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Translation

1

FUNDAMENTAL
INVESTIGATIONS
‘ON THE MOTION OF BODIES™
[Autumn 1684-Winter 1685/6]

Excerpts from the originals in the University Library, Cambridge

ON THE MOTION OF BODIES IN AN ORBIT.®
Definition 1. A  centripetal’ force® I name that by which a body is impelled or
attracted towards some point regarded as its centre.
Definition 2. And the force of—that is, innate in—a body I call that by
which it endeavours to persist in its motion following a straight line.

autograph as against the copy subsequently registered—namely, the explicit enunciation in
the latter of ‘Hyp[othesis] 4’ and the addition there of two opening Lemmas already employed
as riders in the body of the former draft—are here made good by appropriate editorial inser-
tions in its text (see notes (12), (13) and (15) below). The changes and revisions which were
afterwards effected in this primary state of the ‘De motu Corporum in gyrum’ merely convert
it to be identical with corresponding portions of the augmented tract ‘De motu spheericorum
Corporum in fluidis’ (ULC. Add. 3965.7: 40~547; see Appendix 1 following) which Humphrey
Newton penned from it a while later. (The main innovations in this latter text were first
published by W. W. R. Ball in his 4r Essay on Newton’s ‘ Principia’ (London, 1893): 516 in
sequel to his straightforward repeat (ibid.: 35-51) from Rigaud of the Royal Society tran-
script of the original fair copy sent by Newton to London ; reproduction iz tofo of its text is made
by A. R. and M. B. Hall in their Unpublished Scientific Papers of Isaac Newton. A Selection from the
Portsmouth Collection in the University Library, Cambridge (Cambridge, 1962): 243-67.) For the
historical background to Newton’s composition of the present piece see the preceding intro-
duction, and compare 1.B. Cohen’s Iniroduction to Newion’s Principia (Cambridge, 1971):
Chapter IT1, ‘Steps towards the Principia’: 47-81, especially 54-62.

(8) Literally a closed circuit, but understand any path which is everywhere convex round
some internal point. While Newton has principally in view the minimally eccentric ellipses
which the orbits of the solar planets narrowly approximate, in his ‘Prob. 4’ below he will not
for instance, exclude the open parabolas and hyperbolas which are equally possible orbits under
an inverse-square force directed to a focus. The revised manuscript (see note (2)) bears the
more sophisticated title ‘D MoTU sPHZRICORUM CORPORUM IN FLUIDIS’ (ON THE MOTION OF
SPHERICAL BODIES IN FLUIDS) which better defines its theme. A Newtonian ‘fluid’ is, of course,
any uniform medium—such as the terrestrial atmosphere— which may or may not offer
appreciable resistance to the passage of a body through it, while the insistence that the latter
be a spherical mass may just possibly suggest that Newton had by this time already achieved
the insight that in an inverse-square force-field such a body behaves as though its mass were
concentrated at its centre, as he was soon rigidly to demonstrate (see §2.3: note (188)).
(4) The first occurrence of this classical terminus technicus, contrived as the complement of
the term ‘vis centrifuga (ex motu circulari) used by Christiaan Huygens to denote the
‘endeavour’ outwards from the centre of a body constrained to rotate uniformly in a circle,
and first published in his Horologium Oscillatorium sive De Motu Pendulorum ad Horologia apiato
(Paris, 1673): 159. When in 1719 Newton wrote to Des Maizeaux regarding Leibniz’ corre-
pondence during 1715-16 ‘sur linvention des Fluxions & du Calcul Differentiel” (as Des
Maizeaux headed his gathering of it in Tome II of his Recueil de Diverses Pieces. . ., Amsterdam,
11720), he observed at one point in, a critique of Leibniz’ celebrated ¢ Apostille” to his letter to
Conti in December 1715 that ‘ M* Hygens gave the name of vis centrifuga to the force by wet
revol[v]ing bodies recede from the centre of their motion. M* Newton in honour of that author
retained the name & called the contrary force vis centripeta’ (ULC. Add. 3968.28: 415V; see
also A. Koyré and I.B. Cohen, ‘Newton & the Leibniz—Clarke Correspondence’, Archives
Internationales & Histoire des Sciences, 15, 1962: 63-126, especially 122-3). '

$1. THE FIRST TRACT ‘DE MOTU CORPORUM’
(AUTUMN 1684).®

DE MOTU CORPORUM IN GYRUM,®

Def. 1. Vim centripetam® appello qua corpus impellitur vel attrahitur versus
aliquod punctum quod ut centrum spectatur.

