
4
The scaling hypothesis

4.1 The homogeneity assumption

In the previous chapters the singular behavior in the vicinity of a continuous
transition was characterized by a set of critical exponents ���
����� ��$� · · · �.
The saddle-point estimates of these exponents were found to be unreliable due
to the importance of fluctuations. Since the various thermodynamic quantities
are related, these exponents can not be independent of each other. The goal
of this chapter is to discover the relationships between them, and to find the
minimum number of independent exponents needed to describe the critical
point.

Fig. 4.1 The vicinity of
the critical point in the
�t	h� plane, with
crossover boundaries
indicated by dashed lines.
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The non-analytical structure is a coexistence line for t < 0 and h = 0 that
terminates at the critical point t = h = 0. The various exponents describe the
leading singular behavior of a thermodynamic quantity Q�t�h	, in the vicinity
of this point. A basic quantity in the canonical ensemble is the free energy,
which in the saddle point approximation is given by

f�t�h	=min
[ t

2
m2+um4−h�m

]

m
=

⎧
⎪⎨

⎪⎩

− 1
16

t2

u
for h= 0� t < 0

− 3
44/3

h4/3

u1/3
for h �= 0� t = 0 �

(4.1)
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4.1 The homogeneity assumption 55

The singularities in the free energy can in fact be described by a single homo-
geneous function in t and h, as1

f�t�h	= 	t	2gf
(
h/	t	&) � (4.2)

The function gf only depends on the combination x≡ h/	t	&, where & is known
as the gap exponent. The asymptotic behavior of gf is easily obtained by com-
paring Eqs. (4.1) and (4.2). The h= 0 limit is recovered if limx→0 gf �x	∼ 1/u,
while to get the proper power of h, we must set limx→� gf �x	 ∼ x4/3/u1/3.
The latter implies f ∼ 	t	2h4/3/�u1/3	t	4&/3	. Since f can have no t dependence
along t = 0, the gap exponent (corresponding to Eq. 4.1) has the value

&= 3
2
� (4.3)

The assumption of homogeneity is that, on going beyond the saddle point
approximation, the singular form of the free energy (and any other thermody-
namic quantity) retains the homogeneous form

fsing�t� h	= 	t	2−�gf
(
h/	t	&) � (4.4)

The actual exponents � and & depend on the critical point being considered.
The dependence on t is chosen to reproduce the heat capacity singularity at
h= 0. The singular part of the energy is obtained from (say for t > 0)

Esing ∼
�f

�t
∼ �2−�		t	1−�gf

(
h/	t	&)−&h	t	1−�−&g′f

(
h/	t	&)

∼ 	t	1−�
[
�2−�	gf

(
h/	t	&)− &h	t	& g

′
f

(
h/	t	&)

]
≡ 	t	1−�gE

(
h/	t	&) �

(4.5)

Thus the derivative of one homogeneous function is another. Similarly, the
second derivative takes the form (again for t > 0)

Csing ∼−
�2f

�t2
∼ 	t	−�gC

(
h/	t	&) � (4.6)

reproducing the scaling Csing ∼ 	t	−�, as h→ 0.
It may appear that we have the freedom to postulate a more general form

C±�t� h	= 	t	−�±g±
(
h/	t	&±) � (4.7)

with different functions and exponents for t > 0 and t < 0 that match at t = 0.
However, this is ruled out by the condition that the free energy is analytic
everywhere except on the coexistence line for h = 0 and t < 0, as shown as

1 In general, a function f�x1� x2� · · · 	 is homogeneous if

f �bp1x1� b
p2x2� · · · 	= bpf f�x1� x2� · · · 	�

for any rescaling factor b. With the proper choice of b one of the arguments can be removed,
leading to the scaling forms used in this section.
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56 The scaling hypothesis

follows: Consider a point at t = 0 and finite h. By assumption, the function C
is perfectly analytic in the vicinity of this point, expandable in a Taylor series,

C
(
t� h&

)=��h	+ t��h	+��t2	� (4.8)

Furthermore, the same expansion should be obtained from both C+ and C−.
But Eq. (4.7) leads to the expansions,

C± = 	t	−�±
[
A±

(
h

	t	&±
)p±

+B±
(
h

	t	&±
)q±

+ · · ·
]
� (4.9)

where �p±� q±� are the leading powers in asymptotic expansions of g± for
large arguments, and �A±�B±� are the corresponding prefactors. Matching to
the Taylor series in Eq. (4.8) requires p±&± = −�± and q±&± = −�1+�±	,
and leads to

C±
(
t� h&

)= A±h−�±/&± +B±h−�1+�±	/&± 	t	+ · · · (4.10)

Continuity at t = 0 now forces �+/&+ = �−/&−, and �1 + �+	/&+ =
�1+�−	/&−, which in turn implies

⎧
⎨

⎩
�+ = �− ≡ �
&+ = &− ≡ &�

(4.11)

Despite using 	t	 in the postulated scaling form, we can still ensure the analyt-
icity of the function at t = 0 for finite h by appropriate choice of parameters,
e.g. by setting B− =−B+ to match Eq. (4.10) to the analytic form in Eq. (4.8).
Having established this result, we can be somewhat careless henceforth in
replacing 	t	 in the scaling equations with t. Naturally these arguments apply
to any quantity Q�t�h	.

