we will show in this section, can be considered
an infinite-order phase transition.

The peculiarity of this phase transition is even more remarkable in 2D classical systems (remember that a 1+1 D
quantum system can be mapped into a 2D classical system by considering their partition functions). When approaching
these problems, we need to be careful: roughly speaking, there are two broad classes of problems that may manifest
this transition, and, deep down, they correspond to the following:

1. Sine-Gordon term cosβθ (scaling dimension β2K/4): in this case the ordered/gapped phase is the phase at low
K and, if you consider the quadratic Hamiltonian written in terms of θ only, you may convince yourself that the
classical 2D analog of such a situation has a temperature such that T ∝ K. In these cases the low-K ordered
and gapped regime corresponds to low temperatures. θ here is considered as a phase and the ordered phase is
the one without vortices.
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2. Sine-Gordon term cosβφ (scaling dimension β2/4K): this case is the dual of the previous. Here the phase at
large K is the gapped phase. Very often this “duality” means that the operator e−i2φ is an operator that creates
vortices [the commutations are such that e−2iφ causes a jump by 2π to the field θ; in 2 classical dimensions
this 2π-jump is a vortex]. This is a common situation in which θ is the superfluid phase or the direction of the
magnetization for the XY model, and φ is a “disorder” operator: when cosβφ dominates, this means that the
system has deconfined vortices that can freely nucleate and move. In this case the gapped phase is thus the
disordered phase at high temperature (and it is still true that K ∝ T ). This second scenario is indeed the one
typical of the main physical examples of the BKT transition, namely the 2D 4He superfluid and the classical
2D XY model, which were the models studied by Berezinskii, Kosterlitz and Thouless.

Therefore, for every system, you must understand whether you are in the first or second scenario to define what is
“ordered”, “disordered”, gapped or gapless (which may be a bit confusing). The 2D classical XY and superfluid mod-
els (and, in general, the second kind of sine-Gordon models) are the ones in which the peculiarity of the BKT phase
transitions are more evident: at low temperature the system is gapless but quasi-ordered, namely the magnetization
of the XY dipoles is locally oriented in the same direction, with the possibility, however, of having gapless excitations
(similar to spin-waves) which destroy (as a power law) the long-range order, consistently with Mermin-Wagner the-
orem. The high temperature phase, instead, is totally disordered, despite being gapped. In this case, it is evident
that no spontaneous symmetry breaking is involved in this phase transition (neither phase is ordered) and, strictly
speaking, there is no local order parameter (although, for any finite system size, typically the magnetization on the
plane distinguishes the low-temperature quasi-ordered phase). The lack of spontaneous symmetry breaking and local
order parameter makes the BKT phase transition in the classical XY model the first example of a topological phase
transition, in which the order parameter is associated with non-local objects, which, in this case, correspond to the
expectation value of the winding number of the magnetization in closed loops, which reveals the behavior of the
vortices in the system.

Historically, this kind of universality class has indeed been introduced to study the behavior of vortices in two-
dimensional 4He superfluids. Then it has been extended to study particular thin 2D superconductors (especially
granular superconductors or Josephson junction arrays). It is important to notice that the standard type 2 super-
conductors do not belong to this universality class due to the role of Coulomb interaction: the Anderson mechanism
gaps the Goldstone mode due to the Coulomb interaction, thus driving the system away from the massless Gaussian
model, independently on the sine-Gordon term.

These models can be approximated with two-dimensional classical models. At low temperature these systems are
described by assuming a substantial order of the superfluid/superconducting phase, which means that the creation of
vortices is suppressed, and when vortices nucleate as thermal excitations, they are bound in a vortex-antivortex pair.
At high temperatures, instead, when the vortices are nucleated they can almost freely propagate (we could say that
the vortices “condense” since

〈
e−i2φ

〉
̸= 0), thus the phase becomes disordered, and its correlation function decay

exponentially. This roughly describes superfluids, or superconducting systems where the Coulomb interaction can be
neglected, thus BKT appears as a transition between a disordered and gapped phase at high T and a (quasi-)ordered
low T phase.
To roughly sketch the physics of the 2D classical models displaying this kind of transition, let us consider the

classical XY model. The XY model is a classical planar Heisenberg model that describes ferromagnets in 2D. We
define it on a square lattice and, on each site, we consider a continuous degree of freedom corresponding to a unitary

vector in 2D: S⃗r⃗ = (cos θr⃗, sin θr⃗). This vector may represent a spin polarization or a superfluid phase.
The corresponding Hamiltonian, in the presence of a magnetic field, reads:

H = −Jxy
∑
⟨r⃗,r⃗′⟩

S⃗r⃗ · S⃗′
r⃗′ (171)

With the introduction of the variables θ we get:

H = −Jxy
∑
⟨r⃗,r⃗′⟩

cos (θr⃗ − θr⃗′) . (172)

Going in the continuum, and assuming that the field θ varies slowly with respect to the lattice spacing, we can
approximate the Hamiltonian as:

H =

∫
d2r Jxy

[
(∂xθ)

2
+ (∂yθ)

2
]
. (173)

Roughly speaking, the gradient along ŷ gives rise to the (∂tθ)
2 going to the quantum 1+1D description with Jxy/T ∝

1/K. To obtain the mapping into the sine-Gordon model, however, it is necessary to consider that θ is defined only
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modulo 2π and, in 2D, vortex configurations may appear. To account for this, the operators eiφ and e−iφ must be
introduced and, the correct way of doing so, is based on considering first an operator that defines the density of
vortices, then introducing the logarithmic interaction between vortices, and finally getting read of this interaction
with a kind of Hubbard-Stratonovich description based on the field φ. The whole process is a bit complicated and it
requires some clever manipulation of the partition function of the model. You may gain some idea about it by looking
at Chapter 8.6 of AS.

Another realization of the sine-Gordon model is related to the one dimensional arrays of superconducting islands
with Josephson junctions connecting them. Such models are typically represented by Hamiltonians of the kind:

HJJ =
∑

i∈ SC islands

Ec (Qi + qind)
2
+
∑
⟨i,j⟩

1

C
(Qi + qind) (Qj + qind)− EJ

∑
⟨i,j⟩

cos (φi − φj) , (174)

where φi is the superconducting phase of the SC island i, Qi is the charge operator associated to the island i. The first
term in the Hamiltonian is the charging energy of a single island, the second is the cross-capacitance term between
neighboring islands, and the last is the Josephson coupling between neighboring island. Since [Qj , φj ] = i, from a
comparison with Eq. (55), Q can be considered as proportional to the density ρ and also this system can be mapped
into a sine-Gordon model (with cos(2pθ) interactions) when modelling Q through Eq. (49) and considering an integer
average density (see also Ex. V.7). In this case, the low K gapped regime corresponds to Mott insulators (EJ ≪ EC)
and the high K regime is a Luttinger liquid modeling the superconducting phase.

B. RG analysis of the sine-Gordon model

In the following, we want to study more in detail the phase diagram of the quantum sine-Gordon model. The
starting point is the action in Euclidean time:

S =
1

2π

∫
d2r

[
K

u
(∂τφ)

2
+Ku (∂xφ)

2

]
+

∫
d2r g cos (βφ) . (175)

In this case I have chosen the sine-Gordon term associated to the field φ. Similar results would be obtained by
considering a cosαθ term, with the only difference given by K → K−1. In full generality you will have both terms
and, to start your RG analysis, you should consider the most relevant.

Considering the action (175) we observe that the scaling dimension of cosβφ is:

Dg =
β2

4K
. (176)

Therefore the term is relevant when β2

4K < 2, and we expect to enter in a gapped phase for large values of K.
This scaling prediction will be made more rigorous by analyzing the RG flow. The objective of the RG analysis
is to determine the flow of the K, v and g parameters, and we will do it by considering the quadratic part of the
Hamiltonian as the unperturbed Hamiltonian, and the cosine potential as a “small” perturbation we will treat at
second order. Ideally this implies that our analysis is valid until |g| < Ω where Ω is a threshold beyond which our
model is no longer valid. Typically Ω ≈ 2t is set by the bandwidth of a system or another energy scale associated to
the kinetic energy in the case of the bosonization of fermionic systems. In the following I will denote by S0 the first
term in (175) and by SI the cosine interaction term.
The idea behind the Wilsonian renormalization group is to consider a cutoff in momentum Λ and a small scale

parameter l such that we can rescale the cutoff to a smaller value Λ̃ = Λe−l corresponding to Λ̃/Λ ≈ 1−dl. Following
the standard approach we can split the field φ into a “slow” and a “fast” component. The first includes all the
momenta smaller than Λ̃, the second the momenta included in the shell Λ̃ < k < Λ:

φ(x, t) = φs(x, t) + φf(x, t) . (177)

To understand the renormalization flow, we must derive an effective action for the slow modes only, by averaging over
the fast modes. One obtains:

Seff(Λ̃) = S0(φs)− ln
〈
e−SI(φs+φf)

〉
f
≈ S0(φs)+ ⟨SI(φs + φf)⟩f︸ ︷︷ ︸

A

−1

2

〈S2
I (φs + φf)

〉
f︸ ︷︷ ︸

B

−⟨SI(φs + φf)⟩2f︸ ︷︷ ︸
A2

+ . . . (178)
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In this expression, the average values are taken integrating over the fast modes. In the following we will evaluate the
values of A and B to obtain Seff .
It is useful to consider the following relations:

〈
φ2
f (x)

〉
f
=

∫
Λ̃<k<Λ

d2k

4π

1

Kk2
=

∫ Λ

Λ̃

dk

2

1

Kk
=

1

2K
ln

Λ

Λ̃
, (179)

⟨φf(x, t)φf(x
′, t′)⟩f =

∫ Λ

Λ̃

dk
J0(kr)

2Kk
≈ C(r)

2K
ln

Λ

Λ̃
(180)

where the logarithm captures the scaling behavior, and C(r) is a short-range function of r =
√
v2(t− t′)2 + (x− x′)2

(to be more precise, in this case with a sharp cutoff, C ≈ J0(Λr) and it is not really short-ranged, but it can be
made short-ranged with better cutoffs, as shown in Appendix A). Relation (180) is analogous to (109) but in the limit

Λ̃ ≈ Λ. Here and in the following t and t′ are Euclidean times. In particular you can imagine C as a peaked function
(see Fig. 2) defining a typical small length scale that I will call α in the following. For practical purposes we can set
α = a in the following.

1. First-order terms

Let us now calculate the first-order term A:

A =
g

2

〈
eiβ(φs+φf) + e−iβ(φs+φf)

〉
f
=
g

2

[
eiβφs

〈
eiβφf

〉
f
+ e−iβφs

〈
e−iβφf

〉
f

]
=
g

2

[
eiβφse−

β2

2 ⟨φ2
f ⟩f + e−iβφse−

β2

2 ⟨φ2
f ⟩f
]
=

= g cos (βφs) e
− β2

2
1

2K ln Λ
Λ̃ = g cos (βφs)

(
Λ̃

Λ

) β2

4K

= g cos (βφs)

(
1− β2

4K
dl

)
. (181)

We thus obtain the first order contribution:

A =

∫
d2xg cos (βφs(x))

(
1− β2

4K
dl

)
=

∫
d2x′

[
1 +

(
2− β2

4K

)
dl

]
g cos (βφ′

s(x
′)) . (182)

Here I am using that, in 1+1D, φ(x) = φ′(x′) and d2x = d2x′(1 + 2dl). The scaling dimension Dg = β2

4K appears
naturally in the first order term. The first order RG equation for g indeed reads:

dg

dl
=

(
2− β2

4K

)
g . (183)

This confirms that the cosine interaction is relevant for Dg < 2 and, indeed, at first order we find:

g(l) = g0e
(2−Dg)l ; (184)

here g0 is the bare value of g in the initial Hamiltonian.

2. About the gap

The bosonization procedure works only for energy scales below a certain threshold, which we may consider to be
the bandwidth of the system ∆∗ = 4t (or some fraction of it). As a consequence, we must consider our RG flow only
for values of the coupling constants below this threshold, and we may define a maximum l∗ for the flow parameter
such that:

g(l∗) = g0e
(2−Dg)l∗ = ∆∗/a . (185)

When g reaches the threshold ∆∗, we may safely assume that it drove the system away from the Luttinger liquid
critical point (the length scale a here appears because we defined a as an energy density). l∗ plays the role of the end
of our RG flow.
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If we want to give a brutal estimate of the gap of the system, we must consider that an energy gap always evolve
like the inverse of a length. Thus we have ∆(l) = el∆0, where ∆0 can be considered as the actual gap of the system
in the original length scale. From this we derive:

∆0 = e−l∗∆∗ =
(ag0
∆∗

) 1

2− β2

4K ∆∗ . (186)

In particular, for the free Dirac Hamiltonian with a mass m = g0, we have β = 2 and K = 1 which gives ∆0 = g0 = m,
consistently with the gap in the free model.

