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CHAPTER 25

THE EMERGENCE
OF STATISTICAL
MECHANICS

OLIVIER DARRIGOL
AND JURGEN RENN.

25.1 MECHANICAL MODELS OF THERMAL
PHENOMENA

25.1.1 Heat as a Challenge to Mechanics

Statistical mechanics is the name given by the American physicist Josiah Willard
Gibbs to the study of the statistical properties of a large number of copies of the
same mechanical system, with varying initial conditions. In this chapter we will out-
line the history of statistical mechanics in a broad sense, and include any attempt to
explain the thermodynamic properties of macroscopic bodies as statistical regularities
of systems that encompass a very large number of similar constituents.

Statistical mechanics emerged in the second half of the nineteenth century as a
consequence of efforts to account for thermal phenomena on the basis of mechan-
ics, which was then considered to be the most fundamental of the physical sciences.
Although phenomena such as light, electricity, magnetism, and heat were apparently
not of a mechanical nature, scientists tried to explain them by invisible mechanical
entities such as the ether or small particles. Mechanical models of thermal phenom-
ena are part of intuitive physics and have been used since antiquity. For example,
the communication of heat from one body to another can be made plausible as the
motion of invisible particles, or as the flow of an invisible fluid, or else as the effect of a
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wave. Such mechanical explanations of heat can also help to understand its links with
visible mechanical effects, for instance, the thermal expansion of bodies, the pres-
sure exerted by gases, or the possibility to generate heat by motion. Which of these
mechanical models, at a given historical moment, appeared to be most suitable as an
explanation of heat depended on various factors including the available knowledge of
thermal phenomena, the place of the model in the overall architecture of physics, and
its state of elaboration. In the following, we briefly review some of these models and
then show how several circumstances, among them the establishment of thermody-
namics in the mid-nineteenth century, led to a focus on the model of heat as a motion
of particles, which lies at the origin of statistical mechanics.

25.1.2 Heat as a Fluid

The late eighteenth century saw the development of the notion of heat as a fluid—the
so-called ‘caloric’—in parallel to contemporary ideas on electricity. Heat and electri-
city share properties that suggest their understanding as ‘imponderable fluids’. Both
lack a definite shape. As was demonstrated by calorimetric experiments, heat can
be stored, just as electricity, in appropriate ‘containers’ and ‘flow’ from one body to
another, both tend to spread out and fill their containers as much as possible, and
both are imponderable; that is, they have no appreciable weight. The fluid model also
accounted for the role played by heat in chemical reactions; the caloric there acted in a
way similar to other substances, being either bound or set free. At the turn of the cen-
tury the fluid model lent itself to Laplace’s reduction of physics to the play of central
forces acting among the particles of ponderable and imponderable substances. Later,
in Sadi Carnot’s reflections of 1824, it became the basis for discussing the theoretical
limits of thermal machines such as steam engines (Brush, 1976; Fox, 1971, chap. 1, 9).

25.1.3 Heat as a Motion

In the first half'of the nineteenth century, several developments contributed to the
gradual demise of the fluid model and to the widespread acceptance of the notion
of heat as a motion. First, in the 1820s the success of the undulatory theory of
light affected the understanding of heat, because of the close relationship between
light and heat. Second, in the 1830s Italian physicists strengthened the analogies
between heat and light, for instance, by revealing the possibility of heat reflection
and refraction. Third, in the 1840s James Joule performed careful experiments show-
ing the convertibility of mechanical work into heat. By 1850 the model of heat as a
motion was associated with the principle of energy conservation, whose most influ-
ential proponents were William Thomson and Hermann Helmholtz (Brush, 1976,
chap. 1-3).

Ideas about what kind of motion actually constituted heat varied considerably.
Originally, the most common conception was that of a vibratory motion of molecules
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transmitted by the ether, following André Marie Ampere’s suggestion. While this con-
ception accounted both for radiant heat and for heat conduction in matter, it was less
relevant to the behaviour of gases. At mid-century major British physicists, among
them William Rankine, William Thomson, and James Clerk Maxwell, imagined a
vortex motion of gas molecules, in rough analogy with Newton’s old explanation of
gas pressure in terms of a repulsion between contiguous molecules (at rest). In this
picture, heat corresponded to the rotation of the molecules, and elasticity to their
centrifugal force.

25.1.4 The Kinetic Theory

Around that time, James Joule, Rudolph Clausius, and others elaborated another
" conception of heat, as translational molecular motion. The molecules of a gas are
assumed to occupy only a small fraction of its volume and to have a rectilinear, uni-
form motion, occasionally interrupted by mutual collisions or by collisions with the
walls of the container. While this model had roots in ancient atomism, its application
to gases dates from the eighteenth century. In 1738 Daniel Bernoulli first gave the cor-
responding explanation of gas pressure, John Herapath rediscovered it in 1820, and
John Waterston did so again in the 1840s. The pressure of a gas is roughly assumed to
be proportional to the number of collisions of gas particles with the wall and to their
momentum. The collision number is itself proportional to the density of the gas and
- to the velocity of the molecules. Hence, the pressure is proportional to the density of
the gas, in conformity with Boyle’s law. It is also proportional to the squared velo-
city of a molecule, in conformity with Gay-Lussac’s law if temperature is assumed to
depend linearly on squared velocity. Initially, this model had a limited range of applic-
ability. But in contrast to the fluid model, it accounted for the conversion between
heat and mechanical work, and in contrast to the vibrational and rotational models,
it allowed a quantitative description of the behaviour of gases (Brush, 1976, chap. 1-3;
Brush, 1983, sec. 1.5-1.8).

25.2 GAS THEORY AS A BRIDGE BETWEEN

25.2.1 Thermodynamics as a Challenge to Mechanics

The formulation of thermodynamics in the 1840s and 1850s by Rankine, Thomson,
and Rudolf Clausius led to a theory of heat which no longer required a mechanical
model. The first and second law of this theory are enunciated purely in terms of
heat-converting engines, without mention of a caloric substance or of a thermal
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motion. Nevertheless, the heat-as-motion model acquired a new significance in the
context of thermodynamics. Whereas it had been confined to the modelling of the
thermal behaviour of gases, it now served a bridge function between two fundamental
columns of physics. It made plausible the conversion processes between mechan-
ical and thermal energy in thermodynamic engines and thus offered a mechanical
underpinning for the new thermodynamics. The support gained in this way had
repercussions for mechanics itself, then still widely conceived as providing a concep-
tual framework for all of physics. The kinetic theory of gases translated the advances
of thermodynamics into challenges for mechanics that eventually led to the creation
of statistical mechanics.

In particular, the study of the kinetic theory allowed scientists to confront one of
the principal structural differences that distinguish thermodynamics from mechan-
ics: the irreversibility of its laws under time reversal. When two portions of liquid
of different temperatures are mixed, for example, the mixture will attain an inter-
mediate temperature. This process is not reversible, that is, the mixture will never
spontaneously separate into a cooler and a hotter component. In contrast, the time
reversal of any (purely) mechanical process leads to another possible process. This
conflict became one of the challenges in the development of the kinetic theory, along

with an improved description of the thermal properties of specific physical systems.