Starting from the free energy in Eq. (4.4), we can compute the singular parts
of other quantities of interest:

• The magnetization is obtained from

m�t�h	∼ �f

�h
∼ 	t	2−�−&gm

(
h/	t	&) � (4.12)

In the limit x→ 0, gm�x	 is a constant, and

m�t�h= 0	∼ 	t	2−�−&� =⇒ 
= 2−�−&� (4.13)

On the other hand, if x→�, gm�x	∼ xp, and

m�t = 0� h	∼ 	t	2−�−&
(
h

	t	&
)p
� (4.14)

Since this limit is independent of t, we must have p&= 2−�−&. Hence

m�t�h= 0	∼ h�2−�−&	/& =⇒ �= &/�2−�−&	= &/
� (4.15)
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4.2 Divergence of the correlation length 57

• Similarly, the susceptibility is computed as

��t�h	∼ �m

�h
∼ 	t	2−�−2&g��h/	t	&	⇒ ��t�h= 0	∼ 	t	2−�−2&

⇒ � = 2&−2+��
(4.16)

Thus, the consequences of the homogeneity assumption are:

(1) The singular parts of all critical quantities Q�t�h	 are homogeneous, with the

same exponents above and below the transition.

(2) Because of the interconnections via thermodynamic derivatives, the same gap

exponent, &, occurs for all such quantities.

(3) All (bulk) critical exponents can be obtained from only two independent ones,

e.g. � and &.

(4) As a result of the above, there are a number of exponent identities. For example,

Eqs. (4.13), (4.15), and (4.16) imply

�+2
+� = �+2�2−�−&	+ �2&−2+�	= 2 �Rushbrooke’s identity	�

�−1= &

2−�−& −1= 2&−2+�
2−�−& = �



�Widom’s identity	�

(4.17)

These identities can be checked against the following table of critical expo-

nents. The first three rows are based on a number of theoretical estimates in

d = 3; the last row comes from an exact solution in d = 2. The exponent iden-

tities are completely consistent with these values, as well as with all reliable

experimental data.

� 
 � � � $

n =1 0.11 0.32 1.24 4.9 0.63 0.04
n =2 −0.01 0.35 1.32 4.7 0.67 0.04
n =3 −0.11 0.36 1.39 4.9 0.70 0.04

n =1 0 1/8 7/4 15 1 1/4

4.2 Divergence of the correlation length

The homogeneity assumption relates to the free energy and quantities derived
from it. It says nothing about the behavior of correlation functions. An important
property of a critical point is the divergence of the correlation length which
is responsible for, and can be deduced from, diverging response functions. In
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58 The scaling hypothesis

order to obtain an identity involving the exponent � for the divergence of the
correlation length, we replace the homogeneity assumption for the free energy
with the following two conditions:

(1) The correlation length � is a homogeneous function,

��t�h	∼ 	t	−�g (h/	t	&) � (4.18)

(For t = 0, � diverges as h−�h with �h = �/&.)

(2) Close to criticality, the correlation length � is the most important length in the system,

and is solely responsible for singular contributions to thermodynamic quantities.

Fig. 4.2 A system of
linear size L, presented as
(approximately)
independent components
of size 
, the correlation
length.

L

L

ξ

ξ

The second condition determines the singular part of the free energy. Since

lnZ�t�h	 is extensive and dimensionless, it must take the form

lnZ =
(
L

�

)d
×gs+· · ·+

(
L

a

)d
×ga� (4.19)

where gs and ga are non-singular functions of dimensionless parameters (a is an

appropriate microscopic length). The leading singular part of the free energy comes

from the first term, and behaves as

fsing�t� h	∼
lnZ
Ld

∼ �−d ∼ 	t	d�gf
(
h/	t	&) � (4.20)

A simple interpretation of the above result is obtained by dividing the system

into units of the size of the correlation length. Each unit is then regarded as an

independent random variable, contributing a constant factor to the critical free

energy. The number of units grows as �L/�	d, leading to Eq. (4.19).

The consequences of the above assumptions are:

(1) The homogeneity of fsing�t� h	 emerges naturally.

(2) We obtain the additional exponent relation

2−�= d� (Joshephson’s identity)� (4.21)

Identities obtained from the generalized homogeneity assumption involve
the space dimension d, and are known as hyperscaling relations. The relation
between � and � is consistent with the exponents in the above table. However,
it does not agree with the saddle point values, � = 0 and � = 1/2, which are
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4.3 Critical correlation functions and self-similarity 59

valid for d > 4. Any theory of critical behavior must thus account for the
validity of this relation in low dimensions, and its breakdown for d > 4.

