3
The renormalization group idea

In this chapter the basic concepts of the modern approach to equi-
librium critical behaviour, conventionally grouped under the ti-
tle ‘renormalization group’, are introduced. This terminology is
rather unfortunate. The mathematical structure of the procedure,
in the sense that it may be said to have any rigorous underpin-
nings, is certainly not that of a group. Neither is renormalization
in quantum field theory an essential element, although it has an
intimate connection with some formulations of the renormaliza-
tion group. In fact, the renormalization group framework may be
applied to problems quite unrelated to field theory. The origins
of the name may be traced to the particle physics of the 1960s,
when it was optimistically hoped that everything in fundamen-
tal physics might be explained in terms of symmetries and group
theory, rather than dynamics. One of the earliest applications of
renormalization group ideas, in fact, was to the rather esoteric
subject of the high energy behaviour of renormalized quantum
electrodynamics. It took the vision of K. Wilson to realise that
these methods had a far wider field of application in the scaling
theory of critical phenomena that was being formulated by Fisher,
Kadanoff and others in the latter part of the decade. By then,
however, the name had become firmly attached to the subject.
Not only are the words ‘renormalization’ and ‘group’ examples
of unfortunate terminology, the use of the definite article ‘the’
which usually precedes them is even more confusing. It creates the
misleading impression that the renormalization group is a kind of
universal machine through which any problem may be processed,
producing neat tables of critical exponents at the other end. This
is quite false. It cannot be stressed too strongly that the renor-
malization group is merely a framework, a set of ideas, which has
to be adapted to the nature of the problem at hand. In particular,

28
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The renormalization group idea 29

whether or not a renormalization group approach is quantitatively
successful depends to a large extent on the nature of the problem,
but lack of such success does not necessarily invalidate the quali-
tative picture it provides.

All renormalization group studies have in common the idea of
re-expressing the parameters which define a problem in terms of
some other, perhaps simpler, set, while keeping unchanged those
physical aspects of the problem which are of interest. This may
happen through some kind of coarse-graining of the short-distance
degrees of freedom, as in the problem of critical phenomena, where
the long-distance physics is of interest. It may represent some kind
of modification of the effects of large-scale disturbances, as in fluid
turbulence, where the emphasis is on how such fluctuations are fed
down to smaller distance scales. Or, in time-dependent problems,
such as the dynamics of phase ordering following a quench from
a disordered phase, it may correspond to the temporal evolution
of the parameters specifying the early-time history, in such a way
that the late time properties are left unaltered.

Whatever the motivation, these methods all end up with math-
ematical equations describing renormalization group flows in some
complicated parameter space. It is the study of these flows, and
what they tell us about the physical problem, which is the essence
of renormalization group theory. In the context of equilibrium crit-
ical behaviour, this general aspect of the renormalization group
appears most directly in the method of real space renormalization
as applied to lattice spin systems, and it is with this example of
the renormalization group in action that we shall therefore begin.
It turns out that these real space methods are difficult to control
in a quantitative fashion, as there is really no small parameter in
which to expand. However, this feature does not weaken the re-
markably powerful implications for scaling and universality which
arise as quite general properties, and it is these consequences we
wish to stress. Later, in Chapter 5, we shall describe a slightly dif-
ferent type of renormalization group, in which a small parameter,
related to the number of dimensions of space, does appear, and
which may therefore be used to yield systematically improvable
quantitative results.
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30 The renormalization group idea

() (b)

Figure 3.1. Typical configuration of the Ising model at T' = T, (a),
and (b) the result of a single block spin transformation.

3.1 Block spin transformations

Let us study the accompanying snapshots (Figures 3.1, 3.2) of
typical states of the two-dimensional Ising model in zero mag-
netic field. They were produced by computer simulation. The first
picture was taken close to the critical point, and we see clusters of
down spins (s = —1) of all sizes. This is what makes the analysis
difficult.

Now suppose we put the picture slightly out of focus, so that
we can no longer see very well the microscopic details.} A mathe-
matical way to implement this defocussing, or coarse-graining, is
to make a block spin transformation. For definiteness, group the
squares into 3 X 3 blocks, each containing 9 spins. To each block
assign a new variable s’ = 1 whose value will indicate whether
the spins in the block are predominantly up or down. The simplest

t In a lecture theatre this is rather easy to simulate with an overhead pro-
jector. Hyperopic readers should also have no difficulty in performing the
experiment.
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3.1 Block spin transformations 31

(a) (b)

Figure 3.2. Same as Figure 3.1, slightly above the critical temper-
ature.

method is to take the ‘majority rule’ whereby s’ = +1 if there are
more spins up than down, and vice versa. When this is done, and
the whole picture is rescaled by a linear factor of 3 so that the
blocks are the same size as the original squares, we get the second
picture. (It is the same overall size as the first picture because
not all the system is shown there. In fact Figure 3.1a corresponds
to the top left hand corner of Figure 3.1b.) The first thing to be
noticed is that the second picture looks very much like the first.
In fact, they are statistically the same, in that Figure 3.1b is an
equally probable configuration for the critical Ising model as is
Figure 3.1a. If we continue this blocking procedure, and start ex-
actly at the critical point with a big enough system, all the pictures
look pretty much the same. This observation illustrates the scale
invariance of the critical system. On the other hand, if we start
slightly above the critical temperature (Figure 3.2), although the
original system may look very similar to that in Figure 3.1a, after
a few transformations it soon looks very different.
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32 The renormalization group idea

All this is very qualitative, but it is nevertheless the essential
basis of the renormalization group approach. If we were to start
from a large sample of typical configurations, we could, by av-
eraging over this sample, calculate all the correlation functions
which characterise the system. These are, of course, determined
in principle by the hamiltonian H(s). In the blocked system we
could also measure the correlation functions of the block spins
s'. In their turn, these correlation functions may be thought of
as determined by some new hamiltonian H'(s’). We can always
cook up some arbitrarily complicated H’ which will do this, but
of course there is no reason to assume that it will be given simply
as a sum over nearest neighbour exchange interactions. In general,
it will include interactions between arbitrarily distant block spins
8'. A basic assumption of the renormalization group, however, is
that, no matter how many times the blocking transformation is
iterated, the dominant interactions will be short-ranged. (Later,
in Section 4.3, we shall consider the effect of longer ranged interac-
tions and see how this statement can be made more quantitative.)
Rather than attempting to prove the validity of this central as-
sumption for each system of interest, its correctness is best borne
out by its consequences of scaling and universality, which have
been tested in many real experiments and numerical simulations,
as well as being verified for those models which are exactly solv-
able.