25.2.2 Gases as Particles in Motion

The physicist who effectively revived the kinetic theory of gases was Rudolph

Clausius, one of the founders of thermodynamics. In 1857, Clausius gave Bernoulli’s
relation the exact form

1
PV = 5Nmuz,

where P is the pressure, N the number of molecules, m their mass, and 2 the mean
value of their squared velocity. From this formula he concluded that under Avogadro’s
hypothesis (according to which the number of molecules in a unit volume is the same
for all gases under normal conditions) the average translational energy of a molecule
was the same in any gas at a given temperature. Further, he determined the internal
energy of the gas as the total translational energy of its molecules. The resultant spe-
cific heat at constant volume is (3/2)R, where R is the constant of perfect gases. As this
value was well below the observed ones, Clausius concluded that the molecules had
a rotational and a vibrational motion besides their translational motion. Mutual col-
lisions acted to maintain constant proportions for the average energies of the three
kinds of motion (Clausius, 1857).

Although Clausius was aware of the spread of the velocities of the molecules due
to collisions, his computations assumed, for simplicity, the same velocity for all
molecules. In the approach of his first memoir, he equated the properties of the
system as a whole with individual properties of the particles. For instance, he iden-
tified the temperature of the gas with the kinetic energy of its molecules. Statistical
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considerations, such as the formation of average values, only playefl a rnmolr. r'gie
in his arguments. Clausius simply assumed that the m'oleculf:s occ'up1ed. ahn;g igible
fraction of the volume of the gas and that they moyed in straight lines W}t the ;ainiel
velocity until they hit a wall, without treating their mutual encou.nters. Clln ar%r i' a
and without taking molecular forces into accQunt. Héwever, the direct 1helz;t11 ca 1C(1>ri
of properties of the system with properties of its constituents soon brought the mode
into conflict with empirical properties of gases (Brush, 1976, chap. 4).

25.2.3 The Transport Properties of Gases

The issue that triggered the development of the no‘Fion of gases as S'Fati’stlcal col-
lections was the understanding of transport propert'les. One of ClauS}us§ readers,
the Dutch meteorologist C. H. D. Buys Ballot, objected that the kme’uc1 the?ry
implied a much faster diffusion of gases than observed, because the mole§u ar ve (;i
cities computed by Clausius were comparable to the speed of sound in nor.n%al
conditions. In response, Clausius introduced what amounts ’to tl'%e first non—tr.n}rll
statistical concept of the kinetic theory: the ‘mean free path’. This concept n.elt ecli
describes the property of an individual particle nor thf: property of a gas cons@ere
macroscopically. It makes sense only if the gas is conceived as a statistical collectlcf)n.

The mean free path is defined as the average length travelled b}l a r‘nolecuk.: be ore
it collides with another, The proportion of the molecules tr‘avelhng in th<.e d1.rect10n
- Ox that hit another molecule in a slice dx of the gas, Clausius (reasoned, is glyen, by
the fraction mr2ndx of the surface of this slice occulted by the ‘spheres of action of
the molecules, where r is the radius of action, and #n the number of molecules 11.1 a
unit volume. Consequently, the probability that the motion of a molecule remains
free over the distance x is

— . 2
W = e %, witha = nrn,

and the probability that this molecule experiences its first collision between x and
x+dxis

Wi(x) — W(x + dx) = ae”*dx.

The mean free path ] is the average 1/a of the distance x undef the latter ‘pro?babi%itY
law. Clausius judged this length to be so small that Buys Ballot’s over-rapid diffusion
Clausius, 1858). o
ne‘SI:;r(‘ziCrigl rgjrri Clausius’sswork, James Clerk Maxwell .developed the statlst'lcal
aspects of the kinetic theory of gases much further. In particular, Maxwell took into
account the velocity spread generated by the mutual encounters of gas molea.ﬂ?s.
In 1860 he determined the equilibrium distribution f(v) of the molecular Ve10c1‘E1es
by assuming its isotropy as well as the statistical independence f)f the three- Cartesian
components of velocity. These two conditions lead to the functional equation

fO) = (%) = YU b(L (),
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whose solution has the form
2
f=ae P,

wherein o and B are two constants. Maxwell later judged this argument ‘precarious’,
because the second assumption remained to be justified. Yet he never doubted the
velocity distribution which now bears his name. As we will see, he and Boltzmann
later gave better justifications (Brush, 1976; Maxwell, 1860, chap. 4, 5; Everitt, 1975).

The main purpose of Maxwell’s memoir of 1860 was to develop new physical con-
sequences of the mean-free-path concept by using a model of the gas as a large
number of perfectly elastic spheres. He computed gas interdiffusion, and also internal
friction (viscosity) and heat conduction regarded as diffusions of momentum and
kinetic energy respectively. The molecules moving from a given layer of the gas, he
reasoned, carry their mass, momentum, and kinetic energy over a distance of the
order of the mean free path / and thus communicate it through collisions to another
layer of the gas. The order of magnitude of the net flux of these quantities in the dir-
ection Ox is [ud(nq)/dx, where g stands for m, mu,, and (1/2)mu?* respectively. The
corresponding coefficients of diffusion, viscosity, and heat conduction are lu, nmlu,
and (P/T)lu up to numerical coefficients which Maxwell obtained by performing the
implied free-path averages. George Stokes’ values for the viscosity of air and Thomas
Graham’s for the interdiffusion coefficient of two gases in normal conditions yielded
compatible estimates of the mean free path, about 10”7 m (the thermal conductiv-
ity was still unknown). This convergence naturally pleaded in favour of Maxwell’s
approach.

Maxwell’s understanding of viscosity had a less welcome implication. Since the
mean free path is inversely proportional to the density, it follows that internal friction
does not depend on the density of the gas, a counter-intuitive result which ‘startled’
Maxwell. After deriving this and other unwanted consequences, he briefly doubted
the overall validity of the kinetic theory. In 1866, however, he careful measured the
viscosity of gases with the help of his wife, and thereby confirmed the surprising inde-
pendence of viscosity from density. This spectacular finding lent much credibility to
the kinetic theory in general. At the same time, Maxwell’s experiments contradicted
the more specific hard-sphere model. The measured viscosity turned out to be pro-
portional to the absolute temperature, whereas the model yielded proportionality to
the square root of temperature (Maxwell, 1867).

In reaction to this difficulty, Maxwell switched to a different model, maintaining
Clausius’s general assumptions but replacing the hard spheres of 1860 with repulsive
centres of force. He also gave up the mean-free-path method and turned to a more
powerful approach to transport phenomena based on computing the number of col-
lisions of various kinds of molecules and the resulting variations of average molecular
properties (see the following subsection). The integration of the relevant equations
required the knowledge of the perturbed velocity distribution, except when the colli-
sion force varied as the inverse of the fifth power of the distance. Maxwell determined
the transport of mass, momentum, and kinetic energy in the gas in this special case.
He thus retrieved the Navier—Stokes equation for the motion of viscous gases, and

THE EMERGENCE OF STATISTICAL MECHANICS 771

obtained quantitative relations between viscosity, diffusion rate, and thermal con-
ductivity. Viscosity turned out to be proportional to temperature, in agreement with
his experiments. To his pleasure, nature seemed to have chosen the mathematically
favourable case of the 1/r° force law. Maxwell knew, however, that this law could apply
neither to large intermolecular distances for which the force is attractive, nor to small
distances for which the structure of molecules comes into play (Maxwell, 1867).