4.3 Critical correlation functions and self-similarity

One exponent that has not so far been accounted for is $, describing the decay
of correlation functions at criticality. Exactly at the critical point, the correlation
length is infinite, and there is no other length scale (except sample size) to cut
off the decay of correlation functions. Thus all correlations decay as a power
of the separation. As discussed in the previous chapter, the magnetization
correlations fall off as

Gcm�m�x	≡ 
m�x	m�0	�−
m�2 ∼ 1/	x	d−2+$� (4.22)

Similarly, we can define an exponent $′ for the decay of energy–energy corre-
lations as

GcE�E�x	= 
� �x	� �0	�−
��2 ∼ 1/	x	d−2+$′ � (4.23)

Away from criticality, the power laws are cut off for distances 	x	� �. As the
response functions can be obtained from integrating the connected correlation
functions, there are additional exponent identities, such as (Fisher’s identity)

� ∼
∫

ddxGcmm�x	∼
∫ � ddx

	x	d−2+$ ∼ �2−$ ∼ 	t	−��2−$	 =⇒ � = �2−$	�� (4.24)

Similarly, for the heat capacity,

C ∼
∫

ddxGcEE�x	∼
∫ � ddx

	x	d−2+$′ ∼ �2−$′ ∼ 	t	−��2−$′	� =⇒ �= �2−$′	�� (4.25)

As before, two independent exponents are sufficient to describe all singular
critical behavior.

An important consequence of these scaling ideas is that the critical system
has an additional dilation symmetry. Under a change of scale, the critical
correlation functions behave as

Gcritical��x	= �pGcritical�x	� (4.26)

This implies a scale invariance or self-similarity: if a snapshot of the critical
system is blown up by a factor of �, apart from a change of contrast (multi-
plication by �p), the resulting snapshot is statistically similar to the original
one. Such statistical self-similarity is the hallmark of fractal geometry. As
discussed by Mandelbrot, many naturally occurring forms (clouds, shore-lines,
river basins, etc.) exhibit such behavior. The Landau–Ginzburg probability was
constructed on the basis of local symmetries such as rotation invariance. If we
could add to the list of constraints the requirement of dilation symmetry, the
resulting probability would indeed describe the critical point. Unfortunately,
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60 The scaling hypothesis

it is not possible to directly see how such a requirement constrains the effec-
tive Hamiltonian. One notable exception is in d = 2, where dilation symmetry
implies conformal invariance, and a lot of information can be obtained by
constructing conformally invariant theories. We shall instead prescribe a less
direct route of following the effects of the dilation operation on the effective
energy: the renormalization group procedure.

4.4 The renormalization group (conceptual)

Success of the scaling theory in correctly predicting various exponent identities
strongly supports the assumption that close to the critical point the correlation
length, �, is the only important length scale, and that microscopic length scales
are irrelevant. The critical behavior is dominated by fluctuations that are self-
similar up to the scale �. The self-similarity is of course only statistical, in
that a magnetization configuration is generated with a weight W � �m�x	
 ∝
exp�−
� � �m�x	
�. Kadanoff suggested taking advantage of the self-similarity
of the fluctuations to gradually eliminate the correlated degrees of freedom at
length scales x� �, until one is left with the relatively simple, uncorrelated
degrees of freedom at scale �. This is achieved through a procedure called the
renormalization group (RG), whose conceptual foundation is the three steps
outlined in this section.

(1) Coarse grain: There is an implicit short distance length cutoff scale a for allowed

variations of �m�x	 in the system. This is the lattice spacing for a model of spins,

or the coarse graining scale that underlies the Landau–Ginzburg Hamiltonian. In a

digital picture of the system, a corresponds to the pixel size. The first step of the

RG is to decrease the resolution by changing this minimum scale to ba (b > 1). The

coarse-grained magnetization is then given by

mi�x	=
1
bd

∫

Cell centered at x
ddx′mi�x

′	� (4.27)

(2) Rescale: Due to the change in resolution, the coarse grained “picture” is grainier

than the original. The original resolution of a can be restored by decreasing all

length scales by a factor of b, i.e. by setting

xnew =
xold

b
� (4.28)

(3) Renormalize: The variations of fluctuations in the rescaled magnetization profile is

in general different from the original, i.e. there is a difference in contrast between

the pictures. This can be remedied by introducing a change of contrast by a factor

' , through defining a renormalized magnetization

�mnew�xnew	=
1
'bd

∫

Cell centered at bxnew

ddx′ �m�x′	� (4.29)
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4.4 The renormalization group (conceptual) 61

By following these steps, for each configuration �mold�x	, we generate a
renormalized configuration �mnew�x	. Equation (4.29) can be regarded as a map-
ping from one set of random variables to another, and can be used to construct
the probability distribution, or weight Wb� �mnew�x	
 ≡ exp�−
� b� �mnew�x	
�.
Kadanoff’s insight was that since on length scales less than �, the renormalized
configurations are statistically similar to the original ones, they may be dis-
tributed by a Hamiltonian 
� b that is also “close” to the original. In particular,
the original Hamiltonian becomes critical by tuning the two parameters t and
h to zero: at this point the original configurations are statistically similar to
those of the rescaled system. The critical Hamiltonian should thus be invariant
under rescaling and renormalization. In the original problem, one moves away
from criticality for finite t and h. Kadanoff postulated that the corresponding
renormalized Hamiltonian is similarly described by non-zero tnew and/or hnew.

