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Topological Order and Quantum Computation
Overview of the lectures

1 Toric (surface) codes and Abelian anyons
2 Non - Abelian anyons
3 Majorana modes in topological superconductors
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Topological Order and Quantum Computation
About the spectrum

The first necessary ingredient of quantum computation is the
possibility to store, as reliably as we can, quantum information.
We need a protected “portion” of Hilbert space.

E

0 1 Computational (protected) states:
Degenerate ground states

Non - Computational (error) states:
Excited states

Gap

Noise, Temperature, ... < Gap.
Heff ≈ 0 describes the time evolution of the ground states.
This degeneracy may be provided by symmetry... or topology.
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Topological Order (in 2D)
Definition

A two-dimensional physical system is topologically ordered iff:
0 It has (almost) degenerate ground states {ψα}, separated by a

gap from the excited states.

1 The degeneracy of the {ψα} depends only on the topology of the
manifold in which the physical system is embedded.

2 No local operator can distinguish between two different ψα or
cause transitions between them:

〈ψα|Oloc|ψβ〉 = Cδα,β

The previous conditions are necessary for:
3 Anyons appear among the excitations.
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Toric (surface) code

The main toy-model for topological order is the toric code.

There are two possible approaches to toric (surface) codes:
1 Is it possible to build a self-correcting quantum memory?

Toric code as a physical system (Hamiltonian approach)

2 Can we build efficient quantum correction protocols based on local
operators?
Surface codes as error correction schemes.
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Toric Code
A. Kitaev, Ann. Phys. 303 (2003)

Spin 1/2 model on the square lattice (periodic boundary conditions).

Hamiltonian:

H = −
∑
v

Av −
∑
p

Bp

The Hamiltonian is the sum of two
kind of terms (stabilizers):

Av =
∏
i∈v

σx,i , Bp =
∏
i∈p

σz,i

All these terms commute:

[Ai, Aj ] = [Bi, Bj ] = [Ai, Bj ] = 0

Spins sit on the edges:

A x

x

x
x

B
z

z
z

z
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Toric code
Ground states with periodic boundary conditions

H = −
∑

Av −
∑

Bp

Since all the stabilizers A and B commute, a GS is identified by:

Av =
∏

σx,i = 1 , Bp =
∏

σz,i = 1.

Number of physical spins:
N = 2L2

Number of stabilizers:
NA = L2, NB = L2

2 constraints:∏
Av = 1 ,

∏
Bp = 1.

Number of ground states:

2N−(NA+NB−2) = 4.

A x

x

x
x

B
zz z

zL = 4
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Excitations
Errors

H = −
∑
v

Av −
∑
p

Bp ; Av =
∏
i∈v

σx,i , Bp =
∏
i∈p

σz,i.

IfAv = −1 or Bp = −1, a localized excitation appears with energy 2.
A = −1: electric charge e.
B = −1: magnetic vortex m.

Local operators σz or σx create pairs of excitations:

ze e
m

x

m
A

B
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String operators

String operators
∏
i σz,i and

∏
i σx,i create and move excitations:

ze e

A string of σz creates
and moves a pair of
electric defects.

A closed string
commutes with the
Hamiltonian: it creates,
moves and annihilates
the electric defects.
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String operators

String operators
∏
i σz,i and

∏
i σx,i create and move excitations:
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z

z
z

z

z
z
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String operators

String operators
∏
i σz,i and

∏
i σx,i create and move excitations:

m x m

A string of σx on the
dual lattice creates and
moves a pair of
magnetic vortices.
Also in this case closed
strings commute with
the Hamiltonian.
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Symmetries

All the closed strings of σz operators on the lattice are
symmetries.
All the closed strings of σx operators on the dual lattice are
symmetries.
They correspond to create a pair of excitations, move them, and
annihilate them, leaving the energy invariant.

