Topological Order and Quantum Computation Toric code

Michele Burrello

February 12, 2014
(1) Toric (surface) codes and Abelian anyons
(2) Non-Abelian anyons
(3) Majorana modes in topological superconductors

Topological Order and Quantum Computation

About the spectrum

The first necessary ingredient of quantum computation is the possibility to store, as reliably as we can, quantum information. We need a protected "portion" of Hilbert space.

- Noise, Temperature, ... < Gap.
- $H_{\text {eff }} \approx 0$ describes the time evolution of the ground states.
- This degeneracy may be provided by symmetry... or topology.

Topological Order (in 2D)

A two-dimensional physical system is topologically ordered iff:
(0) It has (almost) degenerate ground states $\left\{\psi_{\alpha}\right\}$, separated by a gap from the excited states.

A two-dimensional physical system is topologically ordered iff:
(0) It has (almost) degenerate ground states $\left\{\psi_{\alpha}\right\}$, separated by a gap from the excited states.
(1) The degeneracy of the $\left\{\psi_{\alpha}\right\}$ depends only on the topology of the manifold in which the physical system is embedded.

A two-dimensional physical system is topologically ordered iff:
(0) It has (almost) degenerate ground states $\left\{\psi_{\alpha}\right\}$, separated by a gap from the excited states.
(1) The degeneracy of the $\left\{\psi_{\alpha}\right\}$ depends only on the topology of the manifold in which the physical system is embedded.
(2) No local operator can distinguish between two different ψ_{α} or cause transitions between them:

$$
\left\langle\psi_{\alpha}\right| O_{\text {loc }}\left|\psi_{\beta}\right\rangle=C \delta_{\alpha, \beta}
$$

Topological Order (in 2D)

A two-dimensional physical system is topologically ordered iff:
(0) It has (almost) degenerate ground states $\left\{\psi_{\alpha}\right\}$, separated by a gap from the excited states.
(1) The degeneracy of the $\left\{\psi_{\alpha}\right\}$ depends only on the topology of the manifold in which the physical system is embedded.
(2) No local operator can distinguish between two different ψ_{α} or cause transitions between them:

$$
\left\langle\psi_{\alpha}\right| O_{\text {loc }}\left|\psi_{\beta}\right\rangle=C \delta_{\alpha, \beta}
$$

The previous conditions are necessary for:
(3) Anyons appear among the excitations.

The main toy-model for topological order is the toric code.
There are two possible approaches to toric (surface) codes:
(1) - Is it possible to build a self-correcting quantum memory?

- Toric code as a physical system (Hamiltonian approach)

The main toy-model for topological order is the toric code.
There are two possible approaches to toric (surface) codes:
(1) - Is it possible to build a self-correcting quantum memory?

- Toric code as a physical system (Hamiltonian approach)
(2) - Can we build efficient quantum correction protocols based on local operators?
- Surface codes as error correction schemes.

Toric Code

Spin $1 / 2$ model on the square lattice (periodic boundary conditions).
Hamiltonian:

$$
H=-\sum_{v} A_{v}-\sum_{p} B_{p}
$$

The Hamiltonian is the sum of two kind of terms (stabilizers):

$$
A_{v}=\prod_{i \in v} \sigma_{x, i}, \quad B_{p}=\prod_{i \in p} \sigma_{z, i}
$$

All these terms commute:

$$
\left[A_{i}, A_{j}\right]=\left[B_{i}, B_{j}\right]=\left[A_{i}, B_{j}\right]=0
$$

Spins sit on the edges:

Toric Code

Spin $1 / 2$ model on the square lattice (periodic boundary conditions).
Hamiltonian:

$$
H=-\sum_{v} A_{v}-\sum_{p} B_{p}
$$

The Hamiltonian is the sum of two kind of terms (stabilizers):

$$
A_{v}=\prod_{i \in v} \sigma_{x, i}, \quad B_{p}=\prod_{i \in p} \sigma_{z, i}
$$