Def. 2. Et vim corporis seu corpori insitam qua id conatur perseverare in
motu suo secundum lineam rectam.

(1) We here reproduce Newton’s original autograph draft of the (now lost) tract ‘De motu
Corporum’ which he sent to London in November 1684, and the two successive versions of its
major revision in 1685 which he subsequently deposited (in an incomplete state) in Cambridge
University Library, purportedly as the text of lectures delivered from the Lucasian chair
during 1684-5. As stated in the preceding introduction, it is our primary concern to stress
internal mathematical aspects of these documents, seeking to pinpoint their place in the broad
sequence of Newton’s mathematical development. To that end we relatively—and injustly—
neglect to give detailed examination of the often revolutionary dynamical principles which
they embody. For this we refer to the many able and penetrating discussions of the quality,
novelty and sequence of Newton’s developing notions of space, motion and force which we
have already listed.

(2) ULC. Add. 3965.7: 55~62bis", first published by J. W. Herivel in The Background to
Newton’s Principia. A Study of Newton’s Dynamical Researches in the Years 1664-84 (Oxford, 1966):
257-74. In the much corrected and overwritten manuscript as we now have it two principal
layers in its composition may be identified. The text of its initial state agrees narrowly with
those of the two known contemporary transcripts of the putative fair copy (by Newton’s
amanuensis, Humphrey Newton?) which was sent to London by way of Edward Paget in
November 1684—that, namely, which was entered in (or shortly after) early December
following in the Royal Society’s Register Book: (6: 218-34, first printed by S. P. Rigaud in his
Historical Essay on the first Publication of Sir Isaac Newton’s ‘ Principia’ (Oxford, 1838): Appendix
No. 1: 1-19 under the title ‘Isaaci Newtoni Propositiones De Motu’) and that, made perhaps
a little earlier, by Edmond Halley (whose first five propositions, afterwards returned to Newton,
are now ULC. Add. 3965.7: 63-707). The only significant deficiences in Newton’s original
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Def. 3.0 Et resistentiam® que est medij regulariter impedientis. .
Hypoth 1.0 Resistentiam in proximis novem propositionibus nullam esse, in
sequentibus esse ut corporis celeritas et medij densitas conjunctim.® .

Hypoth 2. Corpus omne sola vi insita uniformiter secundum rectam lineam in
infinitum progredi nisi aliquid extrinsecus impediat.®

Hyp. 3. Corpus in dato tempore viribus conjunctis eo ferri quo viribus divisis
in temporibus @qualibus successive.d?

Hyp. 4. [Spatium quod corpus urgente quacung vi centripeta ipso motus
initio describit esse in duplicata ratione®? temporis. ]4#

[Lem. 1. Quantitates differentijs suis proportionales sunt continu¢ propor-
tionales. Ponatur 4 ad A—B ut B ad B—C & C ad C—D &c et dividendo fiet
Aad But Bad Cet Cad D &c.]®®

(5) A late insertion in the manuscript, evidently added when (in afterthought ?) Newton
decided to append Problems 6 and 7 and their scholium on motion resisted as the instantaneous
speed.

i (6) Understood to be a Newtonian vis acting instantaneously in a direction contrary to
that of the body’s motion. o N

(7) Newton initially here made the blanket assumption that ‘Corpora nec medio 1m.ped1r1
nec alijs causis externis quo minus viribus insitz et centripetz exquisité cedant’ (Bodies are
hindered neither by the medium nor by other external causes from yielding per.fectly .to.then‘
innate and to centripetal forces). The lack of reference to resisted motion in this preliminary
supposition strongly supports our earlier suggestion (note (5)) that Newton’s final Problems 6
and 7 below were added in afterthought. o ‘

(8) In later redraft (see Appendix 1, and compare note (8) above) Newton 1nterject.ed et
corporis moti spheerica superficies’ (and the spherical surface of the moving body), but without
further elaborating the addendum. In about the autumn of 1685 he ‘returned to the topic,
computing the total resistance to uniform translation of a hemispherical surface to be half
that of its great-circle plane; see 2, §1, Appendix 1 below. _