The equation of the gap is very interesting because it displays one of the peculiarities of the BKT transitions.
Differently from “standard” phase transition the behavior of the gap is continuous and all its derivatives are continuous

as well and approach zero when the gap closes. To see this clearly let us consider the parameter x = 2 − β2

4K , such

that x > 0 in the gapped phase and x = 0 at the transition. The gap is proportional to e−λ/x for x > 0 and vanishes
for x < 0 (λ = − ln(g0/∆

∗) > 0). In the limit x → 0+ all the derivatives of the gap tend to zero and the gap
is not an analytic function. This hints to the fact that the ground state energy of the system is continuous across
this phase transition and all its derivatives are as well. One could therefore consider the BKT phase transition as
an “infinite-order” phase transition, which is usually hard to detect because of this continuity. The behavior of the
correlation length ξ on the gapped phase is exactly the opposite of the gap: ξ diverges at the critical point for x→ 0+

as eλ/x, thus faster than any power.

3. Second order

By taking the square of the first-order result we get:

A2 =

∫
d2x′1d

2x′2

[
1 +

(
4− 2

β2

4K

)
dl

]
g2 cos (βφ′

s(x
′
1)) cos (βφ

′
s(x

′
2)) . (187)

A2 will cancel several terms in B. We must calculate:

B =
〈
S2
I

〉
f
=
g2

4

〈∫
d2x1d

2x2
∑

µ,ν=±1

[
eiµβ(φs(x1)+φf(x1))eiνβ(φs(x2)+φf(x2))

]〉
f

=

=
g2

4

∫
d2x1d

2x2
∑

µ,ν=±1

eiβ(µφs(x1)+νφs(x2))
〈
eiβ(µφf(x1)+νφf(x2))

〉
f
; (188)

we have: 〈
eiβ(µφf(x1)+νφf(x2))

〉
f
= e−2 β2

2 ⟨φ2
f ⟩fe−β2µν⟨φf(x1)φf(x2)⟩f = e−β2 1

2K ln Λ
Λ̃ e−β2µν 1

2K ln Λ
Λ̃
C(x1−x2) , (189)

where we used Eqs. (179,180). We get:

B =
g2

4

(
Λ̃

Λ

) β2

2K ∫
d2x1d

2x2
∑

µ,ν=±1

(
Λ̃

Λ

) β2µν
2K C(x1−x2)

eiβ(µφs(x1)+νφs(x2)) . (190)

By substituting Λ̃/Λ = 1− dl and d2x = (1 + 2dl)d2x′ we get:

B =
g2

4

[
1 +

(
4− β2

2K

)
dl

] ∫
d2x′1d

2x′2
∑

µ,ν=±1

(
1− β2µν

2K
C(x′1 − x′2)dl

)
eiβ(µφ

′
s(x

′
1)+νφ′

s(x
′
2)) , (191)

where, as usual, we disregard terms of order dl2. We observe that the terms independent on C match the terms in
A2. We get:

A2 − B
2

=
g2dl

8

∫
d2x′1d

2x′2
∑

µ,ν=±1

β2µν

2K
C(x′1 − x′2)e

iβ(µφ′
s(x

′
1)+νφ′

s(x
′
2)) , (192)

Here we proceed by splitting the two terms with µ = ν from the two terms with µ = −ν.
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4. The term µ = ν

Let us analyze first the terms with µ = ν. In this case we get the following integral :

β2g2dl

8K

∫
d2x′1d

2x′2C(x
′
1 − x′2) cos (βφ

′
s(x

′
1) + βφ′

s(x
′
2)) ≈

γβ2g2dl

8K

∫
d2x′ cos 2βφ′

s(x
′) . (193)

The approximation we did is justified by the fact that C can be made very localized (with suitable cutoffs better than
the sharp one we are using, see App. A) and, in this situation, the dominant and most relevant part of this term is
given by the substitution C(x′1−x′2) ≈ γδ (x′1 − x′2), with γ ≈ α2/u. The previous term tells us that, at second order,
the operator cos 2βφ emerges. This operator, however, commutes with SI and it is less relevant than SI , therefore
we can neglect it in the RG flow. For completeness, however, we should include a new term in SI of the form:

S′
I = SI +

∫
d2xh cos 2βφ , (194)

with a second order RG equation dictated by:

dh

dl
= (2−Dh)h+

β2g2γ

8K
(195)

where Dh = β2/K is the scaling dimension of the new (less relevant) operator and the second term is obtained from
(193). The initial condition of the flow must be h(l = 0) = 0 since h does not appear in the original action.