Let us define the block hamiltonian H' more explicitly. The
original system is described by a partition function

Z = Tr,e™PM), (3.1)
In what follows, we shall always absorb the factor of 8 = 1/kpT
into the definitions of the various parameters in 7, such as the
exchange coupling J and the magnetic field H. This defines what
is called the reduced hamiltonian. Qur majority rule may be im-
plemented by inserting a projection operator under the trace, as
follows. Define, for each block,
H /

T I; b :{1, lf32'3i>0; 3.2
S > %) 0 otherv&;ise. (3-2)

The new hamiltonian is then defined by
e M) =Ty, IT T(s';5:) e ™). (3.3)

blocks

Downloaded from https://www.cambridge.org/core. Copenhagen University Library, on 09 Apr 2019 at 09:25:47, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316036440.004


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316036440.004
https://www.cambridge.org/core

3.1 Block spin transformations 33

Note that, in particular, because _,, T'(s';s;) = 1,
Trye~ ™) = Tre= M) (3.4)

that is, the partition functions Z for the original system and the
blocked system are the same. But the above transformation pre-
serves far more than this. Equation 3.3 implies that the whole
proba.bility distribution of quantities which depend only on spins
s, 8", 8", ... at higher levels of blocking will be left invariant.
These mclude all the long wavelength degrees of freedom. Thus the
whole of the large distance physics of the problem is left untouched
by the renormalization group procedure. The only difference is
that it should be expressed in terms of blocked, or renormalized,
spins, rather than the original, or bare, spins.

It is useful to think of the couplings in the reduced hamlltoman
H as forming a vector {K} = (K1, K3,...). In the original model
there might have been only one nearest neighbour coupling, say
K, with all the other K; = 0. But, as discussed above, the renor-
malization group will in principle generate all other possibilities.
We may therefore picture the renormalization group transforma-
tion as acting on the space of all possible couplings {K }:

{K'} = R{K}. (3.5)

In the case of the Ising model, we may divide this very large space
into the subspace of even couplings, which multiply interaction
terms in the hamiltonian which are invariant under s(r) — —s(r),
and the space of odd couplings, such as an external magnetic field.}
If no odd couplings are present in the original model, none should
be generated under renormalization.

All of this is rather general. Unfortunately, the sums involved in
actually carrying out the trace over the s in (3.3) are intractable,
and we must rely on some approximation scheme to proceed fur-
ther with these block spin methods. It is not the purpose of this
book to discuss such schemes, since the approximations involved
are difficult to control. Nevertheless, the qualitative picture of the
renormalization group which we extract from these considerations
applies independently of any approximation. It is useful, all the

1 In the case of a more general symmetry, each subspace corresponds to those
interactions which transform according to an irreducible representation of
the appropriate symmetry.

Downloaded from https://www.cambridge.org/core. Copenhagen University Library, on 09 Apr 2019 at 09:25:47, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316036440.004


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316036440.004
https://www.cambridge.org/core

34 The renormalization group idea

——0—0{0—0—8][0—0—0]{0—0—0|—

Figure 3.3. Blocking transformation for the one-dimensional Ising
model.

sl S2 s3 s4 SS S6

Figure 3.4. Two neighbouring blocks in the one-dimensional Ising
model.

same, to examine at least one case in which they may be carried
through exactly.

3.2 One-dimensional Ising model

In one dimension, the block spin renormalization group described
above may often be carried through explicitly. Consider, for exam-
ple, the simple zero-field Ising spin chain, with a reduced hamil-
tonian H = —K Y _; $;8i41. This model may, of course, be solved
by other means, for example, by using a transfer matrix, or, even
more simply, by defining new variables o; = s;s;+1. However, for
the purposes of illustration, let us consider grouping the sites into
blocks, each containing 3 spins, as shown in Figure 3.3. We could
use the same majority rule as before, but it is analytically even
simpler if we do something rather undemocratic, and count the
vote of only the central spin in each block. This corresponds to
taking T'(s’; s1,52,83) = 85 5,. The reason that this is justified is
that, at very low temperatures, where all the action takes place,
all the spins in a given block tend to vote the same way any-
way. Thus this renormalization group transformation corresponds
simply to performing the trace over the spins at the ends of each
block, and leaving the central ones untouched. Such a procedure is
called decimation. It works very well in one dimension.} Consider
two neighbouring blocks, shown in Figure 3.4. Suppose we sum
over the spins s3 and s4, keeping s} = s; and s}, = ss fixed. The

1 Since in this method the block spins are a subset of the original spins, it
leads to the paradoxical result that the spin correlation function is constant
at the critical point, which is incorrect in higher dimensions.
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3.2 One-dimensional Ising model 35

factors in the partition sum involving these degrees of freedom are

eKs;sa eKss N eK34 sé- (36)

Write eX#3%4 = cosh K (1+xs334), where z = tanh K, and similarly
for the other two factors, giving

(cosh K)3(1 + 25} 53)(1 + z5354)(1 + z5455). (3.7
Now imagine expanding out this expression. When we perform

the sum over s3, 84 = +1, only terms with an even power of these
variables will survive. We are therefore left with only

22(cosh K)3(1 + 235 s}), (3.8)
which, apart from the constant outside, has the form of a nearest
neighbour Boltzmann factor eX'51%2 with

K’ = tanh™! [(ta,nh K)s] . (3.9)

The partition function of the whole system may thus be written
in the required form Z = Trye~"'(#) where

H(s) = Ng(K) - K'Y sishaa, (3.10)
i
where N is the total number of original sites, and
_ 1y, |(cosh KL
g(K)=—5In [ T 5In2. (3.11)

The renormalized hamiltonian, has, in this case, the same form
as the original one, with a renormalized value of the coupling K’,
apart from a term independent of the s}. This additional term
proportional to g(K') does not affect the calculation of any expec-
tation values, but it will enter into a calculation of the total free
energy. It represents the contribution to the free energy from the
short wavelength degrees of freedom which have been traced out.
As we shall see in Sections 3.4 and 3.9, it plays an important role
in the further development of the theory.

The content of the renormalization group transformation is ex-
pressed by the renormalization group equation (3.9). This is much
more easily analysed in terms of the variable ¢ = tanh K, for which
the renormalization group equation is simply 2’ = z3. Recalling
that K contains a factor 1/kgT, we see that high temperatures
correspond to z — 0+, and low temperatures to ¢ — 1—. Now
suppose we iterate the process. Unless we begin with = exactly
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36 The renormalization group idea

® - = > el
K = infinity K=0
T=0 T = infinity

Figure 3.5. RG flow for the one-dimensional Ising model.

equal to 1 (T = 0), it ultimately approaches zero. This means that
the long distance degrees of freedom are described by a hamilto-
nian where the effective temperature is high, and we expect such
a system to be in a paramagnetic state, with a finite correlation
length. Since any system with z < 1 ultimately renormalizes into
this region, we conclude that this whole region is paramagnetic.
Only exactly at zero temperature is this not true. In terms of the
renormalization group equation, we may say that there are two
fized points: the one at T = 0 is unstable, since any perturba-
tion away from this is amplified by the renormalization group;
the fixed point at T = oo (2 = 0) is stable, and is the attractive
fixed point for the whole region 0 < z < 1. Every point in this
region is therefore in the same phase, which is paramagnetic.f The
renormalization group flows go from the unstable fixed point to
the stable one, as shown in Figure 3.5.