(9) In other words, it is supposed that ‘natural’ (force-free) motion of a body‘ takes place
at a uniform rate in an infinite straight line, in which state it is sustained by its (internal) vis
insita. It is now well established that Newton arrived at this fundamental postulate of inertial
rectilinearity by combining the primafaltera leges nature (‘quod unaquags res quantum .in se est,,
semper in eodem statu [sc. movendi] perseveret’ and ‘quod omnis motus €xX se ipso sit rectus
respectively) which Descartes set down in his Principia Philosophie (Ams.terdam, 1644): Pars I‘I,
§§ XXX VII/XXXIX: 51-4. In his own carliest notes on mechan.lcs, pfanned .by ’hlm in
January 1665 in his Waste Book (ULC. Add. 4004: 10°—157/38", printed in Herivel’s Back-
ground (note (2)): 132-82), Newton inserted (f. 127) an ‘Ax: 100. Every thing doth naturally
persevere in y* state in weh it is unlesse it bee interrupted by some exte.rrﬁ— cause, henc.e. :;
A body once moved will always keep y* same celerity, quantity & determinacon of its motion’.

(10) This late addition in the manuscript’s margin, given lemmat‘lcal status anq formal
proof in Newton’s immediate revise (see Appendix 1: note (7) below) in effecft enunciates thtz
familiar ¢ parallelogram’ rule for compounding uniform speeds, here generated ¢ 1nstantgneously
by the single, simultaneous application of forces at a point: in Theorem 1 f'oll.ovs{mg, as a
subtlety, one of these is taken to be a general vis centripeta, but the other t}_1e vis ‘mszta which,
according to Hypothesis 2, sustains a given uniform motion in a given §tra1ght line. L

(11) That is, the square. Below, similarly, we render ‘triplicata ratio’ (cube) as ‘tripled
ratio’, and so on.
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Definition 3.® While ‘resistance’® is that which is the property of a regularly
impeding medium.

Hypothesis 1.0 In the ensuing nine propositions the resistance is nil; thereafter
it is proportional jointly to the speed of the body and to the density of the
medium.®

Hypothesis 2. Every body by its innate force alone proceeds uniformly into
infinity following a straight line, unless it be impeded by something from
without.®

Hypothesis 3. A body is carried in a given time by a combination of forces to the
place where itis borne by the separate forces acting successively in equal times.1%
Hypothesis 4. [The space which a body, urged by any centripetal force,
describes at the very beginning of its motion is in the doubled ratio®V of the
time.]@?

[Lemma 1. Quantities proportional to their differences are in continued pro-
portion. Set 4: (A—B) = B: (B—C) = (C: (C—D) = ... and there will come,
dividendo,tobe A:B=B:(C=C:D = ...

(12) Only the opening phrase ‘Hyp[othesis] 4° is present—as a late marginal addition—in
the manuscript. The inserted text is that of the putative fair copy later sent to London (as
settled by the Royal Society and Halley transcripts; see note (2)). It will be evident that
Newton presupposes that the central force acting upon a body may, over a vanishingly small
length of its orbital arc, be assumed not to vary significantly in magnitude or direction, and
hence that that infinitesimal arc is approximated to sufficient accuracy by a parabola whose
diameter passes through the force-centre, with its deviation from the inertial tangent-line
accordingly proportional to the square of the time. The point is further explored in note (19)
below.

(13) 'This necessary lemma is likewise (compare the preceding note) here inserted from the
putative fair copy, as the Royal Society and Halley transcripts (see note (2)) establish its
text. The corollary that, when 4 is ‘ prima & maxima’ and the ‘quantitates proportionales’ are
‘numero infinite’, then ‘erit 4-B ad 4 ut 4 ad summam omnium’ (as James Gregory stated
it in Propositio I of his ‘N. Mercatoris Quadratura Hyperboles [sc. in his 1668 Logarithmoe-
lechnia; see 1: 166] Geometrice Demonstrata’ [ = Exercitationes Geometrice (London, 1668):
9-13, especially 9]) is all-important in Newton’s application of the lemma in Problems 6 and
7 below. (Gregory’s assertion that this limit-summation of a converging geometrical progression
‘passim demonstratur apud Geometras’ is considerably exaggerated: the result was widely
used by the ‘calculators’ of early 14th century Oxford—Richard Swineshead and others—and
was widely familiar by the early 16th century, while Archimedes in his Quadrature of the
Parabola had given rigid proof of the particular case when the proportion factor is § by a
technique generalisable to instances where the factor is less than 4, but the first completely
general demonstration of Gregory’s proposition appeared only in Grégoire de Saint-Vincent’s
Opus Geometricum Quadrature Circuli et Sectionum Coni (Antwerp, 1647): 51-177; see 11: 246, note
(146).) In effect Newton derives in each case the solution log (x,/%,) = —kt as the general
solution of the fluxional equation %, (= dx,/dt) = —kx, by setting (in the geometrical equi-
valents of his hyperbolic model) 4 = %, B = xy,, C = %9y,, D = %3y, ... together with