A few vears later, Oscar Meyer’s and Joseph Stefan’s accurate gas-viscosity measure-
ments yielded a temperature-dependence of viscosity at variance both with the 1/r°
and with the hard-sphere model. In the 1880s Maxwell’s followers elaborated in vain
on his transport coefficients. As we may retrospectively judge, this problem eluded
their mathematical techniques and physical models.

25.2.4 The Maxwell-Boltzmann Law

A crucial element in the understanding of gases as statistical collections of particles
was the equilibrium distribution of velocities. Maxwell and his most outstanding fol-
lower Ludwig Boltzmann therefore attempted to establish this distribution as firmly
as possible and to generalize it to degrees of freedom other than translation. In 1866,
Maxwell provided a new demonstration based on the aforementioned collisions-
number approach. In order to determine this number, he considered the trajectory of
one of the colliding molecules in the reference system of the other. Call b the distance
(impact parameter) between the first asymptote of this trajectory and the second

~ molecule, ¢ the azimuth of the plane of this trajectory, vi and v, the initial velocities

of the two molecules. An encounter for which the impact parameter lies between b
and b + db and the azimuth lies between and ¢ + d¢ occurs within the time 8¢ if
and only if the first molecule belongs to the cylindrical volume |v; — v, | §tbdbdé.
To the number of collisions of this ‘kind’ per unit time and in a unit volume of the
gas, Maxwell gave the natural expression

dv = vy — V2] bdbdef (v))dPvif (v) P v,

where f(v)d®v is the number of molecules per unit volume in the velocity range d*v
around v (Maxwell, 1867).

A sufficient condition for the velocity distribution to be stationary, Maxwell
reasoned, is the equality of the ¢ollision number dv with the number

dl), = |V2/ - V2/| bdbd¢f(V1/)d3U1/f(V2/)d3Uz/

of the same kind (b, ¢) for which the final velocities are v1’ within d*v;’ and v,’ within
d*vy’. Owing to the conservation of energy and momentum, for a given kind of
collision the initial and final velocities are in a one-to-one correspondence that leaves
|vi — v3| and d*v1d’ v, invariant. Therefore, the equality of dv and dv’ requires that

FOf(v2) = fn)f (v2))
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for any two velocity pairs such that v? +v2 = V'] + '3 and vi +v2 = v/ + v,
The only isotropic solution of this functional equation is Maxwell’s law. It remains to
be shown that the equality dv = dv’ is a necessary condition of stationarity. Maxwell’s
proof of this point was impenetrably concise, even for his most perspicacious readers.

In a Viennese context favourable to atomistics and British methods, Ludwig
Boltzmann was naturally fascinated by Maxwell’s memoir of 1867 on the dynamical
theory of gases. In 1868 and 1871 he generalized Maxwell’s collision-number approach
to molecules that had internal degrees of freedom and responded to external forces
such as gravitation. He thus arrived at the form ae™PF of the stationary distri-
bution for the molecular variables on which the energy E of a molecule depends.
This law, now called the Maxwell-Boltzmann distribution, has been an essential ele-
ment of statistical physics to this day. We will return to the means of Boltzmann’s
generalization (Boltzmann, 1868; 1871a).

25.2.5 The Problem of Specific Heats

The kinetic theory of gases makes it possible to calculate the specific heats of a
gas from the energy distribution over the various degrees of freedom. Maxwell and
Boltzmann’s solution to this problem is the so-called equipartition theorem. In its
most general form, this theorem states that to each quadratic term in the expres-
sion for the energy of a molecule corresponds an average energy (1/2)kT, where k
is Boltzmann’s constant. In particular, the equipartition implies Clausius’s result of
1857 that for a monoatomic gas composed of N point-like particles, the total energy
should be (3/2)NkT and the specific heat at constant volume (3/2)Nk.

In his hard-sphere model of 1860, assuming the randomness of the impacts
between gas molecules, Maxwell showed that collisions between two different sorts
of molecules tended to equalize their kinetic energies. This implies the truth of
Avogadro’s hypothesis (following Clausius’s aforementioned reasoning). Maxwell
also proved that in the case of non-spherical, hard, elastic molecules, the collisions
induce rotations with an average kinetic energy equal to that of translation. To his
disappointment, the resultant specific heat was much higher than observed for most
gases (Maxwell, 1860).

A few years later, Maxwell became convinced that no consistent mechanical model
of the molecules could reproduce the observed specific heats of polyatomic gases.
As Boltzmann proved in 1871, the Maxwell-Boltzmann law leads to an average energy
(1/2)kT, for each quadratic term in the energy of a molecule. As Maxwell argued in
1875, this implies the value 1 + 2/r for the ratio v of the specific heats at constant
pressure and at constant volume, wherein r is the number of quadratic terms in the
energy function of a molecule. If the degrees of freedom of rotation and vibration of
polyatomic molecules are taken into account, the resulting value of y differs widely
from the experimental value. ‘Here we are brought face to face with the greatest diffi-
culty which the molecular theory has yet encountered’, lamented Maxwell (Maxwell,
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1875, P. 433). At the turn of the century, opinions varied on the seriousness of this
difficulty. We now know that its solution requires quantum theory.

25.2.6 The Boltzmann Equation and the H-Theorem

By 1871 Boltzmann had proven the stationarity of the Maxwell-Boltzmann law but
not its uniqueness, In order to fill this gap, in 1872 he traced the evolution of the velo-
city distribution of a gas from an arbitrary initial state to equilibrium. If the number
of collisions occurring in a spatially homogenous gas is known, he reasoned, the evol-
ution of its velocity distribution can be computed. The variation in a given short time
8t of the number of molecules with the velocity v; within d>v; is equal to the num-
ber of collisions for which the final velocity of one of the colliding molecules belongs
to this velocity range, minus the number of collisions for which the initial velocity
of one of the colliding molecules belongs to this velocity range. Using Maxwell’s for-
mulas for the collision numbers of direct and inverse collisions of a given kind, and
taking into account the invariance of the relative velocity |v; — v,| and of the product
d?v;d3vs, this balance gives the simplest case of ‘the Boltzmann equation’,

af(Vl, t) -

o / [fnOf vy = F)f (v2)] vi = v2| bdbdgd vy,

where the velocities vi’ and v{’ are the final velocities in a collision with the initial

~velocities v1 and v;, the impact parameter b, and the azimuthal angle ¢ (Boltzmann,

1872).

This equation completely determines the evolution of the distribution f from its
initial value. It implies the stationarity of Maxwell’s distribution, since the vanishing
of the square bracket amounts to Maxwell’s stationarity condition. Boltzmann then
considered the function (originally denoted E)

H= Infd3v.
[ rns

As a consequence of the Boltzmann equation, this function is a strictly decreasing
function of time, unless the distribution is Maxwell’s. Hence Maxwell’s distribution is
the only stationary one, and any other distribution tends toward Maxwell’s. This is the
so-called H-theorem. Boltzmann further noted that the value of —H corresponding
to Maxwell’s distribution was identical to Clausius’s entropy. For other distributions,
he proposed to regard this function as an extension of the entropy concept to states
out of equilibrium, since it was an ever increasing function of time.