The assumption that the closeness of the original and renormalized Hamilto-
nians to criticality is described by the two parameters t and h greatly simplifies
the analysis. The effect of the RG transformation on the probability of configu-
rations is now described by the two parameter mappings tnew ≡ tb�told� hold	 and
hnew ≡ hb�told� hold	. The next step is to note that since the transformation only
involves changes at the shortest length scales, it cannot cause any singularities.
The renormalized parameters must be analytic functions of the original ones,
and hence expandable as

⎧
⎨

⎩

tb�t� h	= A�b	t+B�b	h+· · ·
hb�t� h	= C�b	t+D�b	h+· · ·

(4.30)

Note that there are no constant terms in the above Taylor expansions. This
expresses the condition that if 
� is at its critical point (t = h = 0), then

� b is also at criticality, and tnew = hnew = 0. Furthermore, due to rotational
symmetry, under the combined transformation �m�x	 �→ −m�x	�h �→ −h� t �→
t	 the weight of a configuration is unchanged. As this symmetry is preserved
by the RG, the coefficients B and C in the above expression must be zero,
leading to the further simplifications

⎧
⎨

⎩

tb�t� h	= A�b	t+· · ·
hb�t� h	=D�b	h+· · ·

(4.31)

The remaining coefficientsA�b	 andD�b	 depend on the (arbitrary) rescaling
factor b, and trivially A�1	=D�1	= 1 for b = 1. Since the above transforma-
tions can be carried out in sequence, and the net effect of rescalings of b1 and
b2 is a change of scale by b1b2, the RG procedure is sometimes referred to as
a semi-group. The term applies to the action of RG on the space of configura-
tions: each magnetization profile is mapped uniquely to one at larger scale, but
the inverse process is non-unique as some short scale information is lost in the
coarse graining. (There is in fact no problem with inverting the transformation
in the space of the parameters of the Hamiltonian.) The dependence of A and
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62 The scaling hypothesis

D in Eqs. (4.31) on b can be deduced from this group property. Since at b= 1,
A=D = 1, and t�b1b2	≈ A�b1	A�b2	t ≈ A�b1b2	t, we must have A�b	= byt ,
and similarly D�b	= byh , yielding

⎧
⎨

⎩

t′ ≡ tb = byt t+· · ·
h′ ≡ hb = byhh+· · ·

(4.32)

If 
� old is slightly away from criticality, it is described by a large but finite
correlation length �old. After the RG transformation, due to the rescaling in
Eq. (4.28), the new correlation length is smaller by a factor of b. Hence the
renormalized Hamiltonian is less critical, and the RG procedure moves the
parameters further away from the origin, i.e. the exponents yt and yh must be
positive.

We can now explore some consequences of the assumptions leading to Eqs.
(4.32).

(1) The free energy: The RG transformation is a many to one map of the original

configurations to new ones. Since the weight of a new configuration, W ′��m′
	,
is the sum of the weights W��m
	, of old configurations, the partition function is

preserved, i.e.

Z =
∫
DmW��m
	=

∫
Dm′W ′��m′
	= Z′� (4.33)

Hence lnZ = lnZ′, and the corresponding free energies are related by

Vf �t�h	= V ′f�t′� h′	� (4.34)

In d dimensions, the rescaled volume is smaller by a factor of bd, and

f�t�h	= b−df�byt t� byt h	� (4.35)

where we have made use of the assumption that the two free energies are obtained

from the same Hamiltonian in which only the parameters t and h have changed

according to Eqs. (4.32). Equation (4.35) describes a homogeneous function of t

and h. This is made apparent by choosing a rescaling factor b such that byt is a

constant, say unity, i.e. b = t−1/yt , leading to

f�t�h	= td/yt f�1� h/tyh/yt 	≡ td/yt gf �h/tyh/yt 	� (4.36)

We have thus recovered the scaling form in Eq. (4.4), and can identify the exponents

as

2−�= d/yt� &= yh/yt� (4.37)

(2) Correlation length: All length scales are reduced by a factor of b during the RG

transformation. This is also true of the correlation length, �′ = �/b, implying

��t�h	= b��byt t� byhh	= t−1/yt ��1� h/tyh/yt 	∼ t−�� (4.38)

This identifies � = 1/yt, and using Eq. (4.37) the hyperscaling relation, 2−�= d�,

is recovered.
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4.5 The renormalization group (formal) 63

(3) Magnetization: From the homogenous form of the free energy (Eq. 4.36), we can

obtain other bulk quantities such as magnetization. Alternatively, from the RG

results for Z, V , and h, we may directly conclude

m�t�h	=− 1
V

� lnZ�t�h	
�h

=− 1
bdV ′

� lnZ′�t′� h′	
b−yh�h′

= byh−dm�byt t� byhh	� (4.39)

Choosing b = t−1/yt , we obtain 
= �yh−d	/yt, and &= yh/yt as before.

It is thus apparent that quite generally, the singular part of any quantity X has a

homogeneous form

X�t�h	= byXX�byt t� byhh	� (4.40)

For any conjugate pair of variables, contributing a term
∫

ddxF ·X to the Hamilto-

nian, the scaling dimensions are related by yX = yF −d, where F ′ = byF F under

RG.