All these terms commute:

$$
\left[A_{i}, A_{j}\right]=\left[B_{i}, B_{j}\right]=\left[A_{i}, B_{j}\right]=0
$$

Spins sit on the edges:

$$
H=-\sum A_{v}-\sum B_{p}
$$

Since all the stabilizers A and B commute, a GS is identified by:

$$
A_{v}=\prod \sigma_{x, i}=1, \quad B_{p}=\prod \sigma_{z, i}=1
$$

$$
H=-\sum A_{v}-\sum B_{p}
$$

Since all the stabilizers A and B commute, a GS is identified by:

$$
A_{v}=\prod \sigma_{x, i}=1, \quad B_{p}=\prod \sigma_{z, i}=1
$$

- Number of physical spins:

$$
N=2 L^{2}
$$

- Number of stabilizers:
$N_{A}=L^{2}, N_{B}=L^{2}$
- 2 constraints:

$$
\prod A_{v}=1, \quad \prod B_{p}=1
$$

- Number of ground states:

$$
2^{N-\left(N_{A}+N_{B}-2\right)}=4
$$

Excitations

Errors

$$
H=-\sum_{v} A_{v}-\sum_{p} B_{p} ; \quad A_{v}=\prod_{i \in v} \sigma_{x, i}, \quad B_{p}=\prod_{i \in p} \sigma_{z, i} .
$$

If $A_{v}=-1$ or $B_{p}=-1$, a localized excitation appears with energy 2 .

- $A=-1$: electric charge e.
- $B=-1$: magnetic vortex m.

Local operators σ_{z} or σ_{x} create pairs of excitations:

String operators

String operators $\prod_{i} \sigma_{z, i}$ and $\prod_{i} \sigma_{x, i}$ create and move excitations:

- A string of σ_{z} creates and moves a pair of electric defects.

String operators

String operators $\prod_{i} \sigma_{z, i}$ and $\prod_{i} \sigma_{x, i}$ create and move excitations:

- A string of σ_{z} creates and moves a pair of electric defects.

String operators

String operators $\prod_{i} \sigma_{z, i}$ and $\prod_{i} \sigma_{x, i}$ create and move excitations:

- A string of σ_{z} creates and moves a pair of electric defects.

String operators

String operators $\prod_{i} \sigma_{z, i}$ and $\prod_{i} \sigma_{x, i}$ create and move excitations:

- A string of σ_{z} creates and moves a pair of electric defects.

String operators

String operators $\prod_{i} \sigma_{z, i}$ and $\prod_{i} \sigma_{x, i}$ create and move excitations:

- A string of σ_{z} creates and moves a pair of electric defects.

String operators

String operators $\prod_{i} \sigma_{z, i}$ and $\prod_{i} \sigma_{x, i}$ create and move excitations:

- A string of σ_{z} creates and moves a pair of electric defects.

String operators

String operators $\prod_{i} \sigma_{z, i}$ and $\prod_{i} \sigma_{x, i}$ create and move excitations:

- A string of σ_{z} creates and moves a pair of electric defects.

String operators $\prod_{i} \sigma_{z, i}$ and $\prod_{i} \sigma_{x, i}$ create and move excitations:

	Z	Z		
	$\begin{array}{lll} \mathrm{Z} & & \\ & \mathrm{Z} \\ \hline \end{array}$	z		
		$\begin{array}{\|lll\|} \mathrm{Z} & & \mathrm{Z} \\ & \mathrm{Z} & \\ \hline \end{array}$		

- A string of σ_{z} creates and moves a pair of electric defects.
- A closed string commutes with the Hamiltonian: it creates, moves and annihilates the electric defects.

String operators

String operators $\prod_{i} \sigma_{z, i}$ and $\prod_{i} \sigma_{x, i}$ create and move excitations:

		m	m	

- A string of σ_{x} on the dual lattice creates and moves a pair of magnetic vortices.
- Also in this case closed strings commute with the Hamiltonian.