Boltzmann then generalized his equation to more general distributions and sys-
tems. The Boltzmann equation has become the central tool for deriving transport
phenomena in statistical physics. In Boltzmann’s times, however, it could only be
solved for Maxwell’s 1/r° forces despite Boltzmann’s brave efforts in the hard-
sphere case. Only at the beginning of the twentieth century did efficient perturbative
methods become available for solving the equation in more realistic cases.




774

OLIVIER DARRIGOL AND JURGEN RENN

25.2.7 Challenges to the Second Law

The bridge established by the kinetic theory between mechanics and thermodynamics
not only had repercussions on mechanical thinking by introducing statistical notions
into the mechanical description of molecular motion but also affected the under-
standing of thermodynamics in a similar way. Maxwell used the kinetic molecular
theory to ‘pick a hole’ in the second law of thermodynamics and point to its stat-
istical character. In a letter to Tait of December 1867 and in his Theory of Heat of
1871, he argued that a “finite being” who could ‘see the individual molecules’ would
be able to create a heat flow from a cold to a warm body without expense of work
(Maxwell, 1995, pp. 331-332). The being—soon named ‘Maxwell’s demon’ by William
Thomson—could indeed control a diaphragm on the wall between warm and cold
gas, and let only the swifter molecules of the cold gas pass into the warm gas. In dis-
cussions with William Thomson and William Strutt (Lord Rayleigh), Maxwell related
this exception to the second law with another obtained by mentally reversing all
molecular velocities at a given instant. “The 2nd law of thermodynamics’, he wrote
to Strutt in 1870, ‘has the same degree of truth as the statement that if you throw
a tumblerful of water into the sea you cannot get the same tumblerful of water out
again’ (Maxwell, 1995, pp. 582—583). Later, Maxwell spoke of “a statistical certainty’ of
the second law (Knott, 1911, pp. 214—215). In 1878 he remarked that the dissipation of
work during the interdiffusion of two gases depended on our ability to separate them
physically or chemically, and concluded: ‘The dissipation of energy depends on the

extent of our knowledge . . . It is only to a being in the intermediate stage, who can

lay hold of some forms of energy while others elude his grasp that energy appears to

be passing inevitably from the available to the dissipated state’ (Maxwell, 1878, . 646)

(Klein, 1970b).

In 1871, the year before his publication of the H-theorem, Boltzmann emphasized
that a mechanical interpretation of the second law of thermodynamics required prob-
ability considerations. He also noted that in the mechanical picture the energy of a
system in contact with a thermostat fluctuated in time. Even earlier, in 1868, he had
noted that special initial states of the gas, for instance one in which all molecules
originally lay on the same plane, failed to reach equilibrium. In the introduction
of his memoir on the Boltzmann equation, he insisted that ‘the problems of the
mechanical theory of heat [were] problems of probability calculus’, and that the
observed regularity of the average properties of a gas depended on the exceedingly
large value of the number of molecules (Boltzmann, 1872, p. 317). Yet he stated the H-
theorem in absolute terms: the function H ‘must necessarily decrease’ (Boltzmann,
1872, p. 344). In 1876 Boltzmann’s Viennese colleague Joseph Loschmidt remarked
that not every initial state of the gas satisfied the theorem. He noted, in particular,
that the reversibility of the laws of mechanics implied that to every H-decreasing
evolution of the gas system corresponded a reverse evolution for which H increased.
Boltzmann’s proof of the decrease of H thus seemed to contradict the mechan-

ical foundation of the theory (Boltzmann, 1909, vol. 1, Pp. 295, 297, 96; Loschmidt,
1876).
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To this ‘very astutely conceived’ paradox (Boltzmann, 1877a, p. 117), Boltzmann
replied (in the more intuitive case of the spatial distribution of hard spheres):

One cannot prove that for every possible initial positions and velocities of the spheres, their
distribution must become more uniform after a very long time; one can only prove that the
number of initial states leading to a uniform state is infinitely larger than that of initial states
leading to a non-uniform state after a given long time; in the latter case the distribution would
again become uniform after an even longer time. (Boltzmann, 1877a, p. 120)

Boltzmann’s intuition, expressed in the modern terminology of micro- and macro-
states, was that the number of microstates compatible with a uniform macro-
state was enormously larger than that compatible with a non-uniform macrostate.
Consequently, an evolution of the gas leading to increased uniformity was immensely
more probable.

25.2.8 The Probabilistic Interpretation of Entropy

To this elucidation of Loschmidt’s paradox, Boltzmann appended the remark: ‘Out of
the relative number of the various state-distributions one could even calculate their
probability, which perhaps would lead to an interesting method for the computa-
tion of the thermal equilibrium’ (Boltzmann, 1877a, p. 121). This is precisely what he
managed to do a few months later (Boltzmann, 1877b). The probability he had in
mind was proportional to the number of microstates corresponding to a given mac-

- rostate. Such a number is ill-defined as long as the configuration of the molecules can

vary continuously. That Boltzmann could nonetheless conceive it depended on his
peculiar understanding of the continuity introduced in calculus. In his view, integ-
rals and differentials were only condensed expressions for sums with many terms and
for small differences. Discrete objects and processes were more basic and more rigor-
ously defined than continuous ones. Whenever Boltzmann faced difficult integrations
or integro-differential equations, he studied their discrete counterparts to get a bet-
ter grasp of the solutions. He did so for instance in his derivation of the H-theorem
(Boltzmann, 1909, vol. 1, 84—86, 346—361).

Boltzmann started his state-probability considerations with a “fiction’ wherein the
energy of a molecule can only be an integral multiple of the finite element . A list of
N integers giving the number of energy elements for each molecule defines the micro-
state of the gas, or ‘complexion’. The macrostate is the discrete version of the energy
distribution: it is defined by giving the number N; of molecules carrying the energy ie
for every value of the integer i. The probability of a given macrostate is proportional
to its ‘permutability’:

For a given value of the total number )" N; of molecules and of the total energy
>_Niie, and in the Stirling approximation for factorials, the permutability is a
maximum when N; is proportional to e™#% (wherein 8 is the Lagrange multiplier
associated with the constraint of fixed total energy). Boltzmann next replaced the
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uniform division of the energy axis with a uniform division of the velocity space, and
took the continuous limit of the distribution N;. This procedure yields Maxwell’s
velocity distribution. For any distribution N; the logarithm of the permutability
is —) N;InN; in the Stirling approximation (up to a constant), which tends to
—H in the continuous limit. Hence the function —H, or the entropy of a gas with
a given velocity distribution, corresponds to the combinatorial probability of this
distribution, as Boltzmann already suspected in his reply to Loschmidt.

In 1878 Boltzmann used the combinatorial approach to explain the existence
of a mixing entropy for two chemically indifferent gases. In 1883, after reading
Helmholtz’s memoirs on the thermodynamics of chemical processes, he showed
how his combinatorics, when applied to a reversible chemical reaction, explained
the dependence of the equilibrium on the entropy of the reaction. In this con-
text Helmholtz distinguished between ‘ordered motion’ that could be completely
converted into work, and ‘disordered motion’ that allowed only partial conversion.
Accordingly, Boltzmann identified the permutability with a measure of the disorder of

a distribution. The mixing entropy thus became the obvious counterpart of increased
disorder (Boltzmann, 1878; 1883).

