
Sketches and hints for the solution of some of the exercises

A. Hints for Exercise 1.1

I consider the degree of freedom τr = srsr+1 = ±1. It represents a domain wall: τ = +1 if the two neighboring
spins are parallel, and τ = −1 vice versa. We observe that srsr+2 = τrτr+1, because s

2
r+1 = 1. This implies that we

can rewrite the Hamiltonian as:

H = −J1
∑
r

τr − J2
∑
r

τrτr+1 . (1)

Disregarding boundary effects, this Hamiltonian is completely equivalent to the classical 1D Ising model in a longitu-
dinal field given by J1 which we considered during our lectures. Following the same steps we find the related transfer
matrix:

T =

(
eβJ2+βJ1 e−βJ2

e−βJ2 eβJ2−βJ1

)
. (2)

Its eigenvalues are:

λ± = eβJ2 coshβJ1 ±
√
e2βJ2 sinh2 βJ1 + e−2βJ2 . (3)

Disregarding bounday effects we approximate:

Z ≈ TrTN = λN+ + λN− → λN+ , (4)

where the final limit holds for the thermodynamic limit N → ∞. Therefore we obtain:

F/N → −J2 − β−1 ln

[
coshβJ1 +

√
sinh2 βJ1 + e−4βJ2

]
. (5)

When considering τ0 = s1, it is easy to see that:

sr =

r−1∏
j=0

τj . (6)

This implies that sr is a non-local string of the τ variables from one edge to the r−1 position. Essentially, it matches
the Jordan-Wigner string you may have seen in CMT1 for a classical system.

B. Exercise 1.2

1. I define K = βJ . The transfer matrix in the basis {|+1⟩, |0⟩, |−1⟩} reads:

〈
sr+1

∣∣eJβsrsr+1
∣∣ sr〉 = eKsrsr+1 =

 eK 1 e−K

1 1 1
e−K 1 eK

 (7)

2. The global symmetry s↔ −s is implemented by:

U =

0 0 1
0 1 0
1 0 0

 (8)

We may thus rewrite the transfer matrix in a basis given by {|0⟩, |+⟩, |−⟩}, where |±⟩ = (|+1⟩ ± |−1⟩) /
√
2. |0⟩

and |+⟩ are even under the exchange U , |−⟩ is odd. In this basis, T reads:

T =

 1
√
2 0√

2 eK + e−K 0
0 0 eK − e−K

 (9)
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The eigenvalues are:

λ1 =
2 coshK + 1

2
+

√
2 +

(
2 coshK − 1

2

)2

(10)

λ2 = 2 sinhK (11)

λ3 =
2 coshK + 1

2
−

√
2 +

(
2 coshK − 1

2

)2

(12)

λ1 is the largest eigenvalue for any K.

3. In the thermodynamic limit (N → ∞), Z = TrTN ≈ λN1 , thanks to the Perron Frobenius theorem. Therefore:

F = −β−1 lnZ → −β−1N lnλ1 (13)

Therefore:

F/N → −β−1 ln

2 coshK + 1

2
+

√
2 +

(
2 coshK − 1

2

)2
 =

= −J − β−1 ln

1 + e−2βJ + e−βJ

2
+

√
2e−2βJ +

(
1 + e−2βJ − e−βJ

2

)2
 (14)

4. One can Taylor expand λ1/λ2 in e−K for large K. In particular we have:

ξ−1 ∼ ln

(
λ1
λ2

)
≈ ln

(
eK + 3e−K + . . .

eK − e−K + . . .

)
≈ ln

(
1 + 4e−2K + . . .

)
≈ 4e−2K . (15)

This implies that ξ diverges at zero temperature (T → 0) as ξ ∝ e
2J
kBT . This divergence indicates that at

zero temperature there is an effective phase transition and the system becomes ordered, namely the spin-spin
correlation does not decay.

C. Hints for Exercise 2.1

1. 1+1D massless case

The action for the massless 1D Dirac field in Euclidean time (τ = it):

S =

∫
dxdτ ψ̄ (∂τ + ivFσz∂x)ψ (16)

By rescaling x = bx′ and τ = bτ ′ we get:

S =

∫
b2dx′dτ ′ ψ̄

(
1

b
∂τ ′ + ivFσz

1

b
∂x′

)
ψ (17)

To obtain that S is scale invariant, as required in a gapless system, we need to impose ψ = ψ′b−1/2. Therefore the
scaling dimension of ψ is 1/2.

2. 1+1D massive case

The action associated to the mass term is proportional to:

S =

∫
dxdτ mψ̄σyψ . (18)
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By rescaling we get:

S =

∫
dx′dτ ′ bmψ̄′σyψ

′ . (19)

Therefore we can define m′ = mb > m. m grows under rescaling, hence it is relevant. As expected, it opens a gap, as
it can be verified by explicitly calculating the dispersion relation.

3. Equations of motions

Check them in any field theory book

4. Scaling of the 2D Dirac theory

You must redo the previous calculations now with the integrals in
∫
dxdydτ . You get that in the gapless case

ψ = ψ′b, thus the scaling dimension is 1. The mass term has again the same relevant behavior m′ = mb.

5. Dirac correlation function

I consider the Fourier transform of the fields in Euclidean time to be given by:

ψ(y, τ) =

∫
dkdω

2π
eiωτ+ikyψ(k, ω) . (20)

The Dirac Green’s function from the action in Euclidean time reads:

G0(k, ω) = − 1

iω − vFσzk
. (21)

We must calculate its Fourier transform:

G(y, τ, x, 0) = −
∫
dk dω

4π2

e−iωτ−ik(y−x)

iω − vFσzk
. (22)

We integrate in k, the pole is in k = iωσz/vF . I assume for simplicity that y > x (the other case is similar). To
proceed, it is convenient to distinguish what happens for ωσz > 0 and ωσz < 0.

