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Anyons in the toric code

@ Species of anyons (topological charges) in the toric code:
I: vacuum or identity (it is always present).
e: it is created by Z strings.
m: it is created by X strings.
@ 1: it is the simultaneous presence of e and m.
@ We can write down the fusion rules:

e e and m are their own conjugate particles: if | change twice an A or
B stabilizer | go back to the vacuum state:

exe=mxm=1

o Definition of v:
exm=1

o [t follows:
extyp=m; mxyp=e Yxp=I
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Braidings in the toric code

@ e and m singularly behave as bosons.
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Braidings in the toric code

@ e and m singularly behave as bosons.
@ The mutual statistics of e and m is given by R.,, = e'%.
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Braidings in the toric code

@ e and m singularly behave as bosons.
@ The mutual statistics of e and m is given by R.,, = e'%.
@ ¢ is a fermion.
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Braiding and degeneracy of the ground states

Consider a generic topologically ordered system on a torus.
For each kind of anyon « in the system, we can define two string
symmetries, 77 and 75, that correspond to:

@ Create a pair of anyons.
@ Wind them around one non-trivial loop.
@ We reannihilate them.
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Braiding and degeneracy of the ground states

The commutation relation between T3 and T is related to the braiding
statistics R,, of the anyon a:

LT Tyt
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T Raa ¢
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e If R?2, =1, then [T}, T3] = 0, so there is no degeneracy (bosons
or fermions).

o If R?, +# 1, then [T}, T3] # 0, thus there are two non-commuting
symmetries and the ground state of the system is degenerate.
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Localized and gapped indistinguishable objects whose exchange
statistics is described by a generic unitary operator.
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Localized and gapped indistinguishable objects whose exchange
statistics is described by a generic unitary operator.

@ These unitary operators
describe the adiabatic l

evolution of the system and J
may be represented in
)s

terms of world lines. Time
@ The result of the
exchanges does not
depend on the detail of the 7]7 N
path the anyons undergo. - - = - ...
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Localized and gapped indistinguishable objects whose exchange
statistics is described by a generic unitary operator.
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@ These unitary operators
describe the adiabatic
evolution of the system and
may be represented in )
terms of world lines. Time

@ The result of the
exchanges does not
depend on the detail of the
path the anyons undergo. - - = = ...
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Braid Group

@ For fermions or bosons, the
wavefunction of a set of
indistinguishable particles at fixed
position depends only on their
permutation.

@ For anyons, instead, we must
keep track of their time evolution,
since R # R~ .

@ The anyon world lines in 2 + 1D
are self-avoiding strands. |

@ Their exchange statistics is -
defined by the braid group.
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Braid Group (Oktoberfest definition)

,
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Braid Group

@ The braid group is generated by
the counterclockwise and
clockwise exchanges of
neighboring anyons o, o, .

@ Disjoint operators commute:
O'iO'jZO'jO'i fOI' |Z—]|>1

@ Neighboring operators obey the
Yang-Baxter relation:

0i0i+105 = 0i4+10i0+1

@ For o = 1 we recover the
permutations.
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Yang Baxter Braiding
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Algebra relations

For non-adjacent operators:
[0i,0] =0 if |i—FK|>2
Yang Baxter Relations:

0i0i+105 = 0i4+1070+1
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Yang Baxter Braiding
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Algebra relations

For non-adjacent operators:
[0i,0] =0 if |i—FK|>2
Yang Baxter Relations:

0i0;4+105 = 0i4+1070+1
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Yang Baxter Braiding
N L~
e \

Algebra relations

/—\ For non-adjacent operators:
\’/ 05,06 =0 if |i— k| >2

Yang Baxter Relations:

0i0i+105 = 0i4+1070+1
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Abelian anyons

@ The easiest non-trivial representation of the braid group is
provided by Abelian anyons:

0 = Raq = €%,
@ Abelian anyons can be described in terms of charge-flux
composite objects where:

ea = Qaq)a/2

@ Spin-Statistics: The exchange of two Abelian anyons « gives
the same phase as a 2« rotation of ¢, around ®,:
1

1
5 a(I)a 5 aq)a = acI)a
261 + 2(] q
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Topological spin

For two Abelian anyons: /\

axb=c °
Then: q

RS, = expli (0 — 0o — 05) /2] \/

Michele Burrello Topological Order and Quantum Computation Anyons



Topological spin

‘

axb=c

Then:

RS, = expli (0. — 0, — 6) /2] o /
PSS
=]
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Topological spin