String operators

String operators $\prod_{i} \sigma_{z, i}$ and $\prod_{i} \sigma_{x, i}$ create and move excitations:

- A string of σ_{x} on the dual lattice creates and moves a pair of magnetic vortices.
- Also in this case closed strings commute with the Hamiltonian.

String operators

String operators $\prod_{i} \sigma_{z, i}$ and $\prod_{i} \sigma_{x, i}$ create and move excitations:

- A string of σ_{x} on the dual lattice creates and moves a pair of magnetic vortices.
- Also in this case closed strings commute with the Hamiltonian.

String operators

String operators $\prod_{i} \sigma_{z, i}$ and $\prod_{i} \sigma_{x, i}$ create and move excitations:

- A string of σ_{x} on the dual lattice creates and moves a pair of magnetic vortices.
- Also in this case closed strings commute with the Hamiltonian.

String operators

String operators $\prod_{i} \sigma_{z, i}$ and $\prod_{i} \sigma_{x, i}$ create and move excitations:

- A string of σ_{x} on the dual lattice creates and moves a pair of magnetic vortices.
- Also in this case closed strings commute with the Hamiltonian.
- All the closed strings of σ_{z} operators on the lattice are symmetries.
- All the closed strings of σ_{x} operators on the dual lattice are symmetries.
- They correspond to create a pair of excitations, move them, and annihilate them, leaving the energy invariant.

There are two kinds of these symmetries:

Trivial symmetry (stabilizers): it
(1) is the product of stabilizers A or B, thus it is the identity over the ground states.

(2) Non-trivial symmetry (not a product of stabilizers). It is a string with non-trivial homology and its value is not fixed.

Non-trivial String Symmetries

Non-trivial string symmetries correspond to non-contractible loops on the torus either of the X or of the Z kind:

The contractible string symmetries instead can always be reduced to the product of local stabilizers.

Non-trivial String Symmetries

Logical operators

There are four independent symmetries and they correspond to the following non-contractible loop operators:

- The 4 string-symmetries with non-trivial homology do not commute with each other.

There are four independent symmetries and they correspond to the following non-contractible loop operators:

- The 4 string-symmetries with non-trivial homology do not commute with each other.
- There are 4 degenerate ground states which encodes 2 logical qubits.

There are four independent symmetries and they correspond to the following non-contractible loop operators:

- The 4 string-symmetries with non-trivial homology do not commute with each other.
- There are 4 degenerate ground states which encodes 2 logical qubits.
- These string-operators commute with the stabilizers but are not stabilizers.

String operators with the same homology and of the same kind are equivalent through the multiplication by stabilizers:

Z_{2}

Equivalence of strings of the same kind

String operators with the same homology and of the same kind are equivalent through the multiplication by stabilizers:

$$
Z_{2}=B_{1} Z_{2}
$$

Because $B_{p}=1$ on the ground states.

Equivalence of strings of the same kind

String operators with the same homology and of the same kind are equivalent through the multiplication by stabilizers:

$$
Z_{2}=B_{1} Z_{2}
$$

Because $B_{p}=1$ on the ground states.

Equivalence of strings of the same kind

String operators with the same homology and of the same kind are equivalent through the multiplication by stabilizers:

$$
Z_{2}=Z_{2} \prod B_{p}=Z_{2}^{\prime}
$$

Because $B_{p}=1$ on the ground states.

String operators with the same homology and of the same kind are equivalent through the multiplication by stabilizers:

$$
Z_{2}=Z_{2} \prod B_{p}=Z_{2}^{\prime}
$$

Because $B_{p}=1$ on the ground states.