This reflects a well-known fact about the one-dimensional sys-
tems with short-range interactions: they cannot be in an ordered
state for T > 0, and therefore can have no true phase transition.
This tendency towards the disappearance of order as the number
of dimensions is lowered is characteristic of all systems. The di-
mension d; such that systems in a given universality class have no
phase transition for d < d; is called the lower critical dimension.
For systems like the Ising model with discrete symmetries, d; = 1.
As we shall see in Section 6.1, for continuous symmetries d; = 2 in
general. This behaviour makes the above example rather uninter-
esting for our purposes, but, on the other hand, the analysis was
rather simple. To illustrate how the renormalization group can be
useful even when there is no true critical behaviour, however, let
us use the above results to compute the correlation length £.

t Notice that we needed to supply additional physical input to describe the
nature of the phase, which is not determined solely by the renormalization
group.
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3.2 One-dimensional Ising model 37

The correlation length has, of course, the dimensions of length,
but to express it as a pure number we may measure it in units of
the lattice spacing a. In these units, it may depend on only the
reduced coupling K. After performing the renormalization group
transformation, the long distance physics is preserved, and so the
dimensionful correlation length must remain the same. However,
the lattice spacing has increased by a factor of b = 3 (in this par-
ticular example). Thus the dimensionless correlation length trans-
forms according to

£(z') = b1¢(2), (3.12)
where ' = z?. This has the solution
__const.  const.
&) = Inz  Intanh K’
which is the exact result for the one-dimensional Ising model. We
see that £ is finite, as expected, but that,as T — 0, £ x ecorst-/T 5o

that it grows very large as the system approaches perfect ordering
at T =0.

(3.13)

Higher dimensions

The kind of analytic block spin renormalization group we have
discussed above is no longer feasible for d > 1. Progress is possible
by making various simplifying approximations, but, even then, the
calculations rapidly become cumbersome and give little insight
into the physics. Rather than pursue this subject in detail, then,
we shall be content with making some general observations.

In one dimension it follows from (3.9) that at low tempera-
ture (K — oo) the renormalization group equation simplifies to
K’ ~ K — const. This may be easily understood on physical
grounds: at low temperature the spins in the blocks are almost
always aligned in the same state. The interaction between adja-
cent blocks is mediated by their boundary spins (s and s4 in
Figure 3.4). Thus we may write

I(, ~ K <s3)s;=l (S4>sé=17 (3.14)
where (s3), = is the magnetisation of the boundary spin, given

that the block spin is +1. At low temperature, this is unity, so
that K' ~ K.
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38 The renormalization group idea

Figure 3.6. Neighbouring blocks in two dimensions.

{ oo — - ® - e )
K = infinity K=K"* K=0
T=0 T=T, T = infinity

Figure 3.7. Schematic RG flow in the Ising model for d > 1.

Now consider the case of two neighbouring blocks in two di-
mensions, as illustrated in Figure 3.6. The interaction between
neighbouring blocks is now mediated by three nearest neighbour
bonds, so that, as K — oo, we expect that K/ ~ 3K. In the case
of d dimensions, with a length rescaling factor b, this generalises
to

K'~b'K  as K — . (3.15)

This has the important consequence that, for d > 1, K’ > K,
so that the zero-temperature fixed point at K~! = 0 is locally
stable. On the other hand, at high temperatures the system has
to be in a paramagnetic phase, so the high-temperature fixed point
must also be stable. Therefore, to the extent that we can think
of the renormalization group flows as being unidimensional, there
must exist an unstable fixed point K = K* in between them, as
shown in Figure 3.7. This fixed point corresponds to the critical
point. To see this, imagine calculating the correlation length using
E(K) = bE(K'). Suppose that at some fixed high temperature,
corresponding to a reduced coupling Ko, £ = & = O(1). Starting
at some K < K*, it will take a certain number n(K') of iterations
of the renormalization group before we reach the vicinity of K.
Then £(K) = &b™K). As K approaches K*, the amount by which
K changes under each iteration is initially very small, so that n(K)
becomes large. As K — K*, n(K) — o0, so that {(K) — oo,

Downloaded from https://www.cambridge.org/core. Copenhagen University Library, on 09 Apr 2019 at 09:25:47, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316036440.004


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316036440.004
https://www.cambridge.org/core

3.2 One-dimensional Ising model 39

Figure 3.8. Generation of next-nearest neighbour coupling.

indicating a critical point.

In fact, knowing how K’ depends on K close to the fixed point,
we may calculate the critical exponent v. Suppose that K' =
R(K), where K* = R(K*). When K — K* is small, we may then
write

K'~ R(K*) + (K - K)YR(K*) = K* + (K — K*), (3.16)

which defines the quantity y = In R/(K™*)/Inb. Now, close to the
critical point, we expect from p.7 that {(K) ~ A(K — K*)™".
Using £(K) = b&(K'), it then follows that

A(K — K*)™ = bA(K' — K*)™" = bA[Y(K — K*)]™", (3.17)

which is only possible if » = 1/y. This is an example of a general
result (see Section 3.5) that critical exponents are given in terms
of the derivatives of the renormalization group transformation at
the fixed point. Indeed, we see from the above that we may trace
the very existence of a critical exponent to the assumption of
differentiability of the renormalization group transformation at
the fixed point.

However, our analysis has, up to now, been lacking in one im-
portant respect, which does not arise in one dimension. Consider
the effect of summing over the corner spin of block 2 in Figure 3.8:
This couples to spins in blocks 1 and 3, so that it will generate an
effective coupling between the respective block spins 1’ and 3'. On
the blocked lattice, this will be a next-nearest neighbour coup-
ling. In fact, as discussed earlier, all possible further neighbour
couplings will now appear, and the one-dimensional picture of the
renormalization group flows in Figure 3.7 is therefore a gross over-
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40 The renormalization group idea

simplification. However, it turns out that it is still the fixed points
of the renormalization group transformation, now in the space of
all possible couplings, which control the critical behaviour, and it
is this feature which is responsible for the remarkable phenomenon
of universality.

3.3 General theory

In this section we shall examine the consequences of the very gen-
eral assumption that there exists a renormalization group fixed
point in the space of all possible couplings. The transformation
has the form {K'} = R({K}), where R will depend, in general,
on the specific transformation chosen, and, in particular, on the
length rescaling parameter b. Suppose there is a fixed point at
{K} = {K*}. As in the single variable case, we shall assume that
R is differentiable at the fixed point, so that the renormalization
group equations, linearised about the fixed point, are

K, - K}~ Tu(Ky— K3), (3.18)
b

where Typ = 0K, /0 Kp| g g+ Denote the eigenvalues of the matrix
T by A%, and its left eigenvectors by {e*}, so that

> el Tu = A e} (3.19)
[+3

Note that we have no reason to suppose that T is symmetric,
so that its left eigenvectors are not in general the same as the
corresponding right eigenvectors. In fact, we are not even entitled
to assume that the eigenvalues A' are real, but, as may be seen
from the subsequent discussion, strange things would happen if
they were not.}

Now define scaling variablest u; = 3", e, (K, — K*), which are
linear combinations of the deviations K, — K from the fixed point

t In some random systems, the irrelevant eigenvalues, which correspond to
corrections to scaling (see Section 3.6) may occur in complex conjugate
pairs.

1 See the discussion at the foot of p.53 on terminology.
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3.3 General theory 41

which transform multiplicatively near the fixed point:

up =Y (KL - K2) =Y e Tup(Ky — K7)
a a,b

=" Nej(Ky - K7) = Nu;. (3.20)
b

It is convenient to define the quantities y; by A* = b¥%. The y; are
called renormalization group eigenvalues, and will turn out to be
related to the critical exponents. We may distinguish three cases:

o If y; > 0, u; is said to be relevant: repeated renormalization
group iterations drive it away from its fixed point value.

o If y; < 0, u; is irrelevant: if we start sufficiently close to the
fixed point, u; will iterate towards zero.

o If y; = 0, u; is marginal. In this case, we cannot tell from the
linearised equations whether u; will move away from the fixed
point or towards it. An example of this interesting case will be
discussed later in Section 5.6.