25.2.9 The H-Curve

Boltzmann’s probabilistic interpretation of the H-function failed to silence criticism
of the H-theorem. In 1894, British kinetic theorists invited Boltzmann to the annual
meeting of the British Association, in part to clarify the meaning of this theorem.
One of them, Samuel Burbury, offered a terminological innovation: the ‘molecular
chaos’, defined as the validity condition for Maxwell’s collision formula. Burbury
and Boltzmann also provided an intuitive understanding of this condition: it cor-
responds to the exclusion of specially arranged configurations, for instance, those
in which the velocities of closest neighboring molecules point toward each other (it
should not be confused with Helmholtz’s molar notion of disorder). As long as the gas
remains molecularly disordered, the H-function evolves according to the Boltzmann
equation. Boltzmann did not entirely exclude ordered states. He even indicated that
an initially disordered state could occasionally pass through ordered states lead-
ing to entropy-decreasing fluctuations. However, he judged such occurrences to
be extremely improbable (Boltzmann, 1895a; Boltzmann, 1896; 1898; Burbury, 1894,
vol. 1, pp. 20—21; Brush, 1976, pp. 616—626).

To this view, Boltzmann’s British interlocutors opposed a refined version of the
reversibility paradox: H-decreasing and H-increasing states of an isolated gas should
be equally frequent, they reasoned, for they correspond to each other by time reversal.
In order to elucidate this point, Boltzmann studied the shape of the real H-curve
determined by molecular dynamics and discussed its relation with the variations of
H given by the Boltzmann equation. The real curve results from the cumulative effect
of the rapid succession of collisions in the gas. It therefore has an extremely irregu-
lar shape, and does not admit a well-defined derivative dH/dt. The refined paradox

THE EMERGENCE OF STATISTICAL MECHANICS 777

of reversibility fails, because it implicitly identifies the decrease of H with the negat-
ive sign of its derivative. An accurate statement of Boltzmann’s interpretation of the
decrease of H reads: for an initial macrostate out of equilibrium and for a finite time
of evolution, the number of compatible microstates for which H decreases is much
higher than the number of compatible microstates for which H increases. This state-
ment is perfectly time-symmetrical. It means that over a very long time H is for the
most time very close to zero, and that the frequency of its fluctuations decreases very
quickly with their intensity. Hence any significant value of H is most likely to be very
close to a summit of the H-curve. From that point H may increase for some time, but
this time is likely to be very short and to be followed by a mostly uniform decrease
(Boltzmann, 1895b; Ehrenfest and Ehrenfest, 1911; Klein, 1970a).

The following year Max Planck’s assistant Ernst Zermelo formulated another
objection to the H-theorem based on Henri Poincaré’s recurrence theorem.
According to this theorem, any mechanical system (governed by Hamilton’s equa-
tions) evolving in a finite space with a finite number of degrees of freedom returns,
after a sufficiently long time, as close to its initial configuration as one wishes (except
for some singular motions). The theorem, Zermelo and Planck argued, excluded any
derivation of the entropy law from a mechanical, molecular model. With obvious
lassitude, Boltzmann replied that his description of the H-curve was perfectly com-
patible with recurrences and yet agreed with the statistical validity of the second law
because the recurrence times were far beyond human accessibility. Through a simple
calculation he estimated these times to have some 10! digits for a gas. He compared

_ Zermelo to a dice player who would declare a dice to be false because he has never

obtained a thousand zeros in a row {Poincaré, 1889; Boltzmann, 1896; 1898; Brush,
1976; Zermelo, 1896, pp. 627-639).

25.2.10 Reception of the Kinetic Theory

Zermelo’s attack was a symptom of the hostility of many physicists to atomistic
considerations. Influential leaders of German physics such as Gustav Kirchhoff,
Helmholtz, and Planck favoured a purely macroscopic physics based on differential
equations ruling observable quantities. Experimental predictions of the kinetic—
molecular theory could often be rederived by purely macroscopic methods. The only
important exceptions were the convergent determinations of the mean free path from
viscosity, diffusion, and heat conduction, and the compatible estimates of Avogadro’s
number by Loschmidt (in 1865), Thomson (in 1870), and others from the mean
free path and from other phenomena (Brush, 1976, pp. 76—77). To these successes,
Boltzmann would have added his explanation of the specific heats of monoatomic
and diatomic gases in terms of rigid molecules with spherical and cylindrical sym-
metry. This was, however, a controversial achievement. Maxwell himself believed
that the elasticity of Boltzmann’s molecules implied energy equipartition over all
their degrees of freedom, including internal vibrations. In sum, empirical success
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could hardly justify the mathematical and conceptual difficulty of the kinetic theory
(Boltzmann, 1876; Brush, 1976; Maxwell, 1877, 356—362).

In Germany, Clausius and Meyer were the only important investigators of the kin-
etic theory and its experimental consequences. In France, the persistence of Ampere’s
vibrational theory of heat and the growing distaste for molecular theories preven-
ted the early acceptance of Maxwell’s and Boltzmann’s ideas. Emile Verdet’s lectures
long remained the only exception, until at the turn of the century Marcel Brillouin,
Poincaré, and Emile Borel entered the scene. The most favourable ground was Britain,
owing to the general enthusiasm for dynamical theories. John Tyndall’s best-selling
Heat as a Mode of Motion, published in 1862, popularized kinetic concepts very effi-
ciently. In 1876, Henry Watson’s valuable Treatise on the Kinetic Theory of Gases
appeared. By 1890, British activity was flourishing in this field. In Austria, the tra-
ditional interest in molecular theories eased the spread of Boltzmann’s theory and
prompted Stefan’s relevant experimental research. Yet the kinetic theory still lacked
a full-fledged account of its conceptual and technical foundations (Brush, 1976;
Principe, 2008).

The founders themselves disagreed on the status and achievements of their the-
ory. They did not develop a canonical presentation of its core that could serve as
the foundation of a common tradition. Maxwell never wrote a treatise on the kinetic
theory. In a letter to Tait he ironically commented on Boltzmann’s writings: ‘By the
study of Boltzmann I have become unable to understand him. He could not under-
stand me on account of my shortness and his length was and is an equal stumbling
block to me’ (Maxwell, 1995, PPp. 915-916). Boltzmann’s Lectures on Gas Theory came
late, in the 1890s, and they covered only some aspects of his and Maxwell’s work
(Boltzmann, 1896; 1898). As a result, the field remained open for the extensions and
reinterpretations that led to modern statistical mechanics.