4.5 The renormalization group (formal)

In the previous section we noted that all critical properties can be obtained
from the recursion relations in Eqs. (4.32). Though conceptually appealing, it
is not clear how such a procedure can be formally carried out. In particular,
why should the forms of the two Hamiltonians be identical, and why are two
parameters t and h sufficient to describe the transformation? In this section
we outline a more formal procedure for identifying the effects of the dilation
operation on the Hamiltonian. The various steps of the program are as follows:

(1) Start with the most general Hamiltonian allowed by symmetries. For example, in

the presence of rotational symmetry,


� =
∫

ddx
[
t

2
m2+um4+vm6+· · ·+ K

2
��m	2+ L

2
��2m	2+· · ·

]
� (4.41)

A particular system with such symmetry is therefore completely specified by a point

in the (infinite-dimensional) parameter space S ≡ �t� u� v� · · · �K�L� · · · 	.
(2) Apply the three steps of renormalization in configuration space: (i) coarse grain

by b; (ii) rescale, x′ = x/b; and (iii) renormalize, m′ =m/' . This accomplishes the

change of variables,

m′�x′	= 1
'bd

∫

Cell of size b centered at bx′
ddxm�x	� (4.42)

Given the probabilities ��m�x	
 ∝ exp�−
� �m�x	
	, for the original configura-

tions, we can use the above change of variables to construct the corresponding

probabilities � ′�m′�x′	
, for the new configurations. Naturally this is the most dif-

ficult step in the program.
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64 The scaling hypothesis

(3) Since rotational symmetry is preserved by the RG procedure, the rescaled Hamil-

tonian must also be described by a point in the parameter space of Eq. (4.41),

i.e.


� ′�m′�x′	
≡ ln� ′�m′�x′	
= fb+
∫

ddx′
[
t′

2
m
′2+u′m′4

+v′m′6+· · ·+ K
′

2
��m′	2+ L

′

2
��2m′	2+· · ·

]
�

(4.43)

The renormalized parameters are functions of the original ones, i.e. t′ = tb�t� u� ���	;
u′ = ub�t� u� ���	, etc., defining a mapping S′ = �bS in parameter space.

(4) The operation �b describes the effects of dilation on the Hamiltonian of the sys-

tem. Hamiltonians that describe statistically self-similar configurations must thus

correspond to fixed points S∗, such that �bS∗ = S∗. Since the correlation length,

a function of Hamiltonian parameters, is reduced by b under the RG operation

(i.e. ��S	= b���bS	), the correlation length at a fixed point must be zero or infin-

ity. Fixed points with �∗ = 0 describe independent fluctuations at each point and

correspond to complete disorder (infinite temperature), or complete order (zero

temperature). A fixed point with �∗ = � describes a critical point (T = Tc).

Fig. 4.3 The fixed point
S∗ has a basin of
attraction spanned by the
irrelevant directions of
negative eigenvalues yi ,
and is unstable in the
relevant direction with
y > 0.

S∗

S

yi < 0

y > 0

(5) Equations (4.32) represent a simplified case in which the parameter space is two

dimensional. The point t = h = 0 is a fixed point, and the lowest order terms in

these equations describe the behavior in its neighborhood. In general, we can study

the stability of a fixed point by linearizing the recursion relations in its vicinity:

Under RG, a point S∗ +�S is transformed to

S∗�+�S′� = S∗�+ ��Lb 	�
�S
+· · ·� where ��Lb 	�
 ≡
�S′�
�S


∣
∣
∣
∣
S∗
� (4.44)
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4.5 The renormalization group (formal) 65

We now diagonalize the matrix ��Lb 	�
 to get the eigenvectors �i, and corresponding

eigenvalues ��b	i. Because of the group property2,

�Lb�Lb′�i = ��b	i��b′	i�i =�Lbb′�i = ��bb′	i�i� (4.45)

Together with the condition ��1	i = 1, the above equation implies

��b	i = byi � (4.46)

The vectors �i are called scaling directions associated with the fixed point S∗,
and yi are the corresponding anomalous dimensions. Any Hamiltonian in the vicinity

of the fixed point is described by a point S = S∗+(igi�i. The renormalized Hamil-

tonian has interaction parameters S′ = S∗ +(igibyi�i. The following terminology is

used to classify the eigenoperators:

• If yi > 0, gi increases under scaling, and �i is a relevant operator.
• If yi < 0, gi decreases under scaling, and �i is an irrelevant operator.
• If yi = 0, gi is called a marginal operator, and higher order terms are necessary

to track its behavior.

The subspace spanned by the irrelevant operators is the basin of attraction of

the fixed point S∗. Since � always decreases under RG, and ��S∗	 =�, then � is

also infinite for any point on the basin of attraction of S∗. For a general point in the

vicinity of S∗, the correlation length satisfies

��g1� g2� · · · 	= b��by1g1� b
y2g2� · · · 	� (4.47)

For a sufficiently large b, all the irrelevant operators scale to zero. The leading

singularities of � are then determined by the remaining set of relevant operators. In

particular, if the operators are indexed in order of decreasing dimensions, we can

choose b such that by1g1 = 1. In this case, Eq. (4.47) implies

��g1� g2� · · · 	= g−1/y1
1 f�g2/g

y2/y1
1 � · · · 	� (4.48)

We have thus obtained an exponent �1 = 1/y1, for the divergence of �, and a

generalized set of gap exponents &� = y�/y1, associated with g�.