Let us now consider a fixed point which has n relevant eigenval-
ues. For convenience, we may imagine the space near the fixed
point as having n' dimensions in all (although strictly speaking
this is infinite). There will then be (n’ — n) irrelevant eigenvalues,
so, in the vicinity of the fixed point, there will be an (n' — n)-
dimensional hypersurface of points attracted into the fixed point.
Near the fixed point, this is just the linear space spanned by the
irrelevant eigenvectors, but, by continuity, we expect this hyper-
surface to exist in some finite region around the fixed point. It
is called the critical surface, since the long distance properties
of each system corresponding to a point on this surface will be
controlled by the fixed point, at which, by the same arguments
as in Section 3.2, the correlation length will be infinite. Now the
coupling constants K, will depend in some complicated manner
on the physical parameters like the temperature, pressure or mag-
netic field which the experimentalist may vary. We shall refer to
these as ‘knobs’ which the experimentalist may adjust. In order
to end up on the (n'—n)-dimensional surface attracted into this
fixed point, she must therefore adjust exactly n knobs.

In the example of the ferromagnetic Ising model, two knobs
must be adjusted (7" and H) to bring the system to its critical
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AW K,

Figure 3.9. RG flows in a two-dimensional example.

point. The same is true of a simple fluid (e.g. pressure and tem-
perature). Thus we expect the fixed point corresponding to this
universality class to have just two relevant scaling variables. Since
the critical point occurs at zero field in the Ising model, the cor-
responding fixed point must also occur in the subspace where all
the odd couplings vanish. This means that the matrix T must be
block diagonal, having no elements which connect the even and
odd subspaces, and we may therefore classify all its eigenvectors
as being either even or odd under the symmetry s — —s. Thus
one of the relevant variables must be temperature-like, and lie in
the even subspace — this is called the thermal scaling variable —
and the other, the magnetic scaling variable, must lie in the odd
subspace.

In order to illustrate the significance of the irrelevant fields, let
us restrict attention to flows in the even subspace, and, for sim-
plicity, reduce the number of dimensions of this subspace to two,
so that it is parametrised by (K, K3). For example, K; might be
the reduced nearest neighbour coupling, and K, the next-nearest
neighbour coupling. There is then just one relevant and one irrel-
evant eigenvalue. The topology of the flows near the fixed point
is shown in Figure 3.9. There is a one-dimensional curve of points
attracted into the fixed point. This is the critical surface in this
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3.4 Scaling behaviour of the free energy 43

toy example. The flows near the fixed point must have the hy-
perbolic form shown in the figure by continuity. Thus the crit-
ical surface, in this example, acts as a separatrix, dividing the
region of points which flow to large values of the K, (ultimately
to zero temperature) from those flowing to small K, (ultimately
to the high-temperature fixed point at K, = 0). In the model with
nearest neighbour couplings only, as the temperature is varied we
move along the axis Ky = 0. The point where this line meets the
critical surface then defines the critical reduced coupling K., cor-
responding to the critical temperature of the nearest neighbour
model, since points with K < K;. and K > K. end up at the
high- or low-temperature fixed points respectively. At K = K,
the renormalization group trajectories flow into the critical fixed
point, which means that the long distance behaviour at the critical
point is the same as that of the fixed point.

However, we may equally well consider a model with a next-
nearest neighbour coupling in addition. Then, as we change the
temperature, we move along some other curve in coupling constant
space, indicated by the dashed line in Figure 3.9. The critical point
of this model occurs where this line intersects the critical surface.
But the large distance behaviour in this case will be similar to
that in the case of a simple nearest neighbour coupling, because
they are both controlled by the same fixed point.

This argument, suitably generalised to the case of an infinite-
dimensional coupling constant space, is the simple explanation of
the phenomenon of universality. A universality class consists of
all those critical models which flow into a particular fixed point.
To each universality class will correspond a different critical fixed
point. However, in order to understand precisely which quantities
are universal, we need to understand just what information the
fixed point actually provides about the critical theory.

3.4 Scaling behaviour of the free energy

For definiteness, let us continue to consider the universality class
of the critical short-range Ising model. As discussed in the previ-
ous section, there is a relevant thermal scaling variable u;, with
eigenvalue y;, and a relevant magnetic scaling variable u;, with
eigenvalue yp. In addition, there will be an infinite number of ir-
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44 The renormalization group idea

relevant variables ug, ... The critical point of the model in which
we are interested will, in general, lie some finite distance away
from the fixed point in coupling constant space. However, only a
finite number of renormalization group iterations will be required
to bring the renormalized theory to the vicinity of the fixed point,
where the linearised version of the renormalization group equa-
tions is valid. The values u; of the scaling fields at this point will
therefore depend analytically on the deviations (, h) of the original
theory from its critical point. This is because the renormalization
group transformation itself is analytic, and so therefore is also
the result of a finite number of iterations. The relevant variables
(u¢, up) must also vanish when ¢t = h = 0, so that, by symmetry,
they must have the form
u=t/to + O(t*, h?) (3.21)
up=h/ho + O(th), (3.22)
where tg and hg are non-universal constants. Therefore, close to
the critical point, we may take u; and u; to be proportional to ¢
and h respectively.}
Recall that one of the properties of the renormalization group
transformation is that it preserves the partition function:
Z = Trye” M) = Tr, e~ M'(), (3.23)
Consider the reduced free energy per site, f({K})=-N"'InZ,
as a function of the couplings {K}. Under renormalization, the
couplings flow according to the renormalization group equations,
but in addition a constant term Ng({K}) is added to the free
energy, as in (3.10). Thus
e~ NIUKY) = o~No({KD-N'F{K'D) (3.24)

where N’ = b~¢N is the total number of blocks. This gives the
fundamental transformation law for the free energy per site:

FUK}) = g({K}) + b7 fF({K}) (3.25)
Notice that the free energy, unlike the correlation length, trans-

forms inhomogeneously under the renormalization group. How-
ever, if we are interested in extracting only the singular behaviour

t Note that for fixed points with more relevant variables, e.g. at a tricritical
point (Section 4.1), there is no reason to suppose that the scaling fields are
simply proportional to the experimentalist’s ‘knobs’ unless there is some
symmetry enforcing this.
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3.5 Critical exponents 45

of f, for the purpose, for example, of calculating the critical expo-
nents, we may in fact drop the inhomogeneous g term. Physically
this is because it originates from summing over the short wave-
length degrees of freedom within each block, so that g({ K'}) should
be an analytic function of the K,, even at the critical point. In
this manner we obtain a homogeneous transformation law for the
singular part of the free energy f;

f({K}) = b~ f({K"}). (3.26)
Close to the fixed point, we may write this in terms of the scaling
variables
folus,un) = b0 fo(b¥ug, 0¥ up) = b7 f,(b™¥tuy, b™¥huy), (3.27)
where, for the time being, the irrelevant variables us,... are ig-
nored. In the last expression, we have iterated the renormalization
group n times. Since the variables u; and up are growing under
this iteration, we cannot make n too large, or the linear approx-
imation to the renormalization group equations would eventually
break down. So let us choose to halt the iteration at the point
where [b™¥tu;| = w49, where uy is arbitrary but fixed, and suffi-
ciently small so that the linear approximation is still valid. Solving
this equation for n, we then find, after a little algebra, that

Folue,un) = [ue/uial ¥ fy (£uio, unlue/uol /%) . (3.28)
Rewriting this in terms of the reduced physical variables ¢ and h,
we see that u;p may be incorporated into a redefinition of the scale
factor tg, and that

fult, ) = I/l @ () (3.29)
s\ 0 t/to|vnlve )’ )
where ® is a scaling function.t This function might appear to
depend on u¢, but since the left hand side of (3.29) cannot, this
is illusory, and, in fact, such scaling functions turn out to be uni-
versal. The only dependence on the particular system is through
the scale factors tg and hyg.