x()/ (xO _xl/n) = xt/n/(xlln _x2t/n) = e = x(n—l)i/n/(x(n—l)l/n _xi> = 1/(kt/ﬂ),

where HolXyn = XyulXay, = ... = X_pual%, = 1/(1—kt[n) and therefore x/xy = (1—kt/n)":
accordingly, in the limit as » becomes infinitely great there results x,/x, = e,

3 WNM
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[Lem. 2. Parallelogramma omnia circa datam Ellipsin descripta,® esse inter
se zqualia. Constat ex Conicis.]!®

Theorema 1. Gyrantia®® omnia radijs ad centrum A7 ductis areas temporibus propor-
tionales describere.

Dividatur tempus in partes 2quales, et prima temporis parte describat corpus
vi insita rectam AB. Idem se-
cunda temporis parte si nil

«Hyp. 1. impediret “recta pergeret ad
¢ describens lineam B¢ @qua-
lem ipsi ABadeo ut radijs A4S,
BS, ¢S ad centrum actis con-
fectz forent @quales arex
ASB, BS¢. Verum ubi corpus
venit ad B agat vis centripeta
impulsu unico sed magno,
faciataqg corpus a recta Be de- .
flectere et pergere in recta BC. Ipsi BS parallel-a agatur cC occurrens l.?C in C et

'Hyp. 3. completasecunda temporis parte corpusreperieturin C. Junge SC et tr1angplum
SBC ob parallelas SB, Cc zquale erit triangulo SBeatgg adeo etiam trlarflgulo SA4B.
Simili argumento si vis centripeta successive agat in C, D, E &c, faciens corpus
singulis temporis momentis singulas describere rectas C.'D,. DE, EF &cyyy tri-
angulum SCD triangulo SBC et SDE ipsi SCD et SEF ipsi SDE aeql-lale erit.
AEqualibus igitur temporibus zquales arez describun’.cur. Sunt'o jam hae'c
triangula numero infinita et infinit¢ parva, sic, ut sing}lhs jcempmfls .momentls
singula respondeant triangula, agente vi centripeta sine intermissione,® &

constabit propositio.!®

(14) Understand so as to touch it at the end-points of a pair of conjugate di.ameters. 'I.'he
phrasing of the sequel suggests that Newton is unaware that‘ the present lemma is Apollonius,
Conics, vit, 31 (first printed by G. A. Borelli in his Apolloni Pe(gm Conicorum Lzb‘. V. VI I_/H
(Florence, 1661): 370-1). We have already, in demolishing Whls_ton’s a‘t')surd clal.m (Memoirs,
London, ,1749: 39) that Newton’s enunciation of this theorem, in the l}t:cle mo‘dlﬁed form in
which it was to appear in the Principia, manifested his mathematical ability to ‘see almos:t by
Intuition, even without Demonstration’, remarked (see 1v: 9, note (24)) that the propertyis all
but self-evident when. the ellipse is viewed as the orthogonal projection of a circle. I’.c rnay.be,
however, that Newton by his ¢Constat ex Conicis’ makes obligue reference to the ingenious
proof by area-dissection given by Grégoire de Saint-Vincent irf his Opus Geometricum (note (12)):
Liber IV, Propositio LXXII, ‘Rectangulum sub dimidijs axibus zquale est parallelogrammo

ub diametris conjugatis’: 281. .
S }:()15) Like the piefeding, this lemma (needed in the proof of Problems 2 and: 3 below) is here
inserted from the putative fair copy (as we know it from the Royal Society and Halley

transcripts).