25.3 FrRom KiNeETIC THEORY
TO STATISTICAL MECHANICS

25.3.1 Statistical Mechanics as a New Perspective

Statistical mechanics provides tools for analyzing thermal processes not only in gases
but also in general physical systems with microscopic degrees of freedom, whatever
their precise constitution may be. At the heart of statistical mechanics is the notion
of a virtual ensemble of macroscopic systems, all of which are characterized by the
same dynamics but which vary in their initial microscopic configuration. Instead
of tracking the statistical behaviour of atomistic constituents of a macroscopic sys-
tem, statistical mechanics studies the properties of such an ensemble. Different kinds
of thermodynamic systems in equilibrium are represented by different statistical
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ensembles—an isolated thermodynamic system by a ‘microcanonical ens.emble’ in
which all members have the same energy; a system which is in contact with a hf.eat
reservoir by a ‘canonical ensemble’, in which the energies of the members are <'11str1b—
uted according to an exponential law. Thermodynamic properties‘ are then derived by
taking ensemble averages. Due to its generality, statistical mechanics can b.e employe'd
in classical and, with appropriate modifications, also in quantum physics. For this
reason, it played a key role in the transition from classical to modern quantum
physics, . ‘

Practically all building blocks of statistical mechanics can be found in the numer-
ous publications of Maxwell and Boltzmann. They jchere appear, howeve1'r, under
perspectives different from that of statistical mechanlc‘s as we und‘er.stand it tod'ay.
It was only in Josiah Willard Gibbs® Elementary Principles in Statlstlcc.d Mechanzcs,
published in 1902, that a first coherent and autonomous form of statistical n’lech-
anics was presented. The now standard terminology ‘microcanonical enseml?le and
‘canonical ensemble’ is due to Gibbs. In the same year, 1902, Albert Einstein pub-
lished the first of a series of three articles on statistical physics which establis‘hed,
independently of Gibbs, another form of statistical mechanics. This wgrk prov%ded
the basis for Einstein’s exploration of quantum systems, and also for his analysis of
Brownian motion and other fluctuation phenomena as evidence for the existence of
atoms. In the same period, the kinetic theory was taken up and further developed,
with the result that at the beginning of the twentieth century a variety of approaches
were available for dealing with the most diverse problems of statistical physics.

This development of statistical methods was stimulated by the necessi-ty to integ?rate
the growing knowledge of atomistic and statistical processes such as ion%c C(.)nduc‘Flon,
electronic conduction, and heat radiation. These new contexts of application shifted
the emphasis within the kinetic theory of heat from Maxwell’s and Boltzmann’s ques-
tions concerning mechanical foundations to the problem of treating general physical
systems in thermal equilibrium. Following this change of perspective, the results of
the kinetic theory assumed a new meaning as cornerstones of a more broadl}.f con-
ceived statistical physics. In the following, we sketch the genesis of tlr‘lis new kind of
physics by first recapitulating its roots in ‘global approaches’ to the anet}c theory of
Maxwell and Boltzmann, by then discussing the extensions of the kinetic theory to
new phenomena, and finally by presenting Gibbs’ and Einstein’s achievements as the
result of a reflection on this development,

25.3.2 Global Approaches

In its earlier and simpler form, the kinetic theory of gases rested on molecular statist-
ics. Boltzmann and Maxwell also developed approaches based on the consideration
of the probability of the configurations of the whole system. Mereas the former
approach is more intuitive and lends itself to the study of irreverm'ble processes, the
latter yields powerful methods for deriving the equilibrium properties of very gene'ral
systems. Unfortunately, there is no unique, straightforward way to define and derive
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the global probabilities. This explains why Boltzmann’s pioneering considerations on
such probabilities were followed by a variety of reinterpretations, including Gibbs’
and Einstein’s statistical mechanics.

The first example of a global approach is found in Boltzmann’s fundamental
memoir of 1868. There Boltzmann introduced the distribution ot 1o, ... 13V,
v2,...VN) such that the product pd o gives the fraction of time spent by a system
of N point atoms around the phase (1}, rs, . . JIN3 VI, V2, ... V) within

do =drdr, . .. ErydPuidu, ... oy

after a very long time has elapsed. He then considered the element do” in phase space
made of the phases that the system takes after evolving during a constant time t from
any phase of do. The fraction of time spent by the system in these two elements is
obviously equal:

/

pdo = p'do’.
Since by Liouville’s theorem (which Boltzmann rediscovered in this circumstance)
do = do’

and since the time 7 is arbitrary, the distribution p is constant along the traject-
ory of the system in phase space. Boltzmann further assumed that the trajectory
of sufficiently complex systems filled the energy shell, except for special, highly
unstable configurations. This is what the Ehrenfests later called the ergodic hypo-
thesis. Consequently, the distribution p must be the uniform distribution over the
energy shell, which Gibbs later called microcanonical (Boltzmann, 1868).

From this distribution of the global system, one can derive the distribution of
any subsystem that is weakly (thermally) coupled to the complementary system by
integrating over the variables of the latter system. When the subsystem is relatively
small, its distribution function is approximately proportional to e, where H is
the energy of the subsystem as a function of its phase. The complementary system
plays the role of a thermostat, whose absolute temperature is 1/8 in proper units,
Boltzmann obtained this general result, corresponding to Gibbs’ later canonical law,
in 1871, It of course contains the Maxwell-Boltzmann law as the particular case for
which the subsystem is reduced to a single molecule (Boltzmann, 1871b, pp. 284—287).

In the same year, 1871, Boltzmann offered an ‘analytical proof of the second prin-
ciple of the mechanical theory of heat’ based on the canonical distribution of a system
in contact with a thermostat. The idea was to identify the internal energy of the sys-
tem with the time-average <H> of its energy-function H, and the work provided to
the system during an infinitesimal change of the external conditions with the time-

average of the corresponding change of its potential energy. Then, the heat exchanged
with the thermostat is

3Q =d<H> — <dH>

when measured in energy units. The averages are based on the distribution
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wherein
Z = /e_ﬂHdG.

Then the product B8Q is easily seen to be the differential of <H> +1n Z. In otber
words, there exists an entropy function, which Boltzmann rewrote the following

year as

S= —/plnpda.

In this circumstance, Boltzmann emphasized the necessity of probability considera-
tions to derive an expression of the entropy on a mechanical basis (Boltzmann, 1871¢;
arrigol, 2003). N
? Desgpite thzs)e interesting results, Boltzmann quickly came to dc.)ub‘f the validity
of the underlying hypothesis of ergodicity. He returned to the kinetic-molecular
approach, which he believed to be better founded thoug.h less general. In 1879,
Maxwell revived the global approach and gave it a new twist. Whereas Boltzmann
had reasoned in terms of temporal probabilities for a single system, Maxwell adopted
the ‘statistical specification’ of a system, in which the equilibrium propertie.s of a ther-
modynamic system are to be compared not with those of a single mechanical system
but with those of a stationary ensemble of such systems. He proved the stgtlonar—
ity of the microcanonical ensemble for any Hamiltonian dynamics-and derived the
Maxwell-Boltzmann distribution and energy equipartition from this ensemble. But

‘he did not explain why stationary ensembles represented the thermal properties of

macroscopic bodies. He regarded this property as a plausible 'as'sumption, to be tested
by experiment and perhaps to be justified someday by ergodicity (Mweﬂ, 1879?.

