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Abstract. This short review article provides a pedagogical introduction to the

rapidly growing research field of Majorana fermions in topological superconductors.

We first discuss in some detail the simplest ”toy model” in which Majoranas appear,

namely a one-dimensional tight-binding representation of a p-wave superconductor,

introduced more than ten years ago by Kitaev. We then give a general introduction

to the remarkable properties of Majorana fermions in condensed matter systems,

such as their intrinsically non-local nature and exotic exchange statistics, and

explain why these quasiparticles are suspected to be especially well suited for low-

decoherence quantum information processing. We also discuss the experimentally

promising (and perhaps already successfully realized) possibility of creating topological

superconductors using semiconductors with strong spin-orbit coupling, proximity-

coupled to standard s-wave superconductors and exposed to a magnetic field. The goal

is to provide an introduction to the subject for experimentalists or theorists who are

new to the field, focusing on the aspects which are most important for understanding

the basic physics. The text should be accessible for readers with a basic understanding

of quantum mechanics and second quantization, and does not require knowledge of

quantum field theory or topological states of matter.

1. Introduction

Topological superconductivity is an interesting state of matter, partly because it is

associated with quasiparticle excitations which are Majorana fermions (MFs). In

particle physics, MFs are (fermionic) particles which are their own anti-particles [1].

It is still unclear if there are elementary particles which are MFs, but they are likely to

exist as quasiparticle excitations in certain condensed matter systems, where a MF

is a quasiparticle which is its ”own hole”. The condensed matter version of MFs

have attracted massive theoretical interest, mainly because of their special exchange

statistics: They are non-abelian anyons [2], meaning that particle exchanges are non-

trivial operations which in general do not commute. This is unlike other known particle

types where an exchange operation merely has the effect of multiplying the wavefunction

with +1 (for bosons) or -1 (for fermions) or a general phase factor φ (for ”ordinary”

http://arxiv.org/abs/1206.1736v2
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(abelian) anyons). Furthermore, a MF is in a sense half of a normal fermion, meaning

that a fermionc state is obtained as a superposition of two MFs.

It should be noted, however, that any fermion can be written as a combination

of two MFs, which basically corresponds to splitting the fermion into a real and an

imaginary part, each of which is a MF. Normally this is a purely mathematical operation

without physical consequences, since the two MFs are spatially localized close to each

other, overlap significantly, and cannot be addressed individually. When we talk about

MFs here, we mean that a fermionic state can be written as a superposition of two MFs

which are spatially separated (or prevented from overlapping in some other manner).

Such a highly delocalized fermionic state is protected from most types of decoherence,

since it cannot be changed by local perturbations affecting only one of its Majorana

constituents. The state can, however, be manipulated by physical exchange of MFs

because of their non-abelian statistics, which has lead to the idea of low-decoherence

topological quantum computation [3].

Being its own hole means that a MF must be an equal superposition of an electron

and a hole state. It is natural to search for such excitations in superconducting systems,

where the wavefunctions of Boguliubov quasiparticles have both an electron and a hole

component. The most common type of superconducting pairing is of so-called s-wave

symmetry, where Cooper pairs are formed of electrons with opposite spin projections

(forming a singlet). In second quantization language, the annihilation operator of a

Boguliubov quasiparticle in an s-wave superconductor has the form b = uc†↑ + vc↓,

where cσ annihilates a normal fermion with spin projection σ =↑, ↓ (we neglect for

simplicity to write out additional quantum numbers which are irrelevant here). Having

equal electron and hole components mean that MFs are instead associated with an

annihilation operator of the type γ = uc†σ+u
∗cσ, which is hermitian and therefore equal

to the creation operator, γ = γ†. Note that, in contrast to the s-wave Boguliubov

quasiparticle operator, the fermion operators making up the MF have equal spin

projections. Such quasiparticles do not occur in most types of superconductors and

were instead first predicted to occur in the ν = 5/2 fractional quantum Hall state [4].

However, as we will discuss in more detail below, isolated MFs occur in general in

vortices and on edges of effectively spinless superconducting systems with triplet pairing

symmetry [5, 6, 7, 8, 9, 10, 11, 12, 13] (p-wave pairing symmetry in one dimension

(1D) and px ± ipy pairing symmetry in two dimensions (2D)). Triplet pairing has been

predicted for the ground state of the superconductor Sr2RuO4 [14], but is very sensitive

to disorder and has never been observed experimentally. However, the existence of

(spatially separated) MFs is a topological invariant [15] (hence the name topological

superconductors). As a result, they will exist in all systems with the same topological

properties as a p-wave or px±ipy-wave superconductor (we will come back to the precise

meaning of this later).

A few years ago, the search for MFs took a big step forward when Fu and Kane [16]

showed that px ± ipy-wave-like pairing may also occur for the surface states of a strong

topological insulator when brought into tunneling contact with an ordinary s-wave
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superconductor (giving rise to proximity-induced superconductivity [17, 18, 19] in the

topological insulator). The necessary underlying physical ingredient is the strong spin-

orbit coupling of the topological insulator, giving rise to split bands with momentum-

dependent spin directions. In addition, by coupling the topological insulator also to a

magnetic insulator, the resulting induced Zeeman splitting lifts the Kramer’s degeneracy

and allows an effectively spinless regime to be reached. However, as was realized shortly

after the pioneering work of Kane and Fu, the strong spin-orbit coupling in certain two-

dimensional semiconductor quantum wells should also do the job [20, 21, 22]. Also here

superconductivity can be induced through the proximity effect and magnetism either

induced by a magnetic insulator [20] or provided by an external magnetic field [21].