[I: §I]
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[Lemma 2. All parallelograms described about a given ellipse®® are equal to
one another. This is established from the Conics. |19

Theorem 1. All orbiting bodies® describe, by radii drawn to their centre,2") areas pro-
portional to the times.

Let the time be divided into equal parts, and in the first part of the time let the
body by its innate force describe the straight line 4B. It would then in the
second part of time, were nothing to impede it, proceed directly® to ¢, describing
the line Be equal to 4B so as, when rays A4S, BS, ¢S were drawn to the centre, to
make the areas ASB, BSc equal. However, when the body comes to B, let the
centripetal force act in one single but mighty impulse and cause the body to
deflect from the straight line B¢ and proceed in the straight line BC. Parallel to
BS draw ¢C meeting BC'in C, and when the second interval of time is finished the
body will® be found at C. Join SC and the triangle SBC will then, because of the
parallels $B, C¢, be equal to the triangle SBc and hence also to the triangle SAB.
By a similar argument, if the centripetal force acts successively at C, D, E, ...,
making the body in separate moments of time describe the separate straight
lines CD, DE, EF, ..., the triangle SCD will be equal to the triangle SBC, SDE
to SCD, SEF to SDE (and so on). In equal times, therefore, equal areas are
described. Now let these triangles be infinitely small and infinite in number, such
that to each individual moment of time there corresponds an individual triangle

(the centripetal force acting now without interruptiond®), and the proposition
will be established.®

(16) Understand ‘in plano’, as Newton will later make explicit in revised enunciation of
this theorem (see §2, Appendix 2.3).

(17} Of force, that is, and not (necessarily) of their orbit.

(18) The Royal Society transcript here reads ‘remissione’ (abatement).

(19) Newton’s proof of this fundamental generalisation of Kepler’s areal law (contrived by
the latter—more than a little shakily—to regulate the varying speeds of the solar planets in
their minimally eccentric elliptical orbits and on a purely kinematic basis; compare E. J.
Aiton, ‘Kepler’s Second Law of Planetary Motion’, Isis, 60, 1969: 75-90) is more subtle and
considerably less cogent than it may at first appear. His unanalysed procedure of breaking
down the action of a continuous central force directed instantaneously towards the centre S as
a body covers the orbital arc BF (it will be obvious that the initial, vanishingly small segment
4B merely serves to define the direction of force-free motion at B) by splitting it into the
compound of an infinity of infinitesimal force-impulses, equal one to the other and each
directed to the centre S, applied at equal (likewise infinitesimal) intervals of time at a corre-
sponding infinity of intervening points C, D, E, ... of the orbit does indeed guarantee that the
focal triangles BSC, CSD, DSE, ... are equal in area to each other, and hence that the time in
which a body under the continual bombardment of such force-impulses traverses the limit-
polygonal arc BCDE ... is, at any point, proportional to the related focal segment (SBCDE ...).
But he ignores whether significant error is introduced in the total action by supposing at each
stage that a continuous force instantaneously directed to the centre § (and so varying infinitesi-
mally in direction over the vanishingly small continuous arc in question) is adequately approxi-

32

“Hypoth. 1.

*Hypoth. 3.




36 The original tract < On motion’ [1, §1] [1,81] The original tract © On motion’ 37

Theorem 2. Where bodies orbit uniformly in the circumferences of circles, the centripetal
forces are as the squares®® of arcs simultaneously®® described, divided by the radii of their
cireles.

Let the bodies B, b orbiting in the circumferences of the circles BD, bd

simultaneously®? describe the arcs BD, bd. By their innate force alone they

Theorem. 2. Corporibus in circumferentijs circulorum uniformiter gyrantibus vires
centripetas esse ut®® arcuum simul®® descriptorum quadrata applicata ad radios circulorum.
Corpora B, b in circumferentijs circulorum BD, bd gyrantia simul® describant

mated by an equivalent impulse of force striking instantaneously at just one poirft; nor d.oes
he justify his assumption that the limit-polygonal arc BCDE ... F passes into a unique orbital
arc BF as the number of bombarding force-impulses increases to infinity. Furthermore, he will
in sequel at once suppose that the direction and length of the total ‘sp'atiupl. supera?um’
(deviation from the initial rectilinear path 4B) is also uniquely—and intuitively—given.