There are two kinds of these symmetries:

1

Trivial symmetry (stabilizers): it
is the product of stabilizers A or B,
thus it is the identity over the
ground states.

z z

z

z
z

z

z
z B B

B

2 Non-trivial symmetry (not a product of stabilizers). It is a string
with non-trivial homology and its value is not fixed.
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Non-trivial String Symmetries

Non-trivial string symmetries correspond to non-contractible loops
on the torus either of the X or of the Z kind:

The contractible string symmetries instead can always be reduced
to the product of local stabilizers.
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Non-trivial String Symmetries
Logical operators

There are four independent symmetries and they correspond to the
following non-contractible loop operators:

X

X

Z

Z1

1

2

2

The 4 string-symmetries with
non-trivial homology do not
commute with each other.

There are 4 degenerate ground
states which encodes 2 logical
qubits.
These string-operators commute
with the stabilizers but are not
stabilizers.
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Non-trivial String Symmetries
Equivalence of strings of the same kind

String operators with the same homology and of the same kind are
equivalent through the multiplication by stabilizers:

Z2

z

z

z

z

Z2
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Z2

z

z

z

z

B1

z
z z

z

Z2 = B1Z2

Because Bp = 1 on the ground states.
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Z2

z

z

z

z
z

z

B3

z
z z

z

B4

z
z z

z

B2

z
z z

z

Z2 = Z2

∏
Bp = Z ′2
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Non-trivial String Symmetries
Equivalence of strings of the same kind

String operators with the same homology and of the same kind are
equivalent through the multiplication by stabilizers:
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z

z

z

z

Z2 = Z2

∏
Bp = Z ′2

Because Bp = 1 on the ground states.
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Localized excitations: anyons

e - excitations are created and moved by z-strings.
Since all the z-strings commute with each other, e - excitations
obey a bosonic statistics.
The same is true for m - excitations which are driven by x-strings.

When a charge e is moved around a vortex m, however, a
non-trivial phase appears.
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Braiding
String operators

ze ez

m x m

Moving m around e, the wavefunction acquires a phase −1.
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Braiding
String operators

ze e

m x x x x

x

x

x

m

xx

x

x

z
x

Moving m around e, the wavefunction acquires a phase −1.
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Anyonic Excitations

The mutual statistics of e and m is neither bosonic nor fermionic:
they are a first trivial example of Abelian anyons.

Abelian Anyons are localized excitations, living in 2D systems,
whose statistics is neither bosonic nor fermionic.
Their exchange is defined by a non-trivial phase different from
±1.
In particular if we consider the wavefunction Ψ(re, rm) with a pair
of e and m excitations, by winding e around m we obtain:

Ψ(re, rm)→ R2
emΨ(re, rm) = −Ψ(re, rm)

The process is topologically equivalent to two counterclockwise
exchanges of the positions re and rm.
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Braiding
Anyonic statistics

Moving a particle around another is topologically equivalent to
two exchanges of their position.
These exchanges are also called braidings.
The mutual statistics of e and m is described by a phase:

Rem = ei
π
2

e m

Top view

e m

t
World lines

In particular we demonstrated R2
em = −1.
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Braiding and degeneracy of the ground states

The braiding statistics and the degeneracy of the ground states
are related.
In particular the logical operator X1 corresponds to wind a pair of
m along one of the loops of the torus and annihilate them.
Z1 instead winds a pair of e in the other direction.
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Braiding and degeneracy of the ground states

The braiding statistics and the degeneracy of the ground states
are related.
In particular the logical operator X1 corresponds to wind a pair of
m along one of the loops of the torus and annihilate them.
Z1 instead winds a pair of e in the other direction.

X1Z1X
−1
1 Z−1

1 =

x

y

t

X1

X1

Z1

Z1

=

tRem
2

= −1
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Toric code and topological order
A summary so far

E

GS

Pairs of
excitations

Gap

0 The toric code has 4 degenerate GS
protected by a gap;

1 Their degeneracy depends on
non-contractible string operators: it has
a topological nature;

2 No local operator allows transition
among the GS.
The local operators are either stabilizers
(= 1) or create pairs of excitations.