Localized excitations: anyons

- e-excitations are created and moved by z-strings.
- Since all the z-strings commute with each other, e - excitations obey a bosonic statistics.
- The same is true for m - excitations which are driven by x-strings.
- e-excitations are created and moved by z-strings.
- Since all the z-strings commute with each other, e - excitations obey a bosonic statistics.
- The same is true for m - excitations which are driven by x-strings.
- When a charge e is moved around a vortex m, however, a non-trivial phase appears.

String operators

Moving m around e, the wavefunction acquires a phase -1 .

String operators

Moving m around e, the wavefunction acquires a phase -1 .

String operators

Moving m around e, the wavefunction acquires a phase -1 .

String operators

Moving m around e, the wavefunction acquires a phase -1 .

String operators

Moving m around e, the wavefunction acquires a phase -1 .

Anyonic Excitations

- The mutual statistics of e and m is neither bosonic nor fermionic: they are a first trivial example of Abelian anyons.

Anyonic Excitations

- The mutual statistics of e and m is neither bosonic nor fermionic: they are a first trivial example of Abelian anyons.
- Abelian Anyons are localized excitations, living in 2D systems, whose statistics is neither bosonic nor fermionic.
- Their exchange is defined by a non-trivial phase different from ± 1.
- The mutual statistics of e and m is neither bosonic nor fermionic: they are a first trivial example of Abelian anyons.
- Abelian Anyons are localized excitations, living in 2D systems, whose statistics is neither bosonic nor fermionic.
- Their exchange is defined by a non-trivial phase different from ± 1.
- In particular if we consider the wavefunction $\Psi\left(r_{e}, r_{m}\right)$ with a pair of e and m excitations, by winding e around m we obtain:

$$
\Psi\left(r_{e}, r_{m}\right) \rightarrow R_{e m}^{2} \Psi\left(r_{e}, r_{m}\right)=-\Psi\left(r_{e}, r_{m}\right)
$$

- The process is topologically equivalent to two counterclockwise exchanges of the positions r_{e} and r_{m}.
- Moving a particle around another is topologically equivalent to two exchanges of their position.
- These exchanges are also called braidings.
- The mutual statistics of e and m is described by a phase:

$$
R_{e m}=e^{i \frac{\pi}{2}}
$$

- In particular we demonstrated $R_{e m}^{2}=-1$.

Braiding and degeneracy of the ground states

- The braiding statistics and the degeneracy of the ground states are related.
- In particular the logical operator X_{1} corresponds to wind a pair of m along one of the loops of the torus and annihilate them.
- Z_{1} instead winds a pair of e in the other direction.

Braiding and degeneracy of the ground states

- The braiding statistics and the degeneracy of the ground states are related.
- In particular the logical operator X_{1} corresponds to wind a pair of m along one of the loops of the torus and annihilate them.
- Z_{1} instead winds a pair of e in the other direction.

$$
X_{1} Z_{1} X_{1}^{-1} Z_{1}^{-1}=
$$

$=-1$

Toric code and topological order

(0) The toric code has 4 degenerate GS protected by a gap;
(1) Their degeneracy depends on non-contractible string operators: it has a topological nature;
(2) - No local operator allows transition among the GS.

- The local operators are either stabilizers (=1) or create pairs of excitations.
(3) The excitations are (mutually) anyons.

The torus is an unphysical system. Let us change BC:

There are two possible boundary conditions defined by two different 3-qubit stabilizer code elements, A^{\prime} and B^{\prime}

The degeneracy now is different due to the different geometry and the absence of constraints.

- The boundary terms imply that now we have only two non-commuting string-simmetry operators which commute with the Hamiltonian.
- Thus a rectangular system of this kind has a twofold degeneracy.
- We store one qubit.

To store more than one qubit we may consider a "hole geometry":

Some of the stabilizers are excluded from the Hamiltonian.
Due to the two possible boundaries there are two different kinds of holes which can host a magnetic or an electric degree of freedom.