measured in length and direction by the line de, parallel to CS'; and so on: whence the deviation
effected by the totality of impulses is representable by the polygonal arc yde ... F, whose
limiting form (as may readily be proved) is the curvilinear arc y¢F, any point ¢ in which is such
that, if pq is drawn tangent (at ) to the orbital arc B?)\F, then the triangle $Sq is equal in area
to the orbital sector (pSF). The necessary requirement for these unconsidered subtleties to
be (in present context) negligible is, in fact, that the total orbital arc BF be itself infinitesimally
small, in which case the general distance Sp of the orbiting body does not vary appreciably in
magnitude, and therefore the central force, f say, acting over the whole arc BF may be
considered to be constant. It follows that, if the time of orbit over that infinitesimal arc be 4,
and n equal impulses of force act (at B, C, D, E, ...) at intervals of time d¥/n, then each (second-
order infinitesimal) deviation ¢C = dD = ¢E = ... = f.(dt[n)? so that

v8 = uf.(dt/n)%, de = (n—1) f.(dt/n)?,
and hence the total polygonal arc yde...Fis %, (n—i)f.(dt/n)? = $(1+1/n) f.di* In the
i<n—1

]RIKRN—
—
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limit, accordingly, as n = co the deviation arc yF = § f.dt? cc di? (/c\ompare note (9)), and has,
moreover, a maximum slope—at F—which is that of SF, where BSF is of infinitesimal size, so
that it is adequately approzimated in length and direction by any line drawn through F to
By whose slope does not exceed that of SF. In the sequel Newton will, as it suits him, take the
deviation ‘line’ yF—or rather CD in Theorem 2 following and R@ thereafter—to be either the
chord yF or, most often, the parallel through F to §B. Since in the dynamical contexts where

N
However, in terms of Newton’s model, this deviation in the total time from B to F of the the generalised areal lawArecewes its Newtonian application the central angle BSF—or,

impulse (applied at B) which in the time of passage from B to C generates the inﬁnitgsimal
segment ¢C is measured in length and direction by a line ¥4, parallel to BS, where ﬁy is the
force-free path travelled from B in that total time; similarly, the deviation in the time frorp
C to F of the impulse (applied at C) which in the time from C to D generates the segment dD is

correspondingly below, BSD and PS@Q—is invariably infinitesimal, such sophisticated com-
plexities do not there bedevil the logical cogency of its present proof. Whether Newton himself
fully appreciated these underlying subtleties and the validity of neglecting them is not clear.
Certainly, neither in subsequent redraft nor in any of the editions of his Principia (where the
theorem is rightly given pride of place as Proposition I of Book 1) did he ever insert any
modification which would suggest that he later did other than continue to believe in its super-
ficial simplicities, but its is only fair to add that none of his contemporaries and immediate
successors—even Johann Bernoulli, his arch critic and an equal grand master of the infinitely
small—saw fit to impugn the adequacy of Newton’s demonstration. On the historical questions,
finally, of how early and directly Newton became aware of Kepler’s prior statement of the
areal law in the case of the solar planets (and planetary satellites), and when he came to realise
the fundamental réle which its generalisation plays in the creation of a mathematical theory
of central-force orbital dynamics, see the preceding introduction and compare D. T. Whiteside,
‘Newton’s Early Thoughts on Planetary Motion: A Fresh Look’ (British Journal for the History
of Science, 2, 1964: 117-37): 120-2, 128-31. '

(20) Newton has deleted a tentative insertion ¢ celeritatum sive’ (of the speeds or), evidently
because this generalisation to the case where the arcs BD and bd are described in differing times
is delayed to be his prime corollary below.

(21) Or, of course, ‘zqualibus temporibus’ (in equal times).

7R
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arcus BD, bd. Sola vi insita describerent tangentes BC, be his arcubus zquales.®?

Vires centripetz sunt qua perpetud retrahunt corpora de tangentibus ad
circumferentias, atq adeo he sunt ad invicem ut spatia ipsis superata CD, cd, id

: BSavad  peauad | BDavad  pdauad
F @3
est productis CD, ¢d ad F et f®¥ ut o7 ad 7 sive ut'_%C a o

Loquor de spatijs BD, bd minutissimis ingg infinitum diminuendis sic ut pro
1CF, Lcf scribere liceat circulorum radios SB, sb. Quo facto constat Propositio.

|

‘7

Cor 1. Hinc vires centripete sunt ut celeritatum®® quadrata applicata ad

radios circulorum.