3.5 Critical exponents

From the scaling law (3.29) for the singular part of the free energy
follow all the thermodynamic exponents:

t Note that there are, in fact, different scaling functions for ¢ > 0 and ¢ < 0.

Downloaded from https://www.cambridge.org/core. Copenhagen University Library, on 09 Apr 2019 at 09:25:47, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316036440.004


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316036440.004
https://www.cambridge.org/core

46 The renormalization group idea

o Specific heat 92 f/0t2|p—o o |t|¥/¥~2, so that

a=2-d/y (3.30)
e Spontaneous magnetisation 9 f/8h|r=o o (~t)(¢=¥:)/% 5o that
d—
p=2"1h (3.31)
Ut
o Susceptibility 82f/0h%|s=o o |t|(4~2¥r)/%: 50 that
2yp — d
y=h— 0 (3.32)
Yt
e To get 6 we must work a little harder: we have
of de h/ho
= =L = |#/ta]( yh)/ﬂt@'(_____). )
M= 25 = |t/tol AT (3.33)

When inverted to express h as a function of M, this is called the
scaling form of the equation of state (Widom scaling). For M to
have a finite limit as ¢ — 0, ®'(z) must behave like z%/¥»~1 as
z — 0o. Thus, at t = 0, M « h%/¥=1 or

Yn
§= 3.34
i (3.34)

We see that the four principal thermodynamic exponents are given
in terms of the two renormalization group eigenvalues y; and y.
This means that there must exist scaling relations between them.
Examples are
a+2B4+9=2, (3.35)
a+pB(l+8)=2. (3.36)
These relations, among others, were postulated before the advent
of the renormalization group. Many of them may be proved rigor-
ously as inequalities. Although the relations between the critical
exponents and the renormalization group eigenvalues were estab-
lished above for the case of the Ising universality class, similar
equations hold for any universality class with a single relevant
thermal eigenvalue and a relevant symmetry-breaking field. How-
ever, for more complicated cases, describing for example multicrit-
ical points (see Sections 4.1 and 4.2), the corresponding relations
are more complex and should be derived from first principles as
above.
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3.5 Critical exponents 47

Role of the rescaling factor b

In the previous section, we saw how the various thermodynamic
exponents are related to the eigenvalues d¥ of the matrix T,; of
derivatives of the renormalization group transformation at the
fixed point. Since the length rescaling factor b enters explicitly
into this calculation, one might legitimately ask whether it plays
arole in the final values for the exponents. The answer is, of course,
that it cannot, since the exponents are properties of the system
under consideration, rather than the particular renormalization
group transformation which is applied. In fact, the renormaliza-
tion group transformation contains b implicitly, and it must there-
fore happen that, if the transformation is carried out exactly, the
physical observables such as the exponents and scaling functions
are independent of b. In the few cases where an exact renormal-
ization group solution is available (for example in one dimension)
or when it may be cast in the form of a controlled approximation
(as in the e-expansion), the independence of the final results of
the details of the transformation may indeed be verified. In the
case of block spin transformations, however, which usually demand
uncontrolled approximations, the approzimate values obtained for
the exponents do exhibit weak dependence on b and other details
of the transformation.

Although for a block spin transformation the possible values of
the rescaling factor b are strongly limited by the requirement that
the blocked lattice should have the same structure as the original,
as we shall see later there are other forms of the renormalization
group in which b may be arbitrary. In these cases it is often helpful
to consider the limit of an infinitesimal transformation, when b =
1+ 64, with é6£ < 1. In this case, the couplings will also transform
infinitesimally

K, — K, + (dK,/d0)6L + O(6£2), (3.37)
and the renormalization group equations take the differential form
dK,/dt = —B,({K}), (3.38)

where the functions 3, are called the renormalization group beta
functions. (The minus sign in (3.38) is included so as to make
contact with the conventional definition of the beta function in
quantum field theory, 8, = k0K, /dx, where « is a wave number,
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48 The renormalization group idea

rather than a length scale.) In this infinitesimal form of the renor-
malization group, the fixed points now correspond to the zeroes of
the beta functions. The matrix of derivatives at the fixed point is
now Ty = 8ap+(08,/0Kp)L, with eigenvalues (1+6£)¥% ~ 1+y;6¢.
Hence the y; are simply the eigenvalues of the matrix —d3, /0K,
evaluated at the zero of the beta functions. These infinitesimal
renormalization group transformations will play a central role in
Chapter 5.

3.6 Irrelevant eigenvalues

Suppose that we have an irrelevant scaling variable u3, with eigen-
value y3 < 0. If it is in the even subspace, we may assume that its
initial value depends analytically on ¢ and h, and is therefore of
the form

uz = u3 + at + bR 4 - - -, (3.39)

where a, b, ... are constants. Unlike the case of a relevant variable,
however, we may not assume that u3 = 0. Close to the critical
point, we may initially ignore the higher order terms and set uz =
u3, which has some non-universal value. Repeating our calculation
in Section 3.4 of the free energy, we now find that

Falt h) ~ [t]#% @ (fg|~wnlve oGpeleliv) . (3.40)

Since u3|t|!%!/¥ is small as t — 0, and the right hand side rep-
resents the free energy evaluated away from the critical point, it
seems reasonable to assume that it is an analytic function of its
arguments, and that, in particular, we expand it in a Taylor series
in u3|¢|!%sl/¥, Taking h = 0 for clarity, we then find that

fs = |t|d/yt (Al + Azug|t||y3l/yt + .- ) , (341)

where A;, A3, etc. are non-universal constants. We see that the
leading effect of such irrelevant variables is to give rise to correc-
tion to scaling terms.t Since in a real system the coefficient of these
terms may be quite large, it may be difficult to observe the true
asymptotic exponents except very close to the critical point. In
that case, a fit to the data which does not include such correction

t These are sometimes called confluent singularities, usually in the context
of extracting critical behaviour from high-temperature expansions.
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3.7 Scaling for the correlation functions 49

to scaling terms may erroneously lead to the conclusion that the
exponents extracted in this way are non-universal. On the other
hand, fitting data with the correction to scaling terms included
introduces many more parameters, and thus requires very high
quality data to obtain a meaningful fit.

As well as the non-analytic correction to scaling terms of the
type shown in (3.41), there are also corrections that come from the
higher order dependence of the starting values of the u; on t and
h. Typically, they lead to corrections which are down by relative
integral powers of ¢ and h on the leading terms, and are thus called
analytic corrections. Since the exponent |ys|/y; is around 0.5 for
many three-dimensional systems, the non-analytic corrections are
more important close to the critical point.