Shortly thereafter, two works [23, 24] suggested a further simplification by instead

using 1D semiconducting wires. There have also been proposals to create MFs e.g.,

in vortices in doped topological insulators [25], on the interface between a ferromagnet

and a superconductor deposited on a two-dimensional topological insulator [26, 27, 28],

in cold atomic gases [29, 30], in carbon nanotubes [31, 32, 33], and using chains of

quantum dots [34], just to name a few.

During the last couple of years, a number of experimental groups have taken up

the challenge to create MFs. Very recently this quest may have seen success [35], and

several other groups have made observations which can be interpreted as signatures of

Majoranas [36, 37, 38, 39]. There is no doubt that these early findings will be scrutinized

in future experiments and time will tell which are genuine observations of Majorana

physics. In any case, once MFs have been conclusively produced and detected in the

lab, the truly exciting experimental work begins, to test their theoretically predicted

properties and to design setups for ever more advanced manipulation of the quantum

information they can encode.

In this short review article we give an introduction to the topic of topological

superconductivity and MFs, which is aimed at both experimental and theoretical

physicists without prior knowledge of the field. We explain the generic necessary

ingredients of topological superconductivity, as well as the basic properties of MFs,

and how they can be realized in standard semiconductors proximity-coupled to s-wave

superconductors. Two excellent review articles discussing the subject have appeared

recently [40, 41]. Therefore, we do not attempt to give an exhaustive review of the

subject, or to provide detailed derivations of all results, but instead focus on providing

physical insight into what we feel are the most important basic concepts. We also try

to convey the excitement over MFs by briefly discussing some of their exotic properties,

such as the non-abelian statistics and the resulting potential for topological quantum

computation. The text should be accessible for all readers with a basic knowledge of

quantum mechanics and the second quantization formalism.
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2. Majorana fermions in p-wave superconductors

We start our discussion by introducing a simple Hamiltonian, describing a spinless p-

wave superconductor, which has eigenstates which are spatially isolated MFs. It is most

intuitive to start from a 1D tight-binding chain with p-wave superconducting pairing,

as first introduced by Kitaev [42], described by the Hamiltonian

Hchain = −µ
N
∑

i=1

ni −
N−1
∑

i=1

(

tc†ici+1 +∆cici+1 + h.c.
)

, (1)

where h.c. means hermitian conjugate, µ is the chemical potential, ci is the electron

annihilation operator for site i, and ni = c†ici is the associated number operator. The

superconducting gap, ∆, and hopping, t, are assumed to be the same for all sites. We

can then choose the superconducting phase φ to be zero, such that ∆ = |∆|. Note that
time-reversal symmetry is broken in Eq. (1) since we only consider one value for the spin

projection, i.e., effectively spinless electrons (we suppress the spin label). Furthermore,

the superconducting pairing is non-standard since it couples electrons with the same spin

(in contrast to standard s-wave pairing, which only couples electrons with opposite spin

projection). Note also that electrons on neighboring sites are paired: The sites cannot

be doubly occupied by the spinless electrons because of the Pauli exclusion principle.

We now want to rewrite Eq. (1) in terms of Majorana operators (we will see shortly

why this is useful). It was mentioned above that MFs are basically obtained by splitting

a fermion into its real and imaginary parts. Therefore we write

ci =
1

2
(γi,1 + iγi,2) , (2)

c†i =
1

2
(γi,1 − iγi,2) , (3)

where γi,j are Majorana operators living on site i. That they are indeed Majorana

operators is seen by inverting Eqs. (2)–(3), giving

γi,1 = c†i + ci, (4)

γi,2 = i
(

c†i − ci
)

, (5)

which are clearly hermitian and therefore Majorana operators. Figure 1 shows a sketch

of Kitaev’s chain and the upper panel indicates how the fermion operators on each site

are split into Majorana operators.

The Majorana physics is most easily understood when µ = 0, t = ∆, in which case

inserting Eqs. (2)–(3) into the Hamiltonian (1) results in

Hchain = −it
N−1
∑

i=1

γi,2γi+1,1. (6)

In fact, Eq. (6) is nothing but an alternative way of writing the diagonalized

Hamiltonian. To see this we go back to a fermionic representation by noting that,

analogous to Eqs. (2)–(3), where a fermion on site i was split into two Majorana

operators living on site i, we can construct new fermion operators, c̃i, by combining
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Figure 1. Sketch of Kitaev’s 1D p-wave superconducting tight binding chain. Upper

panel: The fermion operators on each site i of the chain can be split into two Majorana

operators, γi,1 and γi,2. Lower panel: In the limit µ = 0, t = ∆, the Hamiltian

is diagonal in fermion operators which are obtained by combing instead Majorana

operators on neighboring sites, γi+1,1 and γi,2. This leaves two unpaired Majorana

operators, γ1,2 and γN,1, which can be combined to form one zero energy, highly non-

local fermion operator, c̃M .

Majorana operators on neighboring sites

c̃i = (γi+1,1 + iγi,2)/2. (7)

This pairing is demonstrated in the lower panel of Fig. 1. In terms of these new fermions

we find −iγi,2γi+1,1 = 2c̃†i c̃i = 2ñi and therefore

Hchain = 2t
N−1
∑

i=1

c̃†i c̃i. (8)

Thus, c̃i are the annihilation operators corresponding to the eigenstates and the energy

cost of creating a c̃i fermion is 2t. The Majorana operators are merely a formal way

of writing the Hamiltonian and the physical excitations are fermionic states at finite

energy, obtained by a superposition of nearest neighbor MFs.