Boltzmann, who welcomed Maxwell’s contribution, tried to fill this gap Wlth a
heuristic argument. Since, he pointed out, the observed, time-averaged behav1ou.r of
a thermodynamic system does not depend on its initial microscopic configuration,
almost every system of an ensemble must lead to the same time-averages. Therefore,
the time-average of a single system can be replaced with the ensemble average of
the time average, which is also the time average of the ensemble average. Hence, for
a stationary ensemble, the ensemble average should be equal t(.) the time average.
In a non-rigorous manner, this argument justified the use of statistical ensembles as
mechanical models of thermodynamics (Boltzmann, 1881).

Yet Boltzmann remained open to other possibilities for constructing mechan-
ical models of thermodynamics. For example, in the 1880s Boltzmann took up
Helmholtz’s analogy between the so-called ‘monocyclic mechanical s.yst.ems’ and
thermodynamic systems. Helmholtz had not attempted a realis‘gic description of the
mechanical processes responsible for thermodynamic observations. He rather con-
sidered simple mechanical systems, with but a few degrees of freedom, for which )a
function with the properties of the entropy function could be identified. Boltz'mam} S
interest in this approach makes it evident that his principal aim was to identify
mechanical analogies apt to clarify the relation between mechanics and thermody-
namics. In a memoir of 1885 he introduced and discussed, under the name ‘holode’,
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what later came to be called the canonical ensemble. But whereas in modern stat- Another, later, example for the extension of the methods of the kinetic theo.r}f beﬁ"
istical mechanics the canonical ensemble serves to explore physical properties of ond gas theory is P.lanck’s theory qf he.at radiation of 1.896;1t91i)o. ilagfk or11gma ;_r
quite general systems in thermal equilibrium at constant temperature, Boltzmann belonged to the denigrators of the .lqnetlg theory an.d l?elleve . Zt tT; ' egil[a dprop

merely conceived this ensemble as a mechanical analogue on the same footing as erties of radiation §hould be explalnefd.wr(hout statistical met (; s. '1s aI i ;11 e was
Helmholtz’s monocyclic systems. This illustrates a more general fact: although most rooted in his faith in the .absolute validity of the laws of thermo ynarrfncs.. n 1ts .e})r[ez
of the elements of statistical mechanics were anticipated in the work of Boltzmann Boltzmann’s interpretation of tl:le.entropy law could not be t'rue,d 012 1t 1:8 E;fe

and Maxwell, they were there embedded in contexts different from that of modern the validity of this law to a statistical one. Instead, Planclk ‘F)ehfzve‘ ¢ at' the l.bli_
statistical mechanics (Boltzmann, 188s; Klein, 1972a; Renn, 1997). sion of electromagnetic waves by electric resonators was an intrinsically irreversible
process, from which the increase of entropy could be deduceq. Under the pressure
of Boltzmann’s criticism, however, Planck soon came to admit the necessity of an
additional assumption of ‘natural radiation’ as the counterpart of molecular Cha.OS,
25.3.3 Beyond Gases but without accepting Boltzmann’s statistical understanding of disorder. According
to Planck, the intricacies of the invisible dynamics of resonators, or those of the walls
of a gas container, permitted a strictly irreversible evolution of the syst'em, in full har-
mony with his absolute conception of the second law of thermodynamics. Elementary
disorder—a generic name for natural radiation and molecular chaos—thus bec.ame
the central concept of a non-statistical understanding of the relation between micro-

An essential motor of the transition toward modern statistical mechanics was the
application of the kinetic theory to systems other than gases. In the limited context
of gases, kinetic theory served mostly as a mechanical model for thermodynamics
and transport phenomena. Despite a few empirical successes, it retained a precarious
character, as is evident from t}}e controversies in Whi.Ch Boltzmann was linvolved. S.{et and macro-world (Darrigol, 1988).
toward the end of the century it was successfully applied to newer domains of physics

i ing i : : - Planck’s reinterpretation of Boltzmann’s kinetic-theoretical reasoning did not
involving ions and electrons.' In this process the foundations of the kinetic theory stop there. In 1900 his further exploration of heat radiation brought him to apply
were gradually secured and widened.

Boltzmann’s relation between entropy and probability, albeit only in a formal way
that prevented revolutionary conclusions (Planck, 1900). He justified his new for7—
mula for the equilibrium spectrum of thermal radiation (‘Planck’s black-bodY laW )
’by means of Boltzmann’s counting of complexions, reinterpreted as a quantltatn{e
estimate of elementary disorder among resonators of the same frequency v. This
procedure allowed finite energy-elements hv to enter the calculation without con-
tradicting the continuous dynamics of the resonators nor the continuous naturet of
radiation. In this context Planck wrote the formula for the probability interpretation

Afirst example is the theory of the Dutch physicist Johannes Diderik van der Waals,
which represented the first successful attempt at a quantitative understanding of the
liquid-gas transition. In 1857, Clausius had already given a qualitative explanation of
the three states of matter and sketched a kinetic picture of the transitions between
them. Clausius’s and Maxwell’s kinetic theory, however, was essentially confined to
ideal gases, for which the average distance between two molecules is much larger than
their diameter, and for which the intermolecular forces are negligible between col-
lisions. In 1873, van der Waals relaxed these two conditions, with the ambition of

. . o . . of entropy,

creating a kinetic theory of liquids. He assumed hard, elastic, spherical molecules,

with a rapidly decreasing mutual attraction. The effect of the latter force, he reasoned, §=klnW,
boils down to an attraction of the molecules on the fluid’s free surface toward its
interior. On the one hand, this surface correction implies a correction a/V? to the
pressure P that balances the dynamical effect of collisions on the surface. On the
other hand, this dynamical effect departs from Clausius’s ideal value (1 /3)Nmu?/V,
because the finite extension of the molecules alters their flux near the wall in the

proportion (V — b)/V, where b is four times the total volume of the spheres. The
resulting equation of states is

which can now be read on Boltzmann’s grave. Yet he did not admit the statistical
validity of the entropy law until 1914. Einstein and Paul Ehrenfest were th.e first .to
treat black-body radiation as a thermo-statistical system and thus to arrive at its
incompatibility with the laws of classical physics. .

Toward the close of the century, the interest in Maxwell’s and Boltzmann’s kin-
etic theory rose considerably owing to the ever growing significance of atomistic
ideas and statistical methods at the forefront of physics. Prominent examples are
Hendrik Antoon Lorentz’s electron theory (an atomistic version of Maxwell’s electro-
magnetism), Paul Drude’s electron theory of metals, the ionic theory of electrolyt-ic
conduction, the kinetic theory of solutions, and the use of atomistic models in
inorganic and organic chemistry. Novel opportunities offered themselves for exper-
imental research: there were new kinds of radiation, either waves or elementary
particles; new interactions between matter and radiation such as the Zeeman and
photoelectric effects, which confirmed atomistic models of matter or suggested new

(P+a/V*(V —b) =RT.