Implicit in the above discussion was the assumption that the
Taylor expansion of the right hand side of (3.41) exists, and the
limit u3 — 0 is smooth and well-defined. However, there are situa-
tions, several of which will arise later (see Sections (4.4, 8.4, 9.4)),
when this is not true. In such a case, ug is referred to as a danger-
ous irrelevant variable, and we need more information about the
dependence on uz to infer from (3.41) the true behaviour of the
free energy in the critical region.

3.7 Scaling for the correlation functions

The transformation law for the free energy (3.25) relied only on the
property of the renormalization group that it preserves the parti-
tion function. However, as we have seen in Section 3.1, the renor-
malization group in fact preserves the whole probability measure
of the long wavelength degrees of freedom, and therefore analogous
transformation laws should apply to the large distance behaviour
of the correlation functions. This is indeed the case. As an exam-
ple we shall consider the spin-spin 2-point correlation function in
the Ising model, defined by

G(r1 = ra, H) = (s(r1)s(r2))m = (s(rihnls(r2))n,  (3.42)

where we have emphasised the dependence of G on the parameters
in the hamiltonian . We may also obtain G by adding a non-
uniform magnetic field to the hamiltonian H — H — 3>_, h(r)s(r)
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50 The renormalization group idea

and differentiating the free energy with respect to A(r):

92
——mZ{h . 4
8’1«(7‘1)8’1(7‘2) { } h(r)=0 (3 3)
We now suppose that h(r) varies significantly only over distances
much large than the size ba of the blocks, and imagine applying the
same type of block spin renormalization group as in Section 3.1.
If the hamiltonian H (which is close to the fixed point hamilto-
nian H*, since we are interested in the critical region) contains
only short-range interactions, then, in performing the block spin
transformation in one region, around r; say, we may effectively
ignore the fact that A(r) is actually slowly varying, and assume
that it transforms in the same manner as would a weak uniform
field b = h(r1). According to this argument, the renormalized
hamiltonian is therefore of the same form

H'(s') = S R(r")s(+'), (3.44)

where h'(r') = b¥»h(r). Since the renormalization group preserves
the entire partition function, however,
?mZ'()  9InZ(h)

On (r))Oh'(rh) ~ 8K(r))ON(rh)’
Let us examine the meaning of each side of this equation. The left
hand side is just the correlation function of the block spins in the
ensemble defined by the renormalized hamiltonian H’'. However,
in units of the lattice spacing, the distance between the points has
been reduced by a factor of b. Thus the left hand side is simply
G((r1 — r2)/b,H’). The right hand side is more tricky. Making an
infinitesimal local change h/(r{) — h'(r{) + éh’(r}) within block
number 1 corresponds to changing all the fields h(r;) acting on
the spins within this block, by an amount éh(r;) = b=¥»éh'(r}).
Thus the right hand side is

b2 (s 4 s 4+ - YD + 68 4, (3.46)

where the spins in blocks 1 and 2 are labelled by 551) and 352)

respectively, and the subscript denotes that this correlation func-
tion is to be evaluated with respect to the original hamiltonian
. Since there are b¢ spins in each block, (3.46) may be expanded
as a sum of b2¢ two-point correlations. If |r1 — 72| is much larger

G(’I‘l - 7‘2) =

(3.45)
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Figure 3.10. Correlations between spins in two distant blocks.

than b, all these correlation functions are, however, numerically
almost the same (see Figure 3.10). The transformation law for the
correlation function, close to the fixed point, is therefore

G((ry = r2) /b, H') = b*E=G(r) — rp, H). (3.47)

If the interactions are isotropic (respecting, for example, the rota-
tional symmetries of the lattice), then, at large enough distances,
the 2-point correlation function in fact depends only on the dis-
tance r = |r1 — r2| and not on the relative orientation of the two
points. This is because scaling fields which break the full rotational
symmetry down to that of the lattice are irrelevant.
Setting the uniform magnetic field A = 0 for clarity, near the
critical point
G(r,t) = b=H4=W)G(r /b, b¥1). (3.48)
We may now iterate this equation = times, as we did for the free
energy, stopping at a point where b™¥(t/tg) = 1. After a little

algebra, it follows that the correlation function has the scaling
form

G(r,t) = [t/to|" W% @ (r/|t/to| /%) . (3.49)

For sufficiently large r, we expect G to decay as e~"/¢, since this
also corresponds to large ¢t and the region where the mean field
result of Section 2.3 should apply. From (3.49) we then identify
the correlation length ¢  |t|~1/¥, so that

v = l/yt (350)
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52 The renormalization group idea

At the critical point ¢ = 0 we should instead iterate the trans-
formation law (3.48) until r/d™ = O(rp), where ro is some fixed
distance, much larger than a or the range of the interaction, so
that all the approximations made above are still valid. We then
see that G(r) oc 7=2(4=¥1) | 50 that

[n=d+2-2y| (3.51)

The exponents v and 7, related to the spin-spin correlation func-
tion, are therefore also given in terms of the relevant renormaliza-
tion group eigenvalues y; and yp,. They are thereby also related to
the thermodynamic exponents, by scaling relations such as

a=2-dv (3.52)

T=v(2-17). (3.53)
Results of this kind clearly require further assumptions than went
into the scaling relations such as (3.35, 3.36) for the thermody-
namic exponents. A crucial input is that the fixed point hamilto-
nian be sufficiently short range. For long range interactions (see
Section 4.3), for example, (3.53) fails.

(3.52) is an example of a hyperscaling relation, since it con-
nects the singularity in the specific heat with the behaviour of a
correlation length, which may be inferred, for example, from the
spin correlation function. This relation may fail when a dangerous
irrelevant variable (see the previous section) influences the scal-
ing form of the free energy but not of the correlation functions.
This is what happens above the upper critical dimension (see Sec-
tion 5.4), and in some problems, even below it. Examples are the
random field Ising model (Section 8.4), and the branched polymer
problem (Section 9.4).

3.8 Scaling operators and scaling dimensions

The above discussion of the spin-spin correlation function of the
Ising model may readily be generalised to an arbitrary correlation
function. Near a general fixed point, the scaling variables u; are
linear combinations of the deviations K, — K} of the original cou-
plings from their fixed point values. Each of these couples to a
unique possible interaction term S, in the hamiltonian. Each S,
may be expressed in terms of the fundamental degrees of freedom

Downloaded from https://www.cambridge.org/core. Copenhagen University Library, on 09 Apr 2019 at 09:25:47, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316036440.004


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316036440.004
https://www.cambridge.org/core

3.8 Scaling operators and scaling dimensions 53

of the problem (for the Ising model, the spins s(r)). For exam-
ple, in the Ising model, the set {S5,} would be expressible as linear
combinations of arbitrary products of spins on different sites. How-
ever, the assumption that only short-range couplings are impor-
tant means that these objects should be local, in some sense to be
made more precise. It has become common to call these composite
objects operators. The reason is that, when a suitable continuum
limit is taken, the statistical mechanics model is formally identical
to a quantum field theory, in which these quantities become op-
erators which may represent observables in the sense of quantum
mechanics. However, it is important to realise that in this book,
except when so stated explicitly, these ‘operators’ are commuting
quantities.{