So far there appears to be nothing special about the diagonal Hamiltonian in

Eqs. (6) and (8). However, the Majorana operators γN,2 and γ1,1, which are localized

at the two ends of the wire, are completely missing from Eq. (6)! These two Majorana

operators can equivalently be described by a single fermionic state with operator

c̃M = (γN,2 + iγ1,1)/2. (9)

This is a highly non-local state since γN,2 and γ1,1 are localized on opposite ends of

the chain. Furthermore, since this fermion operator is absent from the Hamiltonian,

occupying the corresponding state requires zero energy. Thus, in contrast to

”normal” superconductors, where the ground state is non-degenerate and consists

of a superposition of even-particle-number states (condensate of Cooper pairs), the

Hamiltonian (1) allows for an odd number of quasiparticles at zero energy cost. The

ground state is therefore two-fold degenerate, corresponding to having in total an even

or odd number of electrons in the superconductor. This even or oddness, also called
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parity, corresponds to the eigenvalue of the number operator of the zero-energy fermion,

nM = c̃†M c̃M = 0(1) for even (odd) parity.

The above argument was made for the very special case ∆ = t and µ = 0, but one

can show that the Majorana end states remain as long as the chemical potential lies

within the gap [42], |µ| < 2t. In the general case, however, the MFs are not completely

localized only at the two edge sites of the wire, but decay exponentially away from the

edges. The MFs remain at zero energy only if the wire is long enough that they do not

overlap.

The Hamiltonians for the continuum version of a p-wave superconductor in 1D and

2D are

Hpw
1D =

∫

dx

[

Ψ†(x)

(

p2x
2m

− µ

)

Ψ(x) + Ψ(x)|∆|eiφpxΨ(x) + h.c.

]

, (10)

Hpw
2D =

∫

d2r

[

Ψ†(r)

(

p2

2m
− µ

)

Ψ(r) + Ψ(r)|∆|eiφ (px ± ipy) Ψ(r) + h.c.

]

,

(11)

where Ψ†(r) is the real-space creation operator, p is the momentum, m is the effective

electron mass, and we have re-introduced the superconducting phase φ. As we saw

above, in the 1D case MFs appear at the edges of the wire. They will also appear

at transition points between topological and non-topological regions. For example, if

the chemical potential or the hopping amplitude varies along the wire and |µ| > 2t in

some segment, two additional MFs will appear at the transition points where the gap

closes [23].

Similarly, in a 2D px ± ipy-wave superconductor, MFs appear in vortices in the

superconducting pairing potential [6, 8, 10]. Alternatively, MFs can appear if the gap is

closed by variations in the chemical potential or electrostatic potential [11]. It is worth

noting that isolated MFs can appear even in a spinful px ± ipy-wave superconductor, in

so-called half-quantum vortices [8], where there is a vortex for only one direction of the

triplet (note that this also means a breaking of time-reversal symmetry).

If there are in total an odd number of gap closings, an additional MF will appear

somewhere in the system to guarantee that there is always an even number (exactly

where this additional MF appears depends on the details, see Ref. [40] for a detailed

discussion).

3. Properties of Majorana fermions

Before explaining how MFs can be realized in more realistic systems, we now discuss

in more detail some of their generic properties, which are independent of the specific

system in which they appear.
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3.1. Representation in terms of fermionic operators

Let us assume that we have a system with 2N spatially well-separated MFs, γ1, . . . γ2N .

The number of MFs is necessarily even since one MF contains half the degrees of freedom

of a normal fermion. Similar to the case of Kitaev’s chain, the Majorana operators are

obtained by splitting a normal fermion fi in its real and imaginary parts (cf., Eq. (9))

fi = (γ2i−1 + iγ2i)/2. (12)

The inverse relation is then

γ2i−1 = f † + f, (13)

γ2i = i(f † − f). (14)

Obviously, the Majorana operators are hermitian, γj = γ†j . Using the fermionic

anti-commutation relations for the fi-fermions, it is easily verified that the Majorana

operators satisfy the anti-commutation relation

{γi, γj} = 2δij , (15)

which is somewhat reminiscent of normal fermions. There are, however, important

differences. From Eq. (15), we see that γ2i = 1. Thus, acting twice with a Majorana

operator, we get back the same state we started with. There is therefore no Pauli

principle for MFs (cf., c2 = (c†)2 = 0 for normal fermion operators c). In fact, we

cannot even speak of the occupancy of a Majorana mode. We can try to count the

occupancy by constructing a ”Majorana number operator”, nMF
i = γ†i γi. However,

using hermiticity, γ†i = γi, together with γ
2
i = 1, we find nMF

i ≡ 1. Similarly, γiγ
†
i ≡ 1.

Thus, the Majorana mode is in a sense always empty and always filled and counting

does not make any sense.

It would still be very useful to use some sort of number states. These are instead

provided through the fi fermions as we already saw above in the example with Kitaev’s

chain. Since these are normal fermions, there are number states |n1, . . . , nN〉 which are

eigenstates of the fermionic number operators, ni = f †
i fi, with eigenvalue ni = 0, 1 (by

Pauli exclusion principle). Note that the labelling of the γ’s, and thereby the pairing

into fermionic states, is arbitrary and merely represents a choice of basis for the number

states. However, if two MFs come close enough to overlap, it is natural to choose to

combine them into a fermion. To describe an overlap, t, between γ2i−1 and γ2i, the only

term one can introduce into the Hamiltonian is
i

2
tγ2i−1γ2i = t

(

ni −
1

2

)

, (16)

which corresponds to a finite energy cost for occupying the corresponding fermionic state

(t > 0). If the MFs do not overlap, the groundstate is 2N -fold degenerate, corresponding

to each ni being equal to zero or one. The sum of all occupation numbers,
∑N

i=1 ni, being

even or odd now reflects whether the total number of electrons in the superconductor is

even or odd (even or odd parity). To change the parity, electrons have to be physically

added to or removed from the superconductor.
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The experimentally measurable quantities are the occupation numbers ni. Such

a measurement can be done by bringing two MFs close together and measuring the

energy of the corresponding state [43], which reveals the occupation through Eq. (16).

One could also use interferometry [44] or coupling to conventional superconducting

qubits [45]. Note that it does not make sense to talk about the ”state of a MF” since a

single MF contains only ”half a degree of freedom”. The only physical observables are

the fermionic occupation numbers.