3 The excitations are (mutually) anyons.
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Surface Code
S. Bravyi and A. Kitaev, arXiv:quant-ph/9811052

The torus is an unphysical system. Let us change BC:

A x

x

x
x

B
z

z
z

z

x

x

x

A'

B'
z

z

z

There are two possible
boundary conditions defined
by two different 3-qubit stabilizer
code elements, A′ and B′

The degeneracy now is different due to the different geometry and the
absence of constraints.
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Surface Code
S. Bravyi and A. Kitaev, arXiv:quant-ph/9811052

z

z

z

z

e'

e'

x x x x x xm mXL

ZL

The boundary terms imply
that now we have only two
non-commuting
string-simmetry operators
which commute with the
Hamiltonian.
Thus a rectangular system
of this kind has a twofold
degeneracy.
We store one qubit.
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Holes in the surface code

To store more than one qubit we may consider a “hole geometry”:

A

A

b

H

BH

Ab

Ab

Ab AH AHA

AH AH

BHBb

Bb

Bb

Bb

Some of the stabilizers are excluded from the Hamiltonian.
Due to the two possible boundaries there are two different kinds of
holes which can host a magnetic or an electric degree of freedom.
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Holes in the surface code
Logical operators

m

XL

ZL

Two states are distinguished by the presence of a magnetic flux
in the hole.
A loop of Z detects the state of the system. A cut of X changes
the state.
The degeneracy of the ground state doubles for each hole and is
proportional to 2g.
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Thermal Fragility
Nussinov and Ortiz, Ann. Phys. 324 (2009)

The formation of anyonic excitations is suppressed by the gap
when we consider a temperature lower than the gap.
However, once a pair of anyons is created, they can freely
propagate without paying any kinetic or confinement energy.
This implies that, even though excitations are suppressed, a
finite number of them is enough to destroy the information stored
in the GS.

More rigorously the partition function of the toric code undergoes
a dimensional riduction: it can be written as the product of two
independent classical 1D Ising chains. The classical Ising chain
has no spontaneous symmetry breaking for T > 0, the only
phase transition is at T = 0. This implies that, for every T > 0,
the expectation values of the logical operators Xi, Zi vanish.
At thermic equilibrium for T > 0 there is no topological protection.
One possible way around it could be disorder to localize the
excitations.
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Error Correction

To overcome thermal fragility we adopt a different strategy:
active error correction.
The stabilizers are essentially local projectors:

1 +Av
2

,
1 +Bp

2
;

The set of all the stabilizers project on the ground states of the
Hamiltonian, which correspond to the subspace of protected
states.
A failure in one projector implies the presence of excitations,
therefore errors.
Error correction, in this case, can be seen as an artificial
dynamics: in each time step we measure all the local stabilizers
to detect whether an error occured.
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Error Correction

Av =
∏

σx,i = 1 , Bp =
∏

σz,i = 1.

Vertex and plaquette operators can be considered as commuting
4-qubit measurements.
Since all the stabilizers commute with the ground-logical states,
they give no information about the logical qubits.

To do error correction we discretize time and, at each time step,
measure (syndrome measurements) alternatively all the As and
all the Bs.
If a measurement results in −1, we detect and localize an error
(excitation of the toric code): we know that a noise operator
acted on one qubit.
By applying a suitable string operator we can correct the error (or
we can simply keep track of them).
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Error Correction

To perform the measurements, one strategy is to double the number
of qubits. We distinguish physical qubits and ancillary qubits.

Physical qubits are the
ones of the previous
Hamiltonian.

We add one ancilla for
each plaquette and
vertex to perform the
syndrome measures.
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Syndrome measures
Vertex and plaquette operators

The stabilizer operators can be actively implemented through the
following circuits involving CNOTs, single-qubit operators and
measurements.