For two Abelian anyons:
axb=c

Then:

RS, = expli (0. — 0, — 6p) /2]
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Topological spin

For two Abelian anyons:
axb=c b q
Then: O

RS, = expli (0. — 0, — 6p) /2]
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Topological spin

For two Abelian anyons:
axb=c

Then:

RS, = expli (0. — 0, — 6p) /2]
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Topological spin

For two Abelian anyons:
axb=c

Then:

RS, = expli (0 — 0a — 05) /2]

We could also write:

Ba (21) Pp (22) = )Aa-i-Ab—Ac b (21)
2

(21 — 2
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Non-Abelian Anyons

@ Non-Abelian Anyons correspond to higher dimensional
representations of the Braid group.
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Non-Abelian Anyons

@ Non-Abelian Anyons correspond to higher dimensional
representations of the Braid group.

@ To obtain these higher dimensions we need to introduce a new
degeneracy.

@ A pair of non-Abelian anyons may assume different states,
characterized by different topological charges:

axb=chHdded...

@ Each pair define a Hilbert space, and the braidings are unitary
operators on these spaces.

@ Braidings of neighboring pairs of non-Abelian anyons, in general,
do not commute.
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Fusion Rules

Let’s consider the simple case of spin § (Qubit):

1><l:0+1 — 2®2=103
2 2
@ A particle with spin 1/2 is described by a two-dimensional Hilbert
space
@ When two of them fuse, they give rise to a singlet or to a triplet.
This is a Fusion Rule
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Fusion Rules

Let’s consider the simple case of spin § (Qubit):

1><l:0+1 — 2®2=103
2 2
@ A particle with spin 1/2 is described by a two-dimensional Hilbert
space
@ When two of them fuse, they give rise to a singlet or to a triplet.
This is a Fusion Rule

Non-Abelian anyons are characterized by non trivial fusion rules.

Ising Anyons / Majorana modes: Fibonacci Anyons:
oxo=1I+¢ TxT=1+T
yxy=I+1

In general one writes:

axb:ZNgbc
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Non Abelian Anyons: main ‘ingredients’

To describe a non-Abelian anyon model we need a theory
characterized by the following elements:

@ Fusion Rules: N¢,
@ Associativity Rules: (F;bC)wy

@ Braiding Rules: 0 — R,

These rules must have a coherent structure and must obey several
constraints.
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Fusion Rules

A non-Abelian anyonic model is defined starting from a finite set of
particles ( Topological charges).
These particles are linked by the fusion rules:

axb = Z N;bc — Va®vi7 = @Ngbvacb - dadb = Z Ngbdc

where N, = 0,1; V5 = V. are Hilbert spaces and d; are their
quantum dimension.
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Fusion Rules

A non-Abelian anyonic model is defined starting from a finite set of
particles ( Topological charges).
These particles are linked by the fusion rules:

axb = Z N;bc — Va®vi7 = @Ngbvacb - dadb = Z Ngbdc

where N, = 0,1; V5 = V. are Hilbert spaces and d; are their
quantum dimension.

a is a non-Abelian anyon if >~ N¢, > 2.

This means that a pair of a anyons may be found in at least two
degenerate states.
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Fusion Rules

@ N¢, can be understood as a (transfer) matrix: (Na)zjﬂ.

@ Starting from the anyon b;, N, defines the possible states b, 1
that can be obtained adding a.
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Fusion Rules

@ N¢, can be understood as a (transfer) matrix: (Na)Z:J”.

@ Starting from the anyon b;, N, defines the possible states b, 1
that can be obtained adding a.

@ Consider a chain of a anyons:

a a a a a a

b1 b2 b3 b4 b5 bG

@ A state in this chain is defined by the string {b;} and lives in the
space:

bn, _ by b2 b3 c
Val-uan _ @ Va1a2 & Vbla3 & Vl)2a4 ®...® ‘/bn,zan'

blv--~7bn—1
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@ Consider a chain of a anyons:

a a a a a a

b1 b2 b3 b4 b5 bG

@ A state in this chain is defined by the string {b;} and lives in the
space:

b — by ba b3
Vaﬁ“an - @ Valag ® ‘/;)1(13 ® ‘6}2&4

®..0VE Lo .

bly'uybnfl

@ The number of total orthogonal states (strings) is:

b
dim (V2 ) = (NayNay ... N, ) = [(Na)"‘l] ~ dn

ajy...Qn al @

@ d, is the highest eigenvalue of IN,, it is called quantum
dimension of a.
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Fibonacci anyons
Fusion rules

@ The model is characterized by two sectors:
the Vacuum I and the Fibonacci anyon 7.
@ Fusion Rules:

TXT=I4+7 IxT=r71

=
Y

1 >

These fusion rules correspond to:

NT:<(1) }) =  B-d-1=0 = d,= =¢
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Brattelli diagram
Fibonacci chain

. 1, 1, 1, 1,7 1,7

Constraint: there cannot be two consecutive vacua 1.