Cor 2. Et reciprocé ut quadrata temporum periodicorum applicata ad radios.

Cor 3. Unde si quadrata temporum periodicorum sunt ut radij circulorum
vires centripete sunt eequales. Et vice versa.

Cor 4. Si quadrata temporum periodicorum sunt ut quadrata radiorum vires
centripete sunt reciprocg ut radij. Et vice versa.

(22) In the terms of the second diagram in note (19) above, if the orbit BF (here ED) isa
circle-arc of centre S, then the tangent pg at its general point p (extended to its meet with the
deviation arc Fy, here named DC) is perpendicular to its corresponding radius S, so that,
since the circle-sector (pSF) is equal in area to the triangle pSq, in every case _[;ﬁ = pg, and in
particular BF (that 1s, B/B) = By(BC). The infinitesimal arc ZF);(D’EI) is evidently a circle-
involute, a curve already identified in parallel circumstances by Huygens in his yet unpublished
tract ‘De Vi Centrifuga [ex Motu Circulari]’ (Buvres complétes, 16, 1929: 255-301, especially
265/7). It is interesting that Huygens there approximates the arc DC by its tangent at D
(extended to its meet with BC), while Newton here (see next note) makes equivalent use of its
chord DC. L

(23) In effect Newton approximates the infinitesimal involute arcs CD, cd by their chords
CD, ¢d, and accurately sets the points F, fa little above the extensions of the radii BS, bs. Indeed,
from his researches in 1676 (compare 1v: 670, note (44)) into the approxima/tf rectification of
the arc of a central conic he was aware that, on taking BS = DS = 1 and BSD = ¢ (so that,
where Da is drawn perpendicular to BS, at once Do = sing and Se = cos ), the near-equality
$/3 % sing/(2+cosg) determines that CD meets BS in f such that Bf 5 3BS, whence
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would describe the tangent lines BC, b¢ equal to these arcs.®® The centripetal
forces are those which perpetually drag the bodies back from the tangents to the
circumferences and hence are to each other as the distances CD, ¢d surmounted
by them, that is, on producing CD, ¢d to F and f,® as BC?/CF to bc?/¢f or as

BD2/LCF to bd?|Lcf. 1 speak here of distances BD, bd which are very minute and
indefinitely to be diminished, so that in place of £CF, }¢f it is allowable to write
the radii $B, sb of the circles. And once this is done the proposition is established.

Corollary 1. Hence the centripetal forces are as the squares of the speeds®®
divided by the radii of the circles.

Corollary 2. And reciprocally as the squares of the periodic times divided by
the radii.

Corollary 3. Whence, if the squares of the periodic times are as the radii of the
circles, the centripetal forces are equal. And conversely so.

Corollary 4. If the squares of the periodic times are as the squares of the radii,
the centripetal forces are reciprocally as the radii. And conversely so.

AN AN

BpC =~ §BSD. (This familiar in-
equality, publicly enunciated by
Willebrord Snell in Propositio
XXVIII of his Cyclometricus. De
Circuli Dimensione. . .ad Mechanicem
accuratissima (Leyden, 1621): 42,
was later given rigid proof by
Huygens in Theorema XIII of his
widely read De Circuli Magnitudine
Inventa (Leyden, 1654) [ = (Buvres
complétes, 13,1910 113-81, especi-
ally 159-63].)