� For ωσz > 0 we must choose a contour in the lower half plane of the complex k parameter. I obtain:

G(y, τ, x, 0) =

∫
dk dωσz
4π2vF

e−iωτ−ik(y−x)

k − iωσz/vF
= −i

∫
dωσz
2πvF

Θ(ωσz)e
−iωτ+ωσz(y−x)/vF =

− i

∫ ∞

0

dω′

2πvF
e−iω

′σzτ+ω
′(y−x)/vF =

i

2π

1

−ivF τσz + (y − x)
=

1

2π

i

(y − x) + vF tσz
; (23)

where I considered ω′ = σzω and τ = it.

� For ωσz < 0 we must choose a contour in the upper half plane of the complex k parameter. I obtain:

G(y, τ, x, 0) = i

∫
dωσz
2πvF

Θ(−ωσz)e−iωτ+ωσz(y−x)/vF =

i

∫ 0

−∞

dω′

2πvF
e−iω

′σzτ+ω
′(y−x)/vF =

i

2π

1

−ivF τσz + (y − x)
=

1

2π

i

(y − x) + vF tσz
. (24)

For both cases we get the same result, and, in particular, σz multiplies vF t in such a way that the left mover correlation
depends on y−x+vF t only, and the right mover correlation on y−x−vF t, which is consistent with ther chiral linear
dispersion. From this we see that the correlation function decays algebraically, as expected in a critical system.



4

6. The scaling dimension

The definition of the rescaling of the fields corresponds to the relation: ψ′(x′) = bDψψ(x). Therefore:〈
ψ′†
L (y

′, t′)ψ′
L(x

′, 0)
〉
= b2Dψ

〈
ψ†
L(y, t)ψL(x, 0)

〉
=

ib2Dψ

y − x+ vF t
, (25)

where I used the two-point correlation function calculated in Eq. (23). Eq. (23) additionally implies:〈
ψ†
L(y

′, t′)ψL(x
′, 0)

〉
=

i

y′ − x′ + vF t′
=

ib

y − x+ vF t
. (26)

At the critical fixed point, the Lagrangian of the system is invariant under rescaling, therefore, as written in the
exercise text, we have: 〈

ψ′†
L (y

′, t′)ψ′
L(x

′, 0)
〉
=

〈
ψ†
L(y

′, t′)ψL(x
′, 0)

〉
. (27)

By considering the three previous equations, and comparing the right hand sides of Eqs. (25) and (26), we obtain the
expected Dψ = 1/2.

7. Massive case

The Lagrangian for the massive 1D Dirac field is:

L =

∫
dxψ† (i∂t − ivFσz∂x +mσy)ψ , (28)

where ψ is a two-component spinor. The mass term is relevant because 2−2Dψ = 1 > 0. The Green’s function reads:

G(k, ω) =
1

ω + vF kσz +mσy
=
ω − vF kσz −mσy
ω2 + v2F k

2 +m2
(29)

This is a 2× 2 matrix, and we are asked to calculate the Fourier transform of its diagonal terms:

G↑↑ or ↓↓(y, t, x, 0) =

∫
dk dω

4π2
e−iωt+ik(y−x)

ω − vF kσz
ω2 + v2F k

2 +m2
= v−1

F (i∂t + vFσzi∂y)

∫
d2p

4π2

eip⃗r⃗

p2 +m2
, (30)

where, for simplicity, I redefined p⃗ = (−ω, vF k) and r⃗ =
(
t, y−xvF

)
. I use Eq. 12 in the exercise to get:

G↑↑ or ↓↓(y, t, x, 0) =
1

2πvF
(i∂t + vFσzi∂y)K0 (|m||x⃗|) . (31)

We know that ∂tr = t/r and ∂yr = (y − x)/v2F r. Now it is a matter of using the approximations and replacing t = 0,
r = |y − x|/vF . For large m we get:

G(y, x) ≈ −ime−mr

2vF
√
2πmr

sign (y − x)σz

(
1 +

1

2mr

)
(32)

In this massive situation it is crucial to observe that the correlation function decays exponentially with the distance,
with a correlation length given by vf/m since r = |y − x|/vF . This is because the mass term is relevant and drives
the system away from the gapless fixed point. Only at a gapless point correlation functions decay algebraically. For
the massless limit mr ≪ 1, then we recover an algebraic decay of the kind we derived before.
As mentioned before, to maintain the correlation function invariant under the rescaling of fields and coordinates,

the necessary rescaling of the mass is m′ = bm. This can be easily seen from Eq. (32): by taking m′ = bm and
r′ = r/b the terms mr remain invariant. The overall mass dependence in front, instead, gives rise to the rescaling
of the fields and it is consistent with ψ′(x′) = b1/2ψ(x). In conclusion, the scaling dimension of m is 1 and we get
m(l) = m(0)el.
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D. Hints for Exercise 2.3

The calculation of the correlation function for bosonic fields is made in detail in Sec. VB of the 1D models notes.
C decays as r−β

2/2, as it can be seen by the factor of the correlation that depends on the distance eβ
2⟨θ(x)θ(x′)⟩.

Hence the scaling dimension is Dβ = β2/4. Therefore, the perturbation SI is relevant for 2− β2/4 > 0, thus β <
√
8.

α = β/
√
K, thus S′

I is relevant for 2− α2K/4 > 0, hence K < 8/α2.
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