The number of states grows like the Fibonacci numbers.
d, = 11/5 is the golden ratio!
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Associativity Rules
F-Matrices

@ For an anyonic theory to be consistent the fusion rules N must
be associative:
ZNbegc = ZNgle?c
T y

@ These relations characterize the fusion process abc — d in the
fusion space V. = V%, . = Viy-

@ The two descriptions of the space V.4 . correspond to different
orthogonal bases

@ There must be a unitary operator that relates these bases:

a b c a b c
Fzy
x # Y

d d

@ (Fgbe) s this transformation.
zy
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I Matrices

a b
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d d
Topologically equivalent to:
b ®
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Y
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a d
a d
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I Matrices

Fuy

d d

Topologically equivalent to:
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Braidings R,

A couple of anyons a x b can be in a superposition of states VX
defined by the fusion rules:

Be(22) n Pa(z2)

+ ...
A +Ap—A, Ay+Ap—A
(Zl _ 22) +Ap (21 . 22) +Ay d

Pa(21)Pp(22) =

The clockwise exchange R, does not affect
their total charge:

o 0 0 0
0 R 0 0
Ra=10 0 RS 0
o 0 0 ‘-

where: (RS,)? = e~ 2mi(AatBo=Ac)

The representations of the braid generators o, are given by
combinations of ' and R.
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Fibonacci anyons and qubits

o Differently from Ising anyons and Majorana modes, Fibonacci
anyons allow for universal quantum computation with braidings
only.

@ To encode a qubit we use a system of 4 anyons whose total
charge is trivial:

0 1
0
0 0
|0) 1)
Each pair annihilates. Each pair gives a single 7
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Fibonacci F - Matrix

The unitary matrix F77" can be calculate from a particular constraint
called pentagon equation:

F’V\F F11:F17'F1'1

Fu+F2 =1
W v T T T T T T

\ 7 F
17 ) \%r/
¢ F e
W—b\?,/ .
The resulting matrix is:

F:(*" W) with p=d-t = L= V5
Ve 2
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Fibonacci Braidings

@ To process a single qubit we must find the operators o that
defines the braidings.
@ From the Yang-Baxter eq. (or the hexagon equation) one finds

out the R matrix: L
es™ 0
= ( 0 —egm)

@ In a Fibonacci chain, to find the representations of ¢’s, we need
to make a basis tranformation in order to apply the R - matrix:

o a, F,_ aga, R, a.a F.  a.aq
b. b b. b... b... b. b, b. b, b,
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Fibonacci Braidings
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Single-Qubit Gate Compiling
Bonesteel et al.

@ To the purpose of Universal Quantum Computation we want to
approximate, at any give accuracy, any single-qubit gate using as
generators the braidings o7 and o,

@ For Fibonacci anyons the elementary braidings generate an
infinite group, dense in SU(2)

=~ —3X £0.0031

8 0 000G 000000 0 8

Michele Burrello Topological Order and Quantum Computation Anyons



Brute Force search
Bonesteel et al.

Total weaves:

By =3"

02-2 Expected error:
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Brute Force search
Bonesteel et al.

Total weaves:

By =3"

Expected error:

EN%W

[EENEONE=
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Brute Force search
Bonesteel et al.

Total weaves:

By =3"

Expected error:

EN%W

o=
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Brute Force search
Bonesteel et al.

Total weaves:

Expected error:

EN%W

e —
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Brute Force search

Bonesteel et al.

Total weaves:

By =3"

Expected error:
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Brute Force search

Bonesteel et al.

Total weaves:

By =3"

Expected error:
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Brute Force search
Bonesteel et al.

Total weaves:

By =3"

Expected error:

EN = 3N/3
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Brute Force search
Bonesteel et al.

Total weaves:

By =3"

Expected error:

EN = 3N/3
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Brute Force search
Bonesteel et al.

Total weaves:

Expected error:

EN = 3N/3
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Brute Force search
Bonesteel et al.

Total weaves:

Expected error:
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Two-qubit operators
Hormozi, Bonesteel and Simon, PRL 103 (2009)
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