Holes in the surface code

- Two states are distinguished by the presence of a magnetic flux in the hole.
- A loop of Z detects the state of the system. A cut of X changes the state.
- The degeneracy of the ground state doubles for each hole and is proportional to 2^{g}.
- The formation of anyonic excitations is suppressed by the gap when we consider a temperature lower than the gap.
- However, once a pair of anyons is created, they can freely propagate without paying any kinetic or confinement energy.
- This implies that, even though excitations are suppressed, a finite number of them is enough to destroy the information stored in the GS.
- The formation of anyonic excitations is suppressed by the gap when we consider a temperature lower than the gap.
- However, once a pair of anyons is created, they can freely propagate without paying any kinetic or confinement energy.
- This implies that, even though excitations are suppressed, a finite number of them is enough to destroy the information stored in the GS.
- More rigorously the partition function of the toric code undergoes a dimensional riduction: it can be written as the product of two independent classical 1D Ising chains. The classical Ising chain has no spontaneous symmetry breaking for $T>0$, the only phase transition is at $T=0$. This implies that, for every $T>0$, the expectation values of the logical operators X_{i}, Z_{i} vanish.
- At thermic equilibrium for $T>0$ there is no topological protection.
- The formation of anyonic excitations is suppressed by the gap when we consider a temperature lower than the gap.
- However, once a pair of anyons is created, they can freely propagate without paying any kinetic or confinement energy.
- This implies that, even though excitations are suppressed, a finite number of them is enough to destroy the information stored in the GS.
- More rigorously the partition function of the toric code undergoes a dimensional riduction: it can be written as the product of two independent classical 1D Ising chains. The classical Ising chain has no spontaneous symmetry breaking for $T>0$, the only phase transition is at $T=0$. This implies that, for every $T>0$, the expectation values of the logical operators X_{i}, Z_{i} vanish.
- At thermic equilibrium for $T>0$ there is no topological protection.
- One possible way around it could be disorder to localize the excitations.
- To overcome thermal fragility we adopt a different strategy: active error correction.
- The stabilizers are essentially local projectors:

$$
\frac{1+A_{v}}{2}, \quad \frac{1+B_{p}}{2} ;
$$

- The set of all the stabilizers project on the ground states of the Hamiltonian, which correspond to the subspace of protected states.
- A failure in one projector implies the presence of excitations, therefore errors.
- Error correction, in this case, can be seen as an artificial dynamics: in each time step we measure all the local stabilizers to detect whether an error occured.

$$
A_{v}=\prod \sigma_{x, i}=1, \quad B_{p}=\prod \sigma_{z, i}=1 .
$$

- Vertex and plaquette operators can be considered as commuting 4-qubit measurements.
- Since all the stabilizers commute with the ground-logical states, they give no information about the logical qubits.

$$
A_{v}=\prod \sigma_{x, i}=1, \quad B_{p}=\prod \sigma_{z, i}=1 .
$$

- Vertex and plaquette operators can be considered as commuting 4-qubit measurements.
- Since all the stabilizers commute with the ground-logical states, they give no information about the logical qubits.
- To do error correction we discretize time and, at each time step, measure (syndrome measurements) alternatively all the A s and all the B s.
- If a measurement results in -1 , we detect and localize an error (excitation of the toric code): we know that a noise operator acted on one qubit.
- By applying a suitable string operator we can correct the error (or we can simply keep track of them).

Error Correction

To perform the measurements, one strategy is to double the number of qubits. We distinguish physical qubits and ancillary qubits.

Physical qubits are the ones of the previous Hamiltonian.

We add one ancilla for each plaquette and vertex to perform the syndrome measures.

The stabilizer operators can be actively implemented through the following circuits involving CNOTs, single-qubit operators and measurements.

Single Defect Qubit

By excluding some of the syndrome measures we can store information in the holes (either magnetic or electric).