3.2. Non-abelian statistics

It is a crucial ingredient for non-abelian statistics to have a degenerate groundstate,

which is separated from all excited states by a gap (ideally the induced superconducting

gap, but it could also be a smaller gap to for example finite-energy vortex- or edge

states). Then adiabatic operations, such as the slow exchange of quasiparticle positions,

can in principle bring the system from one groundstate to another. It is, of course,

not obvious that such a transformation indeed takes place, which will depend on the

details of the system. In the case of MFs in a px ± ipy superconductor, Ivanov [8]

provided a simple and elegant proof of the non-abelian statistics which we sketch here.

(The Supplementary Information of Ref. [46] provides a proof in the case of 1D wires,

where MFs can be moved using closely spaced electronic ”keyboard” gates and particle

exchange is made possible by connecting the 1D wires in T-junctions.)

Imagine that we have two vortices in a two-dimensional topological superconductor,

hosting MFs described by the operators γ1 and γ2 at the vortex cores, see Fig. 2. Each

vortex is associated with a winding of 2π of the superconducting phase φ. We can

choose φ to be single-valued everywhere, except for at branch cuts (red dashed lines in

Fig. 2) emanating from each vortex, such that φ changes by 2π when crossing this line

(the direction of the branch cuts can be chosen arbitrarily). Vortices could perhaps be

moved using the tip of a scanning tunneling microscope, or by local magnetic gates. If

we now exchange vortices one and two in a clockwise manner as indicated in Fig. 2(a),

vortex 1 crosses a branch cut and acquires a 2π phase shift, while vortex 2 does not

acquire a phase. The superconducting phase is the phase of the Cooper pairs in the

condensate. The MF in vortex 1, which is made up from single (rather than products of

two) fermion operators, then acquires a phase of π upon crossing the branch cut. The

result of this exchange operation is thus

γ1 → − γ2, (17)

γ2 → + γ1. (18)

This transformation is described by γi → B12γiB
†
12, where the so-called braid operator

is given by

B12 =
1√
2
(1 + γ1γ2) . (19)

This choice of operator is made unique by requiring that, in a system with more than two

vortices (and therefore MFs), all the others are unaffected by the exchange of vortices
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Figure 2. Sketch of vortices in a 2D px ± ipy superconductor, hosting MFs described

by the operators γ1 and γ2. Inside the vortex core the superconducting gap vanishes,

∆ → 0, and going around the vortex the phase of the superconducting condensate

(Cooper pairs) increases by 2π. Therefore we introduce branch cuts emanating from

the vortex cores (red dashed lines), where the phase makes a 2π jump. (a) In a

clockwise exchange, vortex one necessarily crosses the branch cut of vortex two. (b)

When bringing vortex one around vortex two, both vortices cross the branch cut of

the other vortex.

one and two. Note that an anti-clockwise exchange instead results in γ1 → γ2, γ2 → −γ1,
which is described by the operator B̃12 = (1 − γ1γ2)/

√
2. Of course, if we had chosen

the branch cuts in a different direction the situation could be reversed, but this does

not matter as long as we make a choice and stick with that.

Next, we want to discuss the effect of bringing vortex one around vortex two and

back to its original position. Topologically, this is equivalent to two successive exchanges.

Thus, the associated operator is given by B2
12 = γ1γ2, leading to the transformation

γ1 → (γ1γ2) γ1 (γ1γ2)
† = −γ1, (20)

γ2 → (γ1γ2) γ2 (γ1γ2)
† = −γ2. (21)

Bringing vortex one around vortex two thus has the effect of introducing a minus sign

into each Majorana operator. An alternative way of deriving Eqs. (20)–(21) is sketched

in Fig. 2(b). When bringing vortex one around vortex two, it necessarily crosses the

branch cut of vortex two, but in addition forces vortex two to cross the branch cut of

vortex one. Therefore, each Majorana operator acquires a phase shift of π.

We now go back to the case of vortex exchange. The effect of the braid operator

acting on the number states is

B12|0〉 =
1√
2
(1 + i) |0〉, (22)

B12|1〉 =
1√
2
(1− i) |1〉, (23)

where |1〉 = f †
1 |0〉, with f1 = (γ1 + iγ2)/2 as discussed above. Thus, exchanging the

two MFs has the rather mundane effect of multiplying the number states with a phase

factor.

In fact, it is natural that the exchange operation cannot change the eigenvalue of

the number operator in a system with only two MFs, since this encodes whether there

are in total an even or odd number of particles in the superconductor, a quantity which
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is not changed by particle exchanges. To find non-trivial effects of exchange operations

we must consider a system with at least four MFs, described in terms of the fermionic

number states |n1n2〉. Let us now investigate the effect of exchanging neighboring MFs,

described by braid operators Bi,i+1. For simplicity we choose the branch cuts of all MFs

to be in the same direction and number the MFs based on their position orthogonal

to this direction, such that when exchanging MFs i and i + 1 in a clockwise manner,

vortex i crosses only the branch cut of vortex i + 1, and no other vortices cross any

branch cuts (crossing the same branch cut twice in different directions is equivalent to

not crossing any branch cuts at all). Note that MFs which are not neighbors can always

be exchanged through a sequence of neighbor exchanges. Consider now the effect of

braid operations on the number states

B12|00〉 =
1√
2
(1 + i) |00〉, (24)

B23|00〉 =
1√
2
(|00〉+ i|11〉) , (25)

B34|00〉 =
1√
2
(1 + i) |00〉, (26)

with analogous results for the other number states. Note especially that B23, which

involves MFs from different fermions, produces a superposition state of different number

states. However, the total parity (n1 + n2 being even or odd) of each state in the

superposition must be the same.