Given a complete set of operators S, we may form suitable
linear combinations ¢;, called scaling operators, coupling uniquely
to each of the scaling fields u;, so that

> uigi =) (Ko~ K2)Sa. (3.54)

It is then straightforward to generalise the argument of the pre-
vious section to show that, as |r; — ro| — 00, (¢i(r1)di(r2))

|11 — r2| =22, where
o9

This equation, which relates the renormalization group eigenvalue
of a scaling variable to the behaviour at the fixed point of the
two-point correlation function of the operator to which it couples,
is one of the most fundamental and general results of the renor-
malization group. The quantity z; is called the scaling dimension
of the scaling operator ¢;. The relation (3.55) may be understood
if we assume that it is possible to take the continuum limit of the
hamiltonian, in such a way that

Sy dir) - u / ¢¢(7‘)%, (3.56)

1
where a? is the volume of the unit cell. If, under a renormalization
group transformation where ¢ — ba and u; — b¥%u;, we demand
t An alternative terminology is to call the u; scaling ‘fields’, and the ¢; scaling

‘densities’. This is, however, especially confusing when used in the context
of quantum field theory, and we shall avoid it.
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54 The renormalization group idea

that the partition function be invariant, this may then be ensured
by requiring that ¢;(r) — % ¢;(r), with z; given by (3.55).

As an example, consider the local energy density E(r), which,
for the Ising model, is the product s(r1)s(r}) of neighbouring spins.
It has a scaling dimension 2 = d — y; = d — v~!. Therefore, at
the critical point, its two-point correlation function decays as

(E(r1)E(r2)) ~ |ry — raf 724427, (3.57)

which is confirmed by exact results in two dimensions. Actually,
in writing results such as (3.57) we should remember that opera-
tors like E(r) are not themselves scaling operators, but only linear
combinations thereof. Only scaling operators have a pure power
behaviour for their correlation functions. The lattice energy op-
erator will, in general, be a combination of all possible scaling
operators which transform in the same way under the symmetries
of the fixed point hamiltonian. The most relevant of these, and
hence the one with the smallest scaling dimension, will be the
operator ¢;, whose 2-point function, at the fixed point, will have

the pure power-law form (3.57). In general, for finite separations,

(3.57) should be replaced by t
Aij
(B(rB(ra) = ¥ 7
iJ

|x,~+:cj N

3.58
— (3.58)
Even this is not the full story, since, in general, a system at its
critical point is not at the fixed point, but, as discussed in Sec-
tion 3.6, its hamiltonian differs by irrelevant operators. Just as for
the free energy, these lead to correction to scaling terms which now

show up as corrections to (3.58) of the form |rq —rp| %% - lyxl,
where the sum is over the eigenvalues of some subset of irrelevant
scaling fields.

The usefulness of the concept of scaling dimension is not re-
stricted to the two-point correlations. For example if we consider
an N-point correlation function, the same kind of arguments that
led to (3.55) now imply that this has the homogeneity property

($1(r1)ga2(r2) .. .ON(TN))=
R™"17 T N (¢1(r1/ R)$2(r2/ R) - . .dN(rN/R)), (3.59)

t In fact, conformal invariance (see Section 11.2) implies that the terms with
i # j vanish in this sum.
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3.9 Critical amplitudes 55

although, unlike the case N = 2, this (together with translational
and rotational invariance) is not sufficient to fix its actual form.

3.9 Critical amplitudes

In the previous sections we saw how the various critical exponents
are directly related to the renormalization group eigenvalues at
the corresponding fixed point. Since this fixed point controls the
critical behaviour of all systems in a given universality class, it
follows that the critical exponents are universal. However, many
other quantities are universal besides the exponents. In this sec-
tion we focus on the amplitudes which multiply the power law
singularities in thermodynamic quantities near the critical point.
It is necessary to go back to the inhomogeneous transformation
law for the free energy (3.25). Iterating this n times

FUEY) = 3 bitg({KD)) 4 57 f((E™)),  (3.60)
j=0

where {K(9)}) is the jth iterate of {K'}. Now take the limit n —
00. Since all initial values of the { K} in the same phase ultimately
iterate into the same stable fixed point {K(°)}, the second term
on the right hand side tends to zero. The first term is a weighted
sum of the values of g({K}) at points along the renormalization
group trajectory which leads from the starting value of { K} up to
this stable fixed point (see Figure 3.9). For starting points suffi-
ciently close to the critical surface, this trajectory (almost) breaks
into two pieces: one which closely approximates a trajectory along
the critical surface and which ends up near the critical fixed point;
and one starting from near the vicinity of the critical fixed point
and ending at the stable fixed point. This latter part closely ap-
proximates the unique trajectory leading to the stable fixed point
which, if the arrows were reversed, would arrive at the critical
fixed point. We may call this the outflow trajectory. The sum in
(3.60) may thus be broken into two pieces accordingly. The first
contribution may be shown to give only correction to scaling terms

1 It is the subspace of all models which correspond to renormalizable contin-
uum quantum field theories, where all the irrelevant couplings have been
set to zero.
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56 The renormalization group idea

in the free energy (as expected from the discussion in Section 3.6).
To evaluate the second term, we may proceed as follows.

Define a coordinate i; along the outflow trajectory. Close to
the critical fixed point, we may take #; ~ u¢, the thermal scaling
variable, but, further away, they will deviate from each other due
to the curvature of the trajectory. However, in general, we may
define i, so that it is a nonlinear scaling variable (see Ex. 3.5),
which means that it transforms homogeneously under the renor-
malization group, #; — b¥tiy, for all values of @, not just close
to the critical fixed point. Thus, the contribution to the free en-
ergy from the outgoing part of the trajectory, which will turn out
to give rise to the leading singular behaviour as ¢ — 0, may be
written

o0
F() ~ b6 ), (3.61)
j=0
where @; = t/to. Since we are interested in extracting the be-
haviour as t — 0, it is permissible to replace the sum over j
by an integration, and to change to the integration variable s =
b'¥t(t/ty), whence

~d/’yt 00
U - -
f(@) ~ yttlnb s~Hve=1g(5)ds. (3.62)
U

All we need assume about the function g(s) is that it is analytic,
as was argued in Section 3.4, and that it and all its derivatives
approach zero sufficiently fast as s — oo.

Superficially the right hand side of (3.62) appears to exhibit the
&f/ Yt = t2-@ behaviour expected of the singular part of the free
energy, as argued in Section 3.5. However, this conclusion is valid
only if it is permissible to set the lower limit of the integration
to zero, which is, in general, not the case since g(0) # 0 and the
integral would diverge. It is necessary first to integrate by parts,
in order to increase the power of s in the integrand. After p such
integrations, the contribution from the lower limit is of the form
ft;i fve on 4/ve+p-1 ¢P=1(ii,), which is analytic in . If we integrate by
parts a sufficient number of times so that p > d/y;, the remaining
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3.9 Critical amplitudes 57

integral is of the form}
/oo s vetp=1 g} () ds, (3.63)

t
in which is it now permissible to set the lower limit to zero (the
corrections to this may once again be shown to be analytic in t).
The conclusion is that the contribution to the free energy near
t = 0 from the outgoing part of the trajectory is of the form

f(t) ~ As < [t|*~* 4 terms analytic in ¢, (3.64)

where the subscripts (>, <) on the amplitude A indicate that we
expect it to be different for ¢ > 0 and t < 0. This is because,
in each case, the renormalization group trajectory along which g
is integrated away from the critical fixed point is different. The
amplitudes Ay < consist, apart from trivial factors, of a universal
integral [;° s~4/%1P~1g(r)(5)ds, and the non-universal scale factor
52+, This latter factor arises from the renormalization of u;
which occurs in the first part of the renormalization group flow
from the critical theory into the vicinity of the critical fixed point.
It is therefore the same no matter what the sign of t. We conclude
that, although the individual amplitudes A < are not universal,
their ratio As [A¢ is.