Let us imagine that the fixed point S∗ describes the critical point of the magnet

in Eq. (4.41) at zero magnetic field. As the temperature, or some other control

parameter, is changed, the coefficients of the effective Hamiltonian are altered, and

the point S moves along a trajectory in parameter space. Except for a single point

(at the critical temperature) the magnet has a finite correlation length. This can be

achieved if the trajectory taken by the point S intersects the basis of attraction of S∗

only at one point. To achieve this, the basin of attraction must have co-dimension

one, i.e. the fixed point S∗ must have one and only one relevant operator. This

2 The group property �Lb�Lb′ = �Lbb′ = �Lb′�Lb also implies that the linearized matrices for
different b commute. It is thus possible to diagonalize them simultaneously, implying that the
eigenvectors ��i� are independent of b.
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66 The scaling hypothesis

provides an explanation of universality, in that the very many microscopic details

of the system make up the huge space of irrelevant operators comprising the basin

of attraction. In the presence of a magnetic field, two system parameters must be

adjusted to reach the critical point (T = Tc and h = 0). Thus the magnetic field

corresponds to an additional relevant operator at S∗. Again, other “odd” interactions,

such as �m3�m5� · · · �, should not lead to any other relevant operators.

Although the formal procedure outlined in this section is quite rigorous, it suffers

from some quite obvious shortcomings: How do we actually implement the RG

transformations of step (2) analytically? There are an infinite number of interactions

allowed by symmetry, and hence the space of parameters S is inconveniently large.

How do we know a priori that there are fixed points for the RG transformation;

that �b can be linearized; that relevant operators are few, etc.? Following the

initial formulation of RG by Kadanoff, there was a period of uncertainty until

Wilson showed how these steps can be implemented (at least perturbatively) in the

Landau–Ginzburg model.

4.6 The Gaussian model (direct solution)

The RG approach will be applied to the Gaussian model in the next section.
For the sake of later comparison, here we provide the direct solution of this
problem. The Gaussian model is obtained by keeping only the quadratic terms
in the Landau–Ginzburg expansion. The resulting partition function is

Z =
∫

� �m�x	 exp
{
−
∫

ddx
[
t

2
m2+ K

2
��m	2+ L

2
��2m	2+· · ·− �h · �m

]}
� (4.49)

Clearly the model is well defined only for t ≥ 0, since there is no m4 term
to insure its stability for t < 0. The partition function still has a singularity at
t = 0, and we can regard this as representing approaching a phase transition
from the disordered side.

The quadratic form is easily evaluated by the usual rules of Gaussian inte-
gration. The kernel is first diagonalized by the Fourier modes: The allowed q
values are discretized in a finite system of size L, with spacing of 2�/L. The
largest q are limited by the lattice spacing, and confined to a Brillouin zone
whose shape is determined by the underlying lattice. We shall in fact use a
slightly different normalization for the Fourier modes, and keep careful track
of the volume factors, by setting

⎧
⎨

⎩
�m�q	= ∫ ddxeiq·x �m�x	
�m�x	=∑q

e−iq·x
V
�m�q	= ∫ ddq

�2�	d
e−iq·x �m�q	�

(4.50)

(We should really use a different symbol, such as m̃i�q	 to indicate the Fourier
modes. For the sake of brevity we use the same symbol, but explicitly include
the argument q as the indicator of the Fourier transformed function.) The last
transformation applies to the infinite size limit (L→�), and V is the system
volume.
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4.6 The Gaussian model (direct solution) 67

In re-expressing the Hamiltonian in terms of Fourier modes, we encounter
expressions such as
∫

ddxm�x	2 =
∫

ddx
∑

q�q′
e−i�q+q′	·x

V 2
�m�q	 · �m�q′	=∑ q

�m�q	 · �m�−q	
V

� (4.51)

The last expression follows from the vanishing of the integral over x unless
q+q′ = 0, in which case it equals the system volume. Similar manipulations
lead to the Hamiltonian


� =∑
q

(
t+Kq2+Lq4+· · ·

2V

)
	m�q		2− �h · �m�q= 0	� (4.52)

With the choice of the normalization in Eq. (4.50), the Jacobian of the transfor-
mation to Fourier modes is 1/

√
V per mode, and the partition function equals

Z =∏
q

V−n/2
∫

d �m�q	 exp
[
− t+Kq

2+Lq4+· · ·
2V

	m�q		2+ �h · �m�q= 0	
]
� (4.53)

The integral for q= 0 is

Z0 = V−n/2
∫ �

−�
d �m�0	 exp

[
− t

2V
	m�0		2+ �h · �m�0	

]
=
(

2�
t

)n/2
exp
[
Vh2

2t

]
� (4.54)

After performing the integrations for q �= 0, we obtain

Z = exp
[
Vh2

2t

]∏

q

(
2�

t+Kq2+Lq4+· · ·
)n/2

� (4.55)

The total number of modes, N , equals the number of original lattice points.
Apart from a constant factor resulting from �2�	nN/2, the free energy is

f�t�h	=− lnZ
V

= n

2

∫

BZ

ddq
�2�	d

ln
(
t+Kq2+Lq4+· · · )− h

2

2t
� (4.56)

q<

q>

π /a

π /a
Λ /b

–π /a

–π /a

Λ

Fig. 4.4 The Brillouin
zone is approximated by
a hypersphere of radius
�, which is then reduced
by a factor of b in this
RG scheme.