5. The term µ = −ν

Let us continue our analysis with the last term µ = −ν in Eq. (192). In this case, if we simply take C(x′1 − x′2) ≈
γδ (x′1 − x′2) we do not get anything. The most relevant term must therefore be obtained by considering a better
expansion for the localized function C. The way of dealing with this is to change variables from x′1, x

′
2 to center of

mass and relative coordinate:

x′R =
x′1 + x′2

2
, x′r = x1 − x2 . (196)

The correlation function C depends only on |xr| and we may assume that it is non-negligible only in a neighborhood
of size α around |xr| = 0 (see App. A). We observe that α is in general a non-universal quantity of the system and
depends on the microscopic behavior of the model, although we can set α = a for practical purposes. Based on this
observation, and assuming that α is small, we can approximate:∫

d2x′Rd
2x′rC(|xr|) cos (βφ′

s(x
′
1)− βφ′

s(x
′
2)) ≈

α2

u

∫
d2x′R cos

(
βα∂|xR|φ

′
s(x

′
R)
)
≈

≈ −1

2

∫
d2x′Rβ

2α
4

u

(
∂|xR|φ

′
s(x

′
R)
)2

= −β
2α4

2u

∫
d2x′

[
(∂x′φ′

s(x
′))

2
+

1

u2
(∂τ ′φ′

s(x
′))

2
]
, (197)

where we Taylor - expanded the cosine assuming α small and we neglected the constant term. The additional constant
α2/u is given by the integration of C in dx′r dτ

′
r. We conclude that the term (197) modifies the quadratic part of the

Hamiltonian. In particular, neglecting the subleading operator in Eq. (193) we obtain:

A2 − B
2

≈ β4g2α4dl

16Ku

∫
d2x′

[
(∂x′φ′

s(x
′))

2
+

1

u2
(∂τ ′φ′

s(x
′))

2
]
, (198)

such that:

Seff =

∫
d2x′

(
Ku

2π
+
β4g2α4dl

16Ku

)
(∂x′φ′

s(x
′))

2
+

(
K

2πu
+
β4g2α4dl

16Ku3

)
(∂τ ′φ′

s(x
′))

2
+A . (199)

Differentiating Seff we can derive the RG equations for the Luttinger parameter. In particular we obtain:

K ′

2π
=

√(
Ku

2π
+
β4g2α4dl

16Ku

)(
K

2πu
+
β4g2α4dl

16Ku3

)
≈ K

2π
+

1

2π
dl
πg2β4α4

8u2K
, (200)
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thus:

dK

dl
=
β4g2α4π

8u2K
, with α ≈ a . (201)

Analogously one gets:

du

dl
= 0 , (202)

the velocity does not change under the RG flow, which is consistent with the Lorentz invariance of the system. To
summarize the RG equations of the system at second order are:

dKφ

dl
=
πβ4g2α4

8u2Kφ
,

dg

dl
=

(
2− β2

4Kφ

)
g ; (203)

here the subscript φ reminds us that the original cosine term is of the kind cosβφ. The same calculation starting
with the dual term cosβθ implies instead:

dKθ

dl
= −πβ

4g2α4K3
θ

8u2
,

dg

dl
=

(
2− β2Kθ

4

)
g , (204)

as it can be derived by mapping Kφ → K−1
θ .

C. Kosterlitz and Thouless equations
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FIG. 1: RG flow of the KT equations for small t referred to a sine-Gordon interaction cosβθ. See the text.