With four MFs we can also demonstrate the non-abelian nature of braid operations

(with two MFs there is only one possible exchange operation). In general, two braid

operations commute whenever they do not involve any of the same MFs, [B12, B34] = 0.

This is easy to believe on physical grounds, as there is no reason that the exchange of

MFs three and four should care about whether MFs one and two have been exchanged.

However, whenever two exchanges involve some of the same MFs, the braid operators

do not commute

[Bi−1,i, Bi,i+1] = γi−1γi+1. (27)

Equation (27) expresses the non-abelian exchange statistics of MFs.

At this point the attentive reader might be slightly upset by a simple fact we have

neglected. Namely the question of what exactly qualifies as an exchange operation. If

we define an exchange operation as bringing one vortex exactly to the old position of

another vortex, and vice versa, there is no problem. But clearly this is not possible in

reality and certainly goes against the idea of robust topological quantum information

processing to be discussed below. (In networks of 1D wires it is somewhat easier to

find a satisfying definition of particle exchanges [46].) Mathematically, the exchange

process happens when the branch cut is crossed, but since this is arbitrarily defined,

it is not a good definition either. Physically, the solution to this problem is that there

is no measurable effect of the exchange process, unless it is followed by one of the two

MFs involved in the exchange being joined with a third MF to perform a measurement
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Figure 3. Sketch demonstrating two equivalent sets of operations. In the upper panel,

MFs 2 and 3 are first exchanged (black arrows), then the nearest neighbor MFs are

brought together (magenta arrows) and the states of the corresponding fermions are

measured. In the lower panel, there is no exchange, but instead we directly measure

the fermions formed by pairing next-nearest neighboring MFs (1 + 3 and 2 + 4).

of the state of the fermion formed by this pair. This is demonstrated in Fig. 3. In the

upper panel, two neighboring MFs are first exchanged, which is followed by measuring

the fermionic states formed by pairing the nearest neighbor MFs. In the lower panel, on

the other hand, we do not exchange the MFs, but instead measure directly the fermionic

states formed by pairing next-nearest neighboring MFs. Both these operations give the

same result for the measurements of the fermionic states and are therefore equivalent.

Therefore, a ”computation” can be defined either as a set of exchanges, or by defining the

combinations of pairs that are being measured at the end, which removes the ambiguity

in defining an exchange process.

Another way of seeing this is to note that the result of a set of exchange operations

depends on the topology of the ”world lines” of the MFs (or other particles). The

world lines start when pairs of MFs are created from the vacuum, cross each other

when MFs are exchanged, and end when pairs of MFs are measured (fused). Only

sets of world lines which are topologically distinct can lead to different results, which

defines the so-called braid group, of which the MF exchange statistics is one possible

representation (fermions, bosons, and abelian anyons in general are the more trivial one-

dimensional representations). Non-abelian representations of the braid group exist only

in 2D (networks of 1D wires are also effectively 2D). Ref. [3] provides a more complete

mathematical discussion of these issues.
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3.3. Majorana qubits and topological quantum computation

We saw above that parity conservation prevented braiding operations from changing the

state of a system with only two MFs. For this reason, the two-level system spanned

by the number operator n1 is not suitable to use as a qubit. To define a (topological)

Majorana qubit, we should therefore use four MFs, meaning two normal fermions [47],

and consider the case of fixed parity (even or odd) of the total number of fermions. Let

us consider the even parity subspace and define a qubit by |0̄〉 ≡ |00〉, |1̄〉 ≡ |11〉.
In the basis {0̄, 1̄}, the Pauli matrices can be represented in terms of products of

Majorana operators

− iγ1γ2 = σz,−iγ3γ4 = σz (28)

−iγ2γ3 = σx, (29)

−iγ1γ3 = σy,−iγ2γ4 = σy (30)

which is seen by calculating the corresponding matrix elements. In the standard

representation with |0̄〉 and |1̄〉 being respectively the north and south poles of the

block sphere, we can then identify the different braids with single-qubit rotations

B12 = B34 = e−
iπ

4
σz , (31)

B23 = e−
iπ

4
σx , (32)

Thus, by braiding operations we can only perform single-qubit rotations by an angle

π/2.

When considering a multi-qubit setup, the most obvious choice is to define each

qubit in terms of four MFs [47]. However, it is not possible to construct a two-qubit

gate based on braiding operations which is able to create entanglement between two

such qubits. In addition, this choice does not use all the degrees of freedom offered

by the system. Even with conservation of the parity of the total number of fermions,

a system with 2N MFs has in principle enough degrees of freedom to store N − 1

qubits. Braiding-based gates acting on such ”overlapping” qubit systems have been

considered in Ref. [48]. No matter how the Majorana-based qubits are defined, braiding

operations can only explore a tiny fraction of the total Hilbert space and are insufficient

for universal quantum computation, which can, however, be achieved by including

also non-protected operations [43, 3], or by coupling Majorana qubits to other qubit

systems [45, 49, 50, 51, 52].

The advantage of Majorana-based qubits is that they keep the quantum information

encoded in delocalized fermionic states. Therefore, they are expected to be robust

against most sources of decoherence which do not couple simultaneously to more than

one Majorana mode, i.e., decoherence requires perturbations of the form γiγj, which

are suppressed when MFs i and j are spatially separated. An exception is processes

which change the total parity of the superconductor, e.g., by electrons tunneling into

a Majorana mode [53, 54, 55]. Such perturbations involve a single Majorana operator

(they are ∝ γi) and are not suppressed by keeping the MFs spatially separated. In fact,
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this phenomena, known as quasiparticle poisoning [56, 57], is a well-known problem in

conventional (non-topological) superconducting qubits.

4. Proximity-induced superconductivity in spin-orbit semiconductors

Having seen how Majorana fermions appear in spinless p-wave (or px ± ipy-wave)

superconductors, we will now investigate how such exotic pairing can be engineered

using more readily available ingredients. We start, however, by considering the generic

effects of proximity-induced superconductivity.