M0 HH

M0

ψ ψ

ψ ψ

B=

A=
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Single Defect Qubit

By excluding some of the
syndrome measures we
can store information in
the holes (either
magnetic or electric).
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Double Defect Qubit
See, for example, Fowler et al., Phys. Rev. A 86, 032324 (2012)

Let us consider two magnetic holes
which may be empty |0〉 or host a
vortex |1〉.
It is convenient to define the following
logical states in a space with no
overall vortices:

|0〉L = |0〉1|0〉2 , |1〉L = |1〉1|1〉2

The operators XL and ZL are
single-qubit logical operators.
Exploiting both magnetic and electric
pairs of holes (and the anyonic
statistics!) one can engineer
two-qubit gates.
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Very rough estimate of logical errors

A logical error occurs when if there appear a chain of errors in the
logical qubit whose length is greater than L/2:

x x mE 1

x x mE 2
x x

l

E1 can be efficiently corrected;
E2 cannot be corrected since
l > L/2;

Estimate of the probability of logical errors:

PL ≈
∑
l>L/2

L
L!

(L− l)!l!
ple ≈

√
2L

π
(4pe)

L/2

where the total number of qubits scales as 2L2.
Error treshold with perfect ancillas ∼ 15%.
Real error treshold ∼ 0.008.
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What about experiments?
Martinis et al., arXiv:1401.0257v3

4 simultaneous single-qubit measurements with fidelity of 99% in
less than 200ns.
Coherence time > 10µs (they claim that 100µs is reachable).
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Transmon: 2-qubit gates
DiCarlo et al., Nature 460 (2009)

A Control Phase gate is obtained with fidelity & 0.90.
The system can be modelled through a double Jaynes-Cummings:

H = ωra
†a+

ΩL
2
σz,L +

ΩR
2
σz,R +

∑
k=L,R

g
(
a†σ−i + aσ+

i

)
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Transmon: 3-qubit gates
Reed et al., Nature 482 (2012)

A 3-qubit Toffoli CCNOT gate is obtained with fidelity ∼ 0.80.
The architecture could be used for 4-qubit gates.
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Suggested references

General review about Kitaev’s model (Toric code, Majorana
chain):
A. Kitaev and C. Laumann, Topological phases and quantum
computation, arXiv:0904.2771 (2008 Les Houches summer
school).
Original paper on the toric code:
A. Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. 303 (2003), arXiv:quant-ph/9707021.
Original work on the surface code:
S. Bravyi and A. Kitaev, Quantum codes on a lattice with
boundary, arXiv:quant-ph/9811052 (1998).
Reviews about surface codes:
A. G. Fowler et al., Surface codes: Towards practical large-scale
quantum computation, Phys. Rev. A 86, 032324 (2012),
arXiv:1208.0928.
D. DiVincenzo, Fault tolerant architectures for superconducting
qubits, arXiv:0905.4839 (2009).
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Surface codes in Josephson junction arrays
L. B. Ioffe and M. V. Feigel’man, PRB 66 (2002).

The elementary qubit is obtained from a flux qubit with 4 Josephson
junctions EJ :

������o

����

A B

����

��������

U = −2EJ

(∣∣∣cos
ϕAB

2

∣∣∣+
∣∣∣sin ϕAB

2

∣∣∣)

Two (semiclassical) degenerate ground states:

|↑〉 : ϕAB =
π

2
; |↓〉 : ϕAB = −π

2
.

In the regime EJ � EC the amplitude of the spin flip σx is:

r ≈ E3/4
J E

1/4
C e−1.61

√
EJ/EC
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Surface code in Josephson junction arrays

������o

Plaquette constraint for Φ = Φ0/2:∑
〈ij〉

ϕij = π

Bp =
∏
〈ij〉

σijz = 1
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