The integral in Eq. (4.56) is over the Brillouin zone, which for a hypercubic
lattice of spacing a, is a cube of side 2�/a centered on the origin. However,
we expect the singularities to originate from the long wavelength modes close
to q = 0. The contributions from the vicinity of the Brillouin zone edge are
clearly analytic, since the logarithm can be simply expanded in powers of t for
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68 The scaling hypothesis

a finite q2. Thus to simplify the extraction of the singular behavior as t→ 0,
we approximate the shape of the Brillouin zone by a hypersphere of radius
�≈ �/a. The spherical symmetry of the integrand then allows us to write

fsing�t� h	=
n

2
Kd

∫ �

0
dqqd−1 ln

(
t+Kq2+Lq4+· · · )− h

2

2t
� (4.57)

where Kd ≡ Sd/�2�	d, and Sd is the d-dimensional solid angle. The leading
dependence of the integral on t can be extracted after rescaling q by a factor
of
√
t/K, as

fsing�t� h	=
n

2
Kd

( t
K

)d/2 ∫ �
√
K/
√
t

0
dxxd−1

× [ln t+ ln
(
1+x2+Ltx4/K2+· · · )]− h

2

2t
�

(4.58)

Ignoring analytic contributions in t, the leading singular dependence of the free
energy can be written as

fsing�t� h	=−td/2
[
A+ h2

2t1+d/2

]
≡ t2−�gf �h/t&	� (4.59)

Note that the higher order gradients, i.e. terms proportional to L� · · · , do
not effect the singular behavior in Eq. (4.59). On approaching the point h= 0
for t = 0+, the singular part of the free energy is described by a homogeneous
scaling form, with exponents

�+ = 2−d/2� &= 1/2+d/4� (4.60)

Since the ordered phase for t < 0 is not stable, the exponent 
 is undefined. The
susceptibility � ∝ �2f/�h2 ∝ 1/t, however, diverges with the exponent �+ = 1.

4.7 The Gaussian model (renormalization group)

The renormalization of the Gaussian model is most conveniently performed in
terms of the Fourier modes. The goal is to evaluate the partition function

Z ∼
∫

� �m�q	 exp
[
−
∫ �

0

ddq
�2�	d

(
t+Kq2+Lq4+· · ·

2

)
	m�q		2+ �h · �m�0	

]
(4.61)

indirectly via the three steps of RG. Note that the Brillouin zone is approximated
by a hypersphere of radius �.

(1) Coarse grain: Eliminating fluctuations at scales a < x < ba is similar to removing

Fourier modes with wavenumbers �/b < q < �. We thus break up the momenta

into two subsets,

� �m�q	�= ����q>	�⊕ � �̃m�q<	�� (4.62)

and write

Z =
∫

� �̃m�q<	
∫

� ���q>	e−
� � �̃m���
� (4.63)
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4.7 The Gaussian model (renormalization group) 69

Since the two sets of modes are decoupled in the Gaussian model, the integration is

trivial, and

Z ∼ exp
[
−n

2
V
∫ �

�/b

ddq
�2�	d

ln�t+Kq2+Lq4+· · · 	
]
×
∫

� �̃m�q<	

× exp
[
−
∫ �/b

0

ddq
�2�	d

(
t+Kq2+Lq4+· · ·

2

)
	m̃�q		2+ �h · �̃m�0	

]
�

(4.64)

(2) Rescale: The partition function for the modes �̃m�q<	 is similar to the original, except

that the upper cutoff has decreased to �/b, reflecting the coarsening in resolution.

The rescaling x′ = x/b in real space is equivalent to q′ = bq in momentum space,

and restores the cutoff to its original value. The rescaled partition function is

Z = e−V�fb�t	×
∫

� �̃m�q′	× exp
[
−
∫ �

0

ddq′

�2�	d
b−d

×
(
t+Kb−2q

′2+Lb−4q
′4+· · ·

2

)

	m̃�q′		2+ �h · �̃m�0	
]

�

(4.65)

(3) Renormalize: The final step of RG in real space is the renormalization of mag-

netization, �m′�x′	= �̃m�x′	/' . Alternatively, we can renormalize the Fourier modes

according to �m′�q′	= �̃m�q′	/z, resulting in

Z = e−V�fb�t	×
∫

� �m′�q′	× exp
[
−
∫ �

0

ddq′

�2�	d
b−dz2

×
(
t+Kb−2q

′2+Lb−4q
′4+· · ·

2

)

	m′�q′		2+ z�h · �m′�0	
]

�

(4.66)

(Note that the factors ' and z, for rescalings of magnetization in real and Fourier

space, are different.)

Equation (4.66) indicates the renormalized modes are distributed according to a

Gaussian Hamiltonian, with renormalized parameters,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

t′ = z2b−dt

h′ = zh
K′ = z2b−d−2K

L′ = z2b−d−4L

· · ·

(4.67)

The singular point t = h= 0 is mapped onto itself as expected. To make the fluctu-

ations scale invariant at this point, we must insure that the remaining Hamiltonian

stays fixed. This is achieved by the choice of z = b1+d/2, which sets K′ = K, and

makes the remaining parameters L� · · · scale to zero. Away from criticality, the two

relevant directions now scale as
⎧
⎨

⎩
t′ = b2t

h′ = b1+d/2h
=⇒

⎧
⎨

⎩
yt = 2

yh = 1+d/2�
(4.68)
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70 The scaling hypothesis

Using the results of Section 3.4, we can identify the critical exponents,

� = 1/yt = 1/2�

&= yh
yt
= 1+d/2

2
= 1

2
+ d

4
�

�= 2−d� = 2−d/2�
in agreement with the direct solution in the previous section.