The system we have in mind is a D-dimensional semiconductor, where D = 1 (wire)

or D = 2 (quantum well). Neglecting electron–electron interactions (or including them

in a mean-field manner), the system is described by the Hamiltonian

H0 =
∑

σ=↑,↓

∫

dDr Ψ†
σ(r)H0(r)Ψσ(r), (33)

where the first quantization single-particle Hamiltonian is given by

H0(r) =
p2

2m
− µ+ V (r) + α (E(r)× p) · σ̄ +

1

2
gµBB(r) · σ̄, (34)

where m is the effective electron mass, B is an applied magnetic field, µB is the Bohr

magneton, g is the Landé g factor, and σ̄ is a vector of Pauli matrices. The spin-

orbit interaction with strength α has been written in the most general form in terms

of the electric field E felt by the valence electrons, and can involve both Rashba and

Dresselhaus terms.

If a good interface is made between a semiconductor and a superconductor,

electrons can tunnel between these two systems. The effect is that the electrons

in the semiconductor feels an effective ”proximity-induced” superconducting pairing

field [17, 18, 19]. The strength of this pairing field depends on the details of the

semiconductor and superconductor, as well as the interface. We do not attempt to

make an accurate microscopic model, but instead include the pairing effect in the

semiconductor by the phenomenological Hamiltonian

HS =
∫

dDr dDr′ Ψ↓(r)∆(r, r′)Ψ↑(r
′) + h.c., (35)

where ∆(r, r′) is the pairing potential. The pairing symmetry is inherited from the

superconductor, which we have here assumed to be s-wave, inducing singlet pairing

between spin-up and spin-down electrons.

When dealing with superconducting systems, it is standard practice to include both

the electrons and the holes explicitly by introducing so-called Nambu spinors

Ψ̄(r) =













Ψ↑(r)

Ψ↓(r)

Ψ†
↓(r)

−Ψ†
↑(r)













. (36)
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Matrices acting on the Nambu spinors must have dimension 4×4 and we introduce Pauli

matrices τi, similar to σi, but acting in electron-hole space. Matrices such as τj ⊗ σi
then have the appropriate 4× 4 structure. The total Hamiltonian can be written as

H = H0 +HS

=
1

2

∫

dDr dDr′ Ψ̄†(r)
[

H̄0(r)δ(r− r′) + ∆̄(r, r′)
]

Ψ̄(r), (37)

where

H̄0(r) =

(

H0(r) 0̂σ
0̂σ −σyH∗

0 (r)σy

)

, (38)

∆̄(r, r′) =

(

0̂σ ∆∗(r, r′)1̂σ
∆(r, r′)1̂σ 0̂σ

)

. (39)

Note that these are 4× 4 matrices since H0(r) is a 2× 2 matrix and 0̂σ and 1̂σ denotes

respectively the zero and unit matrices in spin space. The term −σyH∗
0 (r)σy in Eq. (38)

denotes the time-reversal of H0(r) and appears since holes are time-reversed electrons.

(Note, however, that we have not introduced any new physics with the matrices in

Eqs. (38)–(39), they are simply defined to give the correct total Hamiltonian, given by

Eq. (33) + Eq. (35).)

The quasiparticle excitations of a superconducting system are given by solving

the Bogoliubov-de Gennes equations for the eigenstates ψ̄i(r) (which are also four-

component spinors)

H̄0(r)ψ̄i(r) +
∫

dDr′ ∆̄(r, r′)ψ̄i(r
′) = Eiψ̄i(r), (40)

and the diagonalized Hamiltonian becomes

H =
1

2

∑

i

Ei Ψ
†
iΨi, (41)

Ψi =
∫

dDr ψ̄i(r) · Ψ̄(r). (42)

As was mentioned above, the Nambu spinors were only introduced to provide a

convenient matrix representation of the Hamiltonian. However, by explicitly including

the hole states and thus doubling the dimension of the Hamiltonian, we have also

artificially doubled the number of eigenstates. Therefore, there must be some symmetry

relation between the eigenstates such that the number of independent solutions remains

the same. This symmetry is electron-hole symmetry, which is expressed through the

operator

P = τy ⊗ σyK =













0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0













K, (43)

where K is the operator for complex conjugation. It can then be verified that

PH̄0(r)P
† = − H̄0(r), (44)

P ∆̄(r, r′)P † = − ∆̄(r, r′). (45)
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This means that if ψ̄i(r) and Ψi are solutions with positive energy Ei, then there are

also solutions ψ̄j(r) and Ψj with energy Ej = −Ei which satisfy

ψ̄j(r) = Pψ̄i(r), (46)

Ψj = Ψ†
i . (47)

In other words, creating a quasiparticle with energy E or removing one with energy −E
are identical operations.

It is possible to engineer the parameters in the Hamiltonian (37) such that it

resembles a spinless p-wave or px ± ipy superconductor and has eigenstates which are

MFs. We will discuss how to accomplish this in the following section, but can already

now derive a few of the generic properties Majorana solutions to Eq. (40) must have,

if they exist. Let us assume that there is a solution to Eq. (40) which corresponds

to a Majorana operator γi ≡ Ψi = Ψ†
i . According to Eq. (47), this is only possible

at E = 0, so a MF is a zero-energy solution to the Bogoliubov-de Gennes equations.