- Let us consider two magnetic holes which may be empty $|0\rangle$ or host a vortex |1〉.
- It is convenient to define the following logical states in a space with no overall vortices:

$$
|0\rangle_{L}=|0\rangle_{1}|0\rangle_{2}, \quad|1\rangle_{L}=|1\rangle_{1}|1\rangle_{2}
$$

- The operators X_{L} and Z_{L} are single-qubit logical operators.
- Exploiting both magnetic and electric pairs of holes (and the anyonic statistics!) one can engineer two-qubit gates.

Very rough estimate of logical errors

A logical error occurs when if there appear a chain of errors in the logical qubit whose length is greater than $L / 2$:

- E_{1} can be efficiently corrected;
- E_{2} cannot be corrected since $l>L / 2$;

Estimate of the probability of logical errors:

$$
P_{L} \approx \sum_{l>L / 2} L \frac{L!}{(L-l)!l!} p_{e}^{l} \approx \sqrt{\frac{2 L}{\pi}}\left(4 p_{e}\right)^{L / 2}
$$

where the total number of qubits scales as $2 L^{2}$.
Error treshold with perfect ancillas $\sim 15 \%$.
Real error treshold ~ 0.008.

- 4 simultaneous single-qubit measurements with fidelity of 99% in less than 200ns.
- Coherence time $>10 \mu \mathrm{~s}$ (they claim that $100 \mu \mathrm{~s}$ is reachable).

Transmon: 2-qubit gates

DiCarlo et al., Nature 460 (2009)

A Control Phase gate is obtained with fidelity $\gtrsim 0.90$.
The system can be modelled through a double Jaynes-Cummings:

$$
H=\omega_{r} a^{\dagger} a+\frac{\Omega_{L}}{2} \sigma_{z, L}+\frac{\Omega_{R}}{2} \sigma_{z, R}+\sum_{k=L, R} g\left(a^{\dagger} \sigma_{i}^{-}+a \sigma_{i}^{+}\right)
$$

A 3-qubit Toffoli CCNOT gate is obtained with fidelity ~ 0.80. The architecture could be used for 4-qubit gates.

- General review about Kitaev's model (Toric code, Majorana chain):
A. Kitaev and C. Laumann, Topological phases and quantum computation, arXiv:0904.2771 (2008 Les Houches summer school).
- Original paper on the toric code:
A. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303 (2003), arXiv:quant-ph/9707021.
- Original work on the surface code:
S. Bravyi and A. Kitaev, Quantum codes on a lattice with boundary, arXiv:quant-ph/9811052 (1998).
- Reviews about surface codes:
A. G. Fowler et al., Surface codes: Towards practical large-scale quantum computation, Phys. Rev. A 86, 032324 (2012), arXiv:1208.0928.
D. DiVincenzo, Fault tolerant architectures for superconducting qubits, arXiv:0905.4839 (2009).

Surface codes in Josephson junction arrays

L. B. loffe and M. V. Feigel'man, PRB 66 (2002).

The elementary qubit is obtained from a flux qubit with 4 Josephson junctions E_{J} :

$$
U=-2 E_{J}\left(\left|\cos \frac{\varphi_{A B}}{2}\right|+\left|\sin \frac{\varphi_{A B}}{2}\right|\right)
$$

- Two (semiclassical) degenerate ground states:

$$
|\uparrow\rangle: \varphi_{A B}=\frac{\pi}{2} ; \quad|\downarrow\rangle: \varphi_{A B}=-\frac{\pi}{2} .
$$

- In the regime $E_{J} \gg E_{C}$ the amplitude of the spin flip σ_{x} is:

$$
r \approx E_{J}^{3 / 4} E_{C}^{1 / 4} e^{-1.61 \sqrt{E J / E C}}
$$

Surface code in Josephson junction arrays

Plaquette constraint for $\Phi=\Phi_{0} / 2$:

$$
\begin{gathered}
\sum_{\langle i j\rangle} \varphi_{i j}=\pi \\
B_{p}=\prod_{\langle i j\rangle} \sigma_{z}^{i j}=1
\end{gathered}
$$