Van der Waals successfully applied this equation to a unified description of the liquid
and gas states. This simple, non-rigorous model provides a sound intuition of the
most evident properties of real fluids. Maxwell and Boltzmann both contributed to
its spread (Brush, 1976; van der Waals, 1873, chap. 7, 11).
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ones; new studies of colloidal suspensions that seemed to reveal molecular motions,
and so on. Measures of Avogadro’s number could be gained from as many different
sources as the study of capillarity, the kinetic theory of gases, experiments with thin
layers, and, surprisingly, also from the theory of black-body radiation. The agreement
between these measures not only increased confidence in atomistic hypotheses but
also made it seem urgent to develop molecular theories bridging the diverse domains
of physics (Renn, 1997).

in Boltzmann’s methods—more so because he only had a fragmentary knowledge of
them, mainly through the Lectures on Gas Theory (Boltzmann, 1896-1898). Einstein’s
articles of 1902—04 aimed at providing a new foundation for statistical mechanics,
and it was here that he derived the second law of thermodynamics from the canonical
ensemble with slowly varying external forces and justified the canonical ensemble as
a small sub-ensemble of the micro-canonical ensemble. He interpreted all probab-
ilities physically, as measures of the fraction of time spent by the system in various
configurations (Einstein, 1902; 1903; 1904; Renn, 1997).
What distinguished Einstein from his predecessors was a difference of emphasis
25.3.4 Gibbs’ and Einstein’s Formulations of Statistical which turned out to be most consequential. Boltzmann, for instance, had displayed
Mechanics his ability to retrieve the macroscopic laws of thermodynamics and played down the
departures from these laws that the molecular structure of matter implied. Einstein
Early in the twentieth century, Gibbs and Einstein proposed two versions of stat- did the reverse. He wanted to use statistical mechanics to prove the molecular struc-
istical mechanics. They were both convinced that their work did not constitute ture of matter and to probe the non-classical structure of radiation. For this reason, he
a fundamentally new contribution but merely a change of perspective on what focused on the fluctuations around equilibrium that were negligible for Boltzmann
Maxwell, Boltzmann, and others had achieved. Yet their approaches introduced a new and inexistent for Planck. He interpreted the probability in the Boltzmann—Planck
emphasis and also a conceptual organization different from that of the earlier global relation S = klnW as the temporal frequency of the fluctuations of a system, and the
approaches. constant k as the measure of its ‘thermal stability’. In 1905 his analysis of Brownian
Gibbs’ perspective was more mathematical and more abstract than that of his pre- motion showed how fluctuations could become observable on mesoscopic systems
decessors. As a witness of the late nineteenth-century multiplication of molecular such as smoke particles. At the same time, he inverted Boltzmann’s relation in order
theories, he grew suspicious of special molecular assumptions and instead sought to explore unknown aspects of the dynamics of microsystems. This is how he arrived
the most general foundation for statistical physics. His strategy was to develop the at the light-quantum hypothesis. Whereas Maxwell and Boltzmann meant to provide
study of statistical ensembles for their own sake, and then to look for analogies . a mechanical foundation of thermodynamics, Einstein used statistical mechanics to
between the properties of such ensembles and the laws of thermodynamics. In most question this foundation (Biittner, Renn, and Schemmel, 2003).
of his elegant Principles of Statistical Mechanics of 1902, he described the underly-
ing mechanical system in a formal manner, by generalized coordinates subjected
to Hamilton’s equations, for he agreed with Maxwell that the violations of energy
equipartition made the foundations of molecular dynamics insecure. He introduced
and systematically studied the three fundamental ensembles of statistical mechan- In their development of statistical mechanics as a synthetic framework, Gibbs and
ics: the micro-canonical, the canonical, and the grand-canonical ensemble (in which Einstein selected and reinterpreted some aspects of Boltzmann’s and Maxwell’s work.
the number of molecules may vary). He examined the relations between these three They neglected other aspects that were essential to Boltzmann or Maxwell, for
ensembles and their analogies with thermodynamic systems, including fluctuation instance, the discussions of irreversible processes and transport phenomena. More
formulas. Unlike Boltzmann, he did not seek an a priori justification for the ther- faithful to Boltzmann was his disciple Paul Ehrenfest, who strove with his wife
modynamic significance of his ensembles. His approach was essentially axiomatic Tatiana to elucidate the interconnections between Boltzmann’s various approaches
(Gibbs, 1902; Klein, 1972b). and to clarify the relevant probabilistic assumptions. Their encyclopedia article of
Albert Einstein, who was not aware of Gibbs’ Principles, approached statistical ther- 1911 remains an instructive synthesis of Boltzmann’s views. They shared his skep-
modynamics from still a different point of view, with partially overlapping results ticism about the ergodic hypothesis, so much so that Paul imagined a connection
but decisively new aims. In his student years, he had been impressed by the rise between quantum properties and violations of ergodicity. They dwelt on irreversible
of molecular physics, despite the skepticism of many German physicists. He espe- processes, on the Boltzmann equation, and on the paradoxes of the H-curve. They
cially admired Drude’s theory of metals of 1900, which combined Lorentz’s electron reproached Gibbs with neglecting this part of Boltzmann’s legacy, and hardly noted
theory with Boltzmann’s kinetic theory. On the basis of his experiences with the Einstein’s contributions (Ehrenfest and Ehrenfest, 1911; Klein, 1970a).
new applications of kinetic—theoretical methods, including Planck’s work on heat Statistical mechanics has now become an essential part of the canon of physics.
radiation, he perceived Boltzmann’s approach as too focused on the mechanical Yet some of its original diversity has survived. Moreover, the nature and solidity of
foundation of thermodynamics and too little oriented towards new evidence for the its foundations remain controversial issues. Physicists and mathematicians still dis-
atomistic constitution of matter and radiation. From his perspective, there were gaps ~ cuss the pertinence of the ergodic hypothesis or the split between reversible and

25.3.5 The Boltzmann Legacy
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irreversible processes. Philosophers still reflect on the relevant notions of probability

or on the arrow of time. A century later, statistical mechanics is as open and alive as
Maxwell and Boltzmann wanted theories to be.
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CHAPTER 26

THREE AND A HALF
PRINCIPLES: THE
ORIGINS OF MODERN
RELATIVITY THEORY

DANIEL KENNEFICK

26.1 INTRODUCTION

In 1900 the field theory of electromagnetism, WhiC}.l owes it origins primarﬂgr to (;(he
work of James Clerk Maxwell, had been under rgpld. deve%opme.nt for twc? : ;cahesci
In the 1880s a number of British physicists, beginning with ther Heaviside, 12?
developed Maxwell’s work into a successtul bod}f of theo.ry which was al?le to etx}f ain
a number of important features of electrodynamics. During the 1890s this new theory
encountered some difficulties which, as Jed Buchwald., (1985) has shown, were ;0;1-
nected with the earlier theory’s inattention to the physical .nature of the source]jlo t ef
field, the moving charges themselves. This directed attention towards the problem (z_
microphysics and the nature of the electron and towards a theory of electro'lrglggne
ism which focused on the reality of charged particlf:s as agents of th'e field. This was
accompanied by a geographical shift away from Britain, whose leading ﬁgur.es cirrilz
to play a less important role in the development of the theory, to the Continent,
particular to Holland and the German-speaking areas of Eur(?pe.. _ . e
The new Continental theory had important successes, which msp?red a hope tha
was expressed in the term electromagnetic world—v.iew, that all Physmal Phenolil'lena
would be expressible in terms of the electromagnetic ﬁel.d. In spltft of ma]O{D ?cdlive—
ments by Hertz, Lorentz and others, the new theory still found itself troubled by a