The corresponding real-space Majorana spinor satisfies ψ̄M (r) = Pψ̄M(r), and its most

general form is therefore

ψ̄M(r) =













f(r)

g(r)

g∗(r)

−f ∗(r))













. (48)

Let us now assume that the Hamiltonian respects time-reversal symmetry, H =

THT †, where the time-reversal operator is T = i1̂τ⊗σyK. Then, if ψ̄i(r) is an eigenstate,

also T ψ̄i(r) must be an eigenstate with the same energy. This is nothing else than

Kramer’s theorem for a superconductor. Specifically for MFs, the Kramer’s partner to

the Majorana spinor ψ̄M(r) in Eq. (48) is

ψ̄M ′(r) =













g∗(r)

−f ∗(r)

−f(r)
−g(r)













. (49)

Importantly, the probability densities associated with each Kramer’s pair are identical

|ψ̄M(r)|2 = |ψ̄M ′(r)|2 = 2|g(r)|2 + 2|f(r)|2. (50)

Thus, if we want to create spatially isolated MFs (not accompanied by a Kramer’s

partner with identical probability density), we need a Hamiltonian which breaks time-

reversal symmetry.

We note that it is possible for pairs of MFs to remain at zero energy in the

presence of time-reversal symmetry even if they are not spatially separated. For a

full classification of different topological classes, see e.g., [58, 59].

5. Induced p-wave-like gap in semiconductors

The strategy is now to engineer the parameters in the semiconductor Hamiltonians (33)–

(35), such that the total Hamiltonian (37) is close enough to that of a spinless p-wave
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superconductor (Eq. (10)) to also host MFs (we focus here on the simplest case of a 1D

nanowire, but the case of a 2D quantum well is rather similar). The precise meaning of

”close enough” is here that the two Hamiltonians can be continuously transformed into

each other, without ever closing the gap. In this case Eq. (37) and Eq. (10) describe

topologically equivalent systems. Since the presence of spatially separated MFs is a

topological property of the system [15], they should then appear also as solutions to

Eq. (37).

A 1D semiconducting wire with strong spin-orbit coupling has been put forward as

an experimentally attractive setting in which to induce topological superconductivity.

We follow here closely the proposals originally put forward in Refs. [23, 24]. The

experimental geometry is sketched in Fig. 4. The nanowire is proximity-coupled to

Figure 4. Sketch of setup for engineering topological superconductivity in a 1D

nanowire. The nanowire (e.g., InAs or InSb) with strong spin-orbit coupling is

proximity coupled to a bulk s-wave superconductor (e.g., Nb or Al). A set of gate

electrodes are used to control the chemical potential inside the wire and bring it into

the topological regime. MFs then form at the ends of the wire. The weight of the

Majorana wavefunction decays exponentially inside the wire, indicated here in black

(this is just an approximate form, the real wavefunction depends on the details and

often exhibit oscillations).

a s-wave superconductor and exposed to an external magnetic field (not shown). The

chemical potential of the wire is controlled by a set of gate electrodes. The wire is

assumed to be long enough that we can ignore size quantization along the wire direction

and thin enough that the 1D subbands are well separated on the relevant energy scales.

For simplicity, we also assume that the chemical potential can be tuned to a regime

where only a single 1D subband is occupied (MFs can also be found in multi-channel

wires [60, 61, 59] provided that the channel number is odd and the effective width of

the wire is smaller than the superconducting coherence length). The Hamiltonian is a

special case of Eq. (34)

H0(x) =
k2x
2m

− µ+ α̃kxσy +
1

2
B̃σz , (51)
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where we have taken h̄ = 1. α̃ = αE⊥, with E⊥ the electric field perpendicular to the

wire direction, is the strength of the spin-orbit field originating from Rashba spin-orbit

coupling and B̃ = gµBB is the Zeeman field. Note that the direction of the electric field

in a realistic setup is unknown due to the presence of the superconductor and electric

gates. However, since the spin-orbit field is given by a cross product of the electric field

and the momentum, it is orthogonal to the wire and we choose it to be along the y-

direction. Only the magnetic field component orthogonal to the spin-orbit field will help

to induce topological superconductivity and we choose the field to be along the z-axis.

We assume the proximity-induced pairing field to be homogeneous and to couple only

electrons at the same position, ∆(x, x′) = ∆δ(x− x′) in Eq. (35).

The eigenspectrum of Eq. (51) is shown in Fig. 5 as a function of the momentum

along the wire. When B̃ = 0, see Fig. 5(a), the spin-orbit coupling shifts the two

Figure 5. Bandstructure, E(kx), of a spin-orbit coupled nanowire with applied

magnetic field, B̃. (a) B̃ = 0. The two parabolic bands are split depending on their

spin polarization (red arrows) along the axis of the spin-orbit field. (b) Small B̃ > 0.

The field opens a gap at kx = 0 and thereby a region without spin degeneracy. Each

band holds only a single spin projection, but the direction of the spin polarization

depends on the momentum. (c) Large B̃. The effectively spinless regime grows with

magnetic field and also forces the spins within each band to increasingly align either

parallel or anti-parallel to the field. (d) Same as (c), but with proximity-induced

superconductivity, ∆ > 0. Here we plot all the solutions of the Bogoliubov-de Gennes

equations (Eq. 40), giving twice the number of solutions. Note the symmetry between

positive and negative E due to the particle-hole symmetry.
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parabolic bands depending on their spin polarization along the axis of the spin-orbit

field. However, at any given energy there is still spin degeneracy since time-reversal

symmetry is not broken. Switching on a small B̃, see Fig. 5(b), the crossing at zero

momentum turns into an anti-crossing. The lower band has a double-well shape and

the gap to the upper band is determined by B̃ (only the component of the magnetic

field orthogonal to the spin-orbit field opens up a gap). The Hamiltonian (51) is easily

diagonalized, resulting in

E±(kx) =
k2x
2m

− µ±
√

(α̃kx)2 + B̃2, (52)

where E+(kx) and E−(kx) correspond to the upper and lower bands, respectively. Inside

the gap, there is only one effective spin direction (although this direction depends on

momentum). Therefore, if µ is placed inside the gap, spinless superconductivity can

be induced by the proximity effect. Note that without the kx-dependence of the spin

direction, it would not be possible to induce superconductivity by proximity with a s-

wave superconductor, since the pairing term in Eq. (35) only couples the components of

the spins which are anti-parallel. A larger B̃, as in Fig. 5(c), increases the gap between

the bands. This makes the effectively spinless regime larger and therefore provides a

larger window in which to place the chemical potential. This is important if disorder

causes the the chemical potential to vary over the length of the wire. However, the larger

field also enforces an increased alignment of the spins within each band and therefore

makes it harder to induce superconductivity.