The fixed point Hamiltonian (t∗ = h∗ = L∗ = · · · = 0) in real space is


� ∗ = K

2

∫

a
ddx��m	2� (4.69)

(The subscript a is placed on the integral as a reminder of the implicit short distance

cutoff.) Under a simple rescaling x �→ x′, and �m�x	 �→ ' �m′�x′	; K �→K′ = bd−2'2K.

Scale invariance is achieved with the choice ' = b1−d/2. Forgetting the coarse-

graining step, a general power of �m�x	, added as a small perturbation to �
� 	∗,
behaves as


� ∗ +un
∫

ddxmn �→ 
� ∗ +unbd'n
∫

ddx′m
′n� (4.70)

suggesting that such perturbations scale as

u′n = bdbn�
2−d

2 	un� =⇒ yn = n−d
(n

2
−1
)
� (4.71)

The values y1 = 1+d/2, and y2 = 2, reproduce the exponents for yh and yt in Eq.

(4.68). The operators with higher powers are less relevant. The next most important

operator in a system with spherical symmetry is y4 = 4−d, which is irrelevant for

d > 4 but relevant for d < 4; y6 = 6− 2d is relevant only for d < 3. Indeed the

majority of operators are irrelevant at the Gaussian fixed point for d > 2.

Problems for chapter 4

1. Scaling in fluids: Near the liquid–gas critical point, the free energy is assumed to

take the scaling form F/N = t2−�g���/t
	, where t = 	T −Tc	/Tc is the reduced

temperature, and �� = �−�c measures deviations from the critical point density.

The leading singular behavior of any thermodynamic parameter Q�t���	 is of the

form tx on approaching the critical point along the isochore � = �c; or ��y for

a path along the isotherm T = Tc. Find the exponents x and y for the following

quantities:

(a) The internal energy per particle 
H�/N , and the entropy per particle s = S/N�
(b) The heat capacities CV = T�s/�T 	V , and CP = T�s/�T 	P .

(c) The isothermal compressibility �T = ��/�P 	T /�, and the thermal expansion

coefficient �= �V/�T 	P /V .

Check that your results for parts (b) and (c) are consistent with the thermo-

dynamic identity CP−CV = TV�2/�T �
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Problems 71

(d) Sketch the behavior of the latent heat per particle L on the coexistence curve for

T < Tc, and find its singularity as a function of t.

2. The Ising model: The differential recursion relations for temperature T , and magnetic

field h, of the Ising model in d = 1+ � dimensions are (for b= e�)
⎧
⎪⎨

⎪⎩

dT
d�
=−�T + 1

2T
2

dh
d�
= dh�

(a) Sketch the renormalization group flows in the �T�h	 plane (for � > 0), marking

the fixed points along the h= 0 axis.

(b) Calculate the eigenvalues yt and yh, at the critical fixed point, to order of �.

(c) Starting from the relation governing the change of the correlation length � under

renormalization, show that ��t�h	 = t−�g�
(
h/	t	&) (where t = T/Tc− 1), and

find the exponents � and &.

(d) Use a hyperscaling relation to find the singular part of the free energy fsing�t� h	,

and hence the heat capacity exponent �.

(e) Find the exponents 
 and � for the singular behaviors of the magnetization and

susceptibility, respectively.

(f) Starting with the relation between susceptibility and correlations of local mag-

netizations, calculate the exponent $ for the critical correlations (
m�0	m�x	� ∼
	x	−�d−2+$	).

(g) How does the correlation length diverge as T → 0 (along h= 0) for d = 1?

3. The nonlinear � model describes n component unit spins. As we shall demonstrate

later, in d = 2 dimensions, the recursion relations for temperature T , and magnetic

field h, are (for b= e�)
⎧
⎪⎪⎨

⎪⎪⎩

dT
d�
= �n−2	

2� T 2

dh
d�
= 2h�

(a) How does the correlation length diverge as T → 0?

(b) Write down the singular form of the free energy as T�h→ 0.

(c) How does the susceptibility � diverge as T → 0 for h= 0?

4. Coupled scalars: Consider the Hamiltonian


� =
∫

ddx
[
t

2
m2+ K

2
��m	2−hm+ L

2
��2#	2+v�m��#

]
�

coupling two one-component fields m and #.

(a) Write 
� in terms of the Fourier transforms m�q	 and #�q	.
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72 The scaling hypothesis

(b) Construct a renormalization group transformation as in the text, by rescaling

distances such that q′ = bq; and the fields such that m′�q′	 = m̃�q	/z and

#′�q′	 = #̃�q	/y. Do not evaluate the integrals that just contribute a constant

additive term.

(c) There is a fixed point such that K′ = K and L′ = L. Find yt, yh and yv at this

fixed point.

(d) The singular part of the free energy has a scaling from f�t�h� v	 =
t2−�g�h/t&� v/t�	 for t� h� v close to zero. Find ��&, and �.

(e) There is another fixed point such that t′ = t and L′ = L. What are the relevant

operators at this fixed point, and how do they scale?
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