In order to study the flow of the RG group at second order obtained by the previous equations, I analyze in more
detail Eq. (204) (a similar study is done in AS page 471-474, but with different notations). We are interested in the
behavior close to the phase transition that occurs at Dg = β2Kθ/4 = 2, thus Kθ = 8/β2, therefore we define the
small parameter t and the effective coupling constant y:

t ≡ β2Kθ

4
− 2 , y ≡ 4

√
πα2g

u
. (205)

Now, we use the fact that we consider only the behavior very close to the phase transition, where t≪ 1. We substitute
the previous equations in (204) and we keep only the dominant term in each of the equations. We get:

dt

dl
= −y2 , dy

dl
= −ty . (206)

These are the Kosterlitz and Thouless equations. The first step to solve them is to realize that µ = t2−y2 is invariant
under the RG flow defined by these equations. Therefore the flow trajectories in the plane (t, y) are always hyperboles
and y = ±t are the separatrices defininig the critical lines. Here we describe the possible behaviors for y > 0 (thus
g > 0) (see Fig. 1).



32

� If t > 0 and y < t, then the system flows to y = 0. This corresponds trivially to the regime where g is irrelevant
and small, that we could explore also at first order. It is the Luttinger liquid phase.

� If t > 0 and y = t, the system flows to the critical fixed point t = y = 0. This is the critical BKT point,
corresponding to the Heisenberg model for the XXZ chain.

� If y > t, the system flows to y → ∞, independently on t: this is the massive phase.

� If t < 0 the system always flows to y → ∞: this is the situation in which g is relevant and the system is driven
into the massive phase.

Based on the RG equations and on the conservation of the parameter µ under the RG flow, it is also possible to
refine the estimate of the gap we gave at first order in Eq. (186) and of the correlation length, which, in general,

grows as eλ/
√
x. The general trend, however, remains the same, confirming the essential singularity of the correlation

length close to the transition.

Appendix A: The two-point correlation function with smooth cutoffs (courtesy of A. Haller)

In this appendix we consider in more detail the locality of the two-point correlation function defined in Eq. (180)
and of the function C(r). For a sharp momentum cutoff, the first integral in (110) returns the Bessel function of the

first kind C(r) = J0(Λr) with asymptotic expression J0(Λr) ≈
√
2/(πΛr) cos(Λr − π/4). This function has a long

algebraic tail and is not a sharp function in r (see also Fig. 2). The origin of this long tail resides in the choice
of the momentum cutoff in the integration scheme. Recall that we aim at integrating an infinitesimal shell of large
momenta, which allows for a certain degree of freedom in the form of the shell itself. In particular, instead of taking
a step function at the cutoffs, we can impose a smoother cutoff at Λ by rewriting the momentum integration as:∫ Λ

0

dp→
∫ ∞

0

dpfn(p,Λ), fn(p,Λ) =
Λn

pn + Λn
, n ∈ N. (A1)

The sharp situation is recovered for n→ ∞ (see Fig. 2).
In practice, the integration of the fast modes in (180) evaluates to

⟨φf(x, t)φf(x
′, t′)⟩f =

1

2K

∫ Λ

Λ̃

dp
J0(pr)

p
=

1

2K

∫ Λ

0

dp
J0(pr)

p
− 1

2K

∫ Λ̃

0

dp
J0(pr)

p
(A2)

−→ 1

2K

∫ ∞

0

dpJ0(pr)p
n−1

(
1

pn + Λ̃n
− 1

pn + Λn

)
(A3)

=
1

2K

∫ ∞

0

dpJ0(pr)p
n−1 nΛn

(Λn + pn)
2 dl +O(dl2), (A4)

leading to the modified function Cn which depends on the smoothness n, i.e.

Cn(r) =

∫ ∞

0

dpJ0(pr)p
n−1 nΛn

(Λn + pn)
2 . (A5)

For the special case n = 2, the integral of the φf -fields evaluates to C2(r) = ΛrK1(Λr) that decays exponentially

fast (see Fig. 2(c) in red). In particular, the function follows the asymptotic decay zK1(z) ∼
√
πz/2 exp(−z) and

is already negligible for z = 1, i.e. K1(1) ≈ 0.0062. Therefore, the integration of C2(r) can be confined to a small
interval r < α where α ∼ 2π/Λ = a is a small length scale comparable with the lattice spacing a.
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(a) (b) (c)

FIG. 2: Panel (a) shows the chosen cutoff fn(p,Λ) with n ∈ {2, 4, 6, 8,∞} (n = 2 in red, n = ∞ in light gray) for the
integral expression in (A1), which results in various approximations of C(r) for several n plotted in (b). Panel (c)
highlights the exponentially sharp function C2(r) = ΛrK1(rΛ) compared to the sharp cutoff result C∞(r) = J0(Λr).
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