Next we switch on also the proximity-induced superconducting pairing, ∆ > 0,

see Fig. 5(d). Here we plot all the solutions of the Bogoliubov-de Gennes equations,

Eq. (40), which doubles the number of bands (there are still only two independent

solutions since particle-hole symmetry forces the positive and negative energy solutions

to be identical). For small ∆, the superconducting state is topological and associated

with Majorana edge states, provided that the chemical potential is placed within the

spinless regime, |B̃| > |µ|. The gap at zero momentum decreases with increasing ∆

and closes completely when |B̃| =
√
∆2 + µ2. For larger values of ∆ the gap opens

again, but now in a non-topological superconducting state. The criteria for topological

superconductivity is therefore

|B̃| >
√

∆2 + µ2. (53)

The phase transition between the topological and non-topological superconducting

states can only take place at the point where the gap closes. Therefore, to show that the

criteria (53) indeed guarantees topological superconductivity, it is sufficient to consider

a certain limit of the topological phase and there provide a mapping to the spinless

p-wave superconducting wire in Eq. (10) (and thereby to Kitaev’s chain described by

Eq. (1)).

Following Ref. [46], we consider the limit |B̃| ≫ Eso, |∆| and µ = 0, where

Eso = mα̃2/2 is the spin-orbit energy. With such a large magnetic field, the spins within

each bands are nearly completely polarized and since the gap is large we can consider a
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single-band model and ignore the higher band. Let Ψ−(x) be the annihilation operator

for electrons at position x in the lower band of the wire. The bands are nearly spin

polarized in the direction of the magnetic field and therefore Ψ−(x) ≈ Ψ↓(x). However,

we need to take into account leading order corrections due to spin-orbit couplings, since

the induced superconductivity is ∝ Ψ↓Ψ↑(x). The effective Hamiltonian for the lower

band with induced superconcductivity then becomes

Heff =
∫

dx

[

Ψ†
−(x)

(

k2x
2m

− 1

2
B̃

)

Ψ−(x) + i
α̃

B̃
∆Ψ−(x)kxΨ−(x)

]

. (54)

This is equivalent to the Hamiltonian (10). Note that the effective strength of the

superconducting pairing term has been reduced by a factor α̃/B̃, corresponding to the

polarization of the spin within the lower band, suppressing superconducting pairing.

From the above discussion and from Eq. (53), it may seem like an arbitrarily

small proximity-induced gap is sufficient for topological superconductivity. However,

the stability of the superconducting phase depends also on the size of the gap at finite

momentum (see Fig. 5(d)), which is ∝ ∆, see Eq. (54). If the gap is too small, the

topological superconducting phase, although reached in the idealized model considered

here, will in reality be destroyed e.g., by finite temperature or disorder. Clearly it

is important to induce a significant Zeemann splitting in the wire. Since this has to

be done without destroying superconductivity, a semiconductor with a large g-factor

is desirable. A large Zeeman splitting ensures a large gap at zero momentum, which

is important since the chemical potential must be placed within the gap. Finally, it

is important to have a large spin orbit coupling, since the gap at finite momentum is

otherwise suppressed by the magnetic field, see Eq. (54). Furthermore, the sensitivity to

disorder increases when time-reversal symmetry is strongly violated for electrons close

to the Fermi level [62, 63], meaning when the spins at ±kFx are almost aligned. To avoid

this, and keep robostness against disorder, one should not allow the ratio B̃/Eso, to

become too large. Suitable candidate materials for nanowires, with large g-factors and

strong spin-orbit coupling, are for example InAs and InSb.

6. Conclusions and outlook

In this short review article we have tried to give a pedagogical introduction to

the exciting field of topological superconductivity and MFs in condensed matter

systems. We saw that MFs, being equal superpositions of electrons and holes, can

appear as Bogoliubov quasiparticles in effectively spinless superconductors. Their

peculiar non-abelian (non-commutative) exchange statistics was discussed, and the basic

concepts of Majorana qubits and topological quantum computation was introduced.

Finally, we discussed the possibility to realize topological superconductivity by bringing

semiconductors with strong spin-orbit coupling into proximity with standard s-wave

superconductors and exposing them to a magnetic field.

While this manuscript was being finalized, a report of the possible observation of

MFs in 1D nanowires was published [35], and around the same time several other groups
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reported observations which can be interpreted as signatures of Majoranas [36, 37, 38]

(for space reasons we have here not discussed the issue of Majorana detection, see

e.g., [41, 40]). Clearly the types of systems investigated in the hunt for Majoranas

contain a lot of new and exciting physics, but which experimental observation are indeed

genuine Majorana sightings remains to be seen. We also mention that in a real system,

with a finite size and interactions which may not be well described within a mean-field

picture, there is not necessarily a perfectly clear and unique definition of a MF.

In any case, once MFs can be reproducibly realized and detected in the lab, the

work has only started. Further studies will have to investigate their properties in detail,

and fabrication and measurement techniques will have to be perfected. No doubt,

there will also be a need for additional theoretical work to understand the experimental

findings. On a longer timescale, the goal is of course to be able to control and manipulate

quantum information stored in Majorana-based qubit systems. If there will be a useful

technological application at the end of this long road is too early to predict, but there

is certainly a lot of interesting and new physics to explore.
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