This is just one example of a universal amplitude ratio. In
general, combinations of critical amplitudes in which the non-
universal scale factors like %g, ho,... do not enter are expected
to be universal. These non-universal factors determine how the
non-linear scaling variables, which describe the position along the
outflow trajectory, are related to the physical ‘knobs’ which the
experimentalist may adjust. Once on the outflow trajectory, how-
ever, everything is universal.

Another important example of a universal amplitude combina-
tion is the quantity f;£%, where £ is the correlation length. Since
fs is the singular part of the free energy per unit volume, this
combination is the free energy per correlation volume. In terms of
the exponents defined earlier, it should scale as t2~ - t~% and
so should be independent of ¢ if the hyperscaling relation (3.52)
holds. The universality of the numerical value of f,£% is therefore
a stronger statement of hyperscaling.

t An interesting situation arises when d/y: is an integer (see Ex. 3.6).
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58 The renormalization group idea

The above arguments show, in general, that such universal
combinations are in principle calculable from the renormalization
group, although they depend on properties of the renormalization
group flows not just at the critical fixed point, but on more global
quantities.

Anzisotropic scaling

In deriving (3.48) we assumed that the two-point correlation func-
tion depends, at least at large distances, only on the magnitude
r12 = |r1 — 73| of the separation between the two points. As dis-
cussed there, this is certainly a correct assumption if the under-
lying lattice model is sufficiently isotropic. If this is not the case,
however, various other possibilities may occur. These may be un-
derstood by examining the Fourier transform of the exchange in-
teraction J(r—r'), which, for small wave numbers k = (kz, ky, . ..),
has the form

J(k) = J(1 = R?k} + O(k*)). (3.65)

If none of the R? vanishes, we may simply perform a rescaling
of the coordinates so that, at least to O(k?), (3.65) is isotropic.
Although this argument is strictly valid only within mean field
theory, since, as will be argued in Chapter 4, the higher powers of
k are irrelevant at the isotropic fixed point, it in fact continues to
hold when the fluctuations are included.}

However, a much more severe kind of anisotropy may arise if
one of the R? in (3.65) vanishes. For example, J may have the
expansion for low wave number

J(k) = J(1 - R*k% = AR} +-- ), (3.66)

where k = (kj,k1), and X is dimensionless constant. Such a
behaviour arises, for example, at the Lifshitz point in a sys-
tem with competing ferromagnetic nearest neighbour and anti-
ferromagnetic next-nearest neighbour interactions in one particu-
lar direction. In this case, it is clearly not possible to remove the
anisotropy by a simple rescaling of the coordinates. In mean field

t+ However, the quantitative rescaling required to render the model isotropic
does depend on the value of these irrelevant terms, and so is not simply
given by the mean field result.
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theory, the Fourier transform of the correlation function for such
a system has the form

G(k) o« (\kf + k3 + €727 (3.67)
However, when the fluctuations are included, there is a further
complication in that A is, in general, renormalized, since there is no
symmetry which protects this. Because of the intrinsic anisotropy,
it no longer makes sense to rescale all distances, both in the L and
|| subspaces, by the same constant . Instead, one should rescale
only 7,, for example, and allow A to be renormalized in such
a way that the low wave-number physics is preserved. A little
thought then shows that, on dimensional grounds, the renormal-
ization group equation for A must take the form

N = M({K}), (3.68)
where f depends on all the other dimensionless couplings. At the
fixed point, then, we expect X' = f({K*})A = b2/, defining the
anisotropic scaling exponent z. This shows up in several ways. For
example, the scaling form (3.49) is replaced by

G(ryjprest) = gy (TJ./E.L, 7‘||/7‘i) , (3.69)

where £; « |t|7"L is the correlation length in the L directions.
This scaling form then implies that the correlation length in the
other direction diverges like |¢|™"Il, where 1| = zv, . The correla-
tion lengths in the two directions therefore exhibit quite different
scaling behaviour. Note that, in the mean field approximation,
we have vy = }, y| = } and 2 =  in this example. (3.69) is
the general form for a two-point correlation function exhibiting
anisotropic scaling. Apart from the example of a Lifshitz point,
we shall see it in the problem of directed percolation (p.200), and,
when the || direction is interpreted as time, in quantum critical

behaviour (p.76) and critical dynamics (p.192).

Exercises

3.1 The one-dimensional Ising model in a magnetic field has the
reduced hamiltonian H = —K }°; 8;8;+1 — h3_; s;. By sum-
ming over every other spin, show that you can define a renor-
malization group transformation with b = 2. It is useful to

express this in terms of the variables z = e~2K and y = eh.
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60 The renormalization group idea

Sketch the flows in the (z,y) plane and indicate the fixed
points.

3.2 The one-dimensional three-state Potts model is defined as
follows: at each site j is a ‘spin’ which may take the values
1,2 or 3. The reduced hamiltonian is H = —K °; 6s;,5,,,-
Using the same decimation procedure with b = 2 as above,
find the renormalization group equation and show that there
are no non-trivial fixed points, as expected in one dimension.

3.3 By solving the one-dimensional Ising model exactly (e.g. by
the transfer matrix method — see the references by Stanley
and by Baxter in the Bibliography) show that the combi-
nation f;£ is constant in the low temperature limit when
& — 00, and calculate its numerical value. Do the same cal-
culation for a spin 1 Ising model, with the same form for the
hamiltonian but with spins s; taking the values 0,+1, and
verify that the amplitude combination is indeed universal.

3.4 There is an amplitude corresponding to each of the critical
exponents defined for a ferromagnet on p.7. List as many
combinations of these as you can which should be universal
according to the arguments of Section 3.7.

3.5 Suppose that the infinitesimal renormalization group equa-
tions have the form dg;/d¢ = —f;({g}) where the right hand
sides have a perturbative expansion of the form §; = —y;9; +
2k Cijkg;igk + -+ Show that, in general, it is possible to
define, order by order in the gs, non-linear scaling variables
g = gi+ 2k dijrgigr +- - - so that the renormalization group
equations simplify to dg;/d¢ = y;g. exactly, with no higher
order terms. Under what circumstances does such a transfor-
mation fail (to the order stated)? If there was a non-trivial
fixed point at some finite value of the g; in terms of the old
variables, what has happened to it in terms of the non-linear
scaling variables?

3.6 Show that when d/y; is an integer, the free energy has a
singularity of the form [¢|%/% In |t|. What can you say about
the ratio of the amplitudes of this singular behaviour fort > 0
and t < 07

3.7 Show that the contribution of the inflow part of the trajectory
in the calculation of the free energy using (3.60) leads to the
expected correction to scaling terms.
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