(24) That is, the length of
the previous infinitesimal arcs
(BD, bd) divided by the equal
times in which they are uniformly traversed. This fundamental Huygenian result, here after
some thought (see note (20)) delayed to be but a corollary to the preceding main theorem had
initially been attained by Newton about January 1665 (ULC. Add. 4004: 1) by, much as in
%115 present demonstration of Theorem 1, breaking down the action. of a constant, continuously
impressed conatus recedendi a centro into the aggregate of an infinity of infinitesimal impulses
spaced at equal, correspondingly infinitesimal periods of time. (See J. W. Herivel, ‘Newton’s
D1§covery of the Law of Centrifugal Force’, Isis, 51, 1960 : 54653 and his Background to Newton’s
Pr?ncipia (note (2)): 129-30; compare also D. T. Whiteside, ‘Newtonian Dynamics’ (History of
Science, 5, 1966: 104-17): 108-10.) The revised argument here offered, one making a direct
appeal to the notion of a vis centrifuga acting continuously over an infinitesimal time-interval
exactly as Huygens’ earlier (but yet unpublished) demonstration in his 1659 manuscript ‘ De Vi
Centrifuga’ (note (22)), was subsequently evolved by Newton in an untitled paper of about
1670 (ULC. Add. 3958.5: 877/87, first published by A. R. Hall in ‘Newton on the Calculation
of Central Forces’, Annals of Science, 13, 1957: 62-71, especially 64-6; see also Herivel’s
Background. . . : 192-8). Newton’s derivation further parallels Huygens’ prior investigation. in

there approximating the deviation arc DC by the tangent to the involute at D, but the
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Cor 5. Si quadrata temporum periodicorum sunt ut cubi radiorum vires
centripet sunt reciprocé ut quadrata radiorum. Et vice versa.®®

Schol. Casus Corollarij quinti obtinet in corporibus ccelestibus. Quadrata
temporum periodicorum sunt ut cubi distantiarum a communi centro circum
quod volvuntur. Id obtinere in Planetis majoribus circa Solem gyrantibus ing
minoribus circa Jovem et Saturnum®® jam statuunt Astronomi.

Theor. 3. 81 corpus P circa centrum
S gyrando, describat lineam quamvis
curvam APQ, et st tangat recta PR
curvam tllam in puncto quovis P et ad
tangentem ab alio quovis curve puncto
Q agatur QR distantie SP parallela®
ac demittatur QT perpendicularis ad
distantiam SP: dico quod®® wis
centripeta sit reciprocé ut solidum
S Pauad Q Tquad

QR

illius ea semper sumatur quantitas que ultimd fit ubi coeunt puncta P et Q.

Namgg in figura indefinité parva QRPT lineola® QR dato tempore est ut vis
centripeta et data vi ut “quadratum temporis atgy adeo neutro dato ut vis
centripeta et quadratum temporis conjunctim, id est ut vis centripeta semel et

, St modo solidi

possibility that Newton in 1670 could even have been aware of the dynamical researches of his
Dutch contemporary is remote. The ‘De Vi Centrifuga’ appeared publicly only in 1703 in
Huygens’ Opera Posthuma, though bare enunciations of its ‘Theoremata’ (especially ‘IIL. Si duo
mobilia @qualia in circumferentijs @qualibus ferantur, celeritate inzquali, sed utraque motu
zquabili, .. .erit vis centrifuga velocioris ad vim tardioris in ratione duplicata celeritatum’)
were appended, without prior introduction or any explanation, on pages 159-61 of his 1673
Horologium Oscillatorium (see note (4) above).

(25) If, where T is the time of periodic orbit in a circle of radius 7 at a uniform speed
v (oc 7/ T), we suppose generally that 7% cc 7%, then the central force inducing this motion is
v¥lr oc 7| T? oc 77,

(26) This reference to the satellites of Saturn was copied by Humphrey Newton into the
revised version (see note (2)), but soon afterwards, having by way of Edward Paget asked
Flamsteed’s opinion of ‘y¢ supernumeray satellits of T),” and been given on 27 December 1684
the dampening news that ‘I can not find the 2 new ones [announced by Cassini in 1681] with
a 24 foot glasse’ (Correspondence of Isaac Newion, 2 (Cambridge, 1960): 405), Newton deleted the
phrase ‘et Saturnum’ (and Saturn) : in Book 3 ‘De Mundi Systemate’ of the first (1687) edition
of his Principia, likewise, Newton makes no reference to any ‘planetee circumsaturnii’, but the
satellites of Saturn were restored to grace—after due verification of their existence was given—
in Phznomenon IT of the second edition (;1713: 359-60). In his further letter to Flamsteed on
30 December 1684 Newton queried whether the mean radius of orbit of Saturn itself, as
‘defined’ by Kepler in his Tabule Rudolphine (Ulm, 1627), “is. . .too little for y* sesquialterate
proportion’ (Correspondence, 2: 407) and failed to receive in Flamsteed’s reply on 5 January
following (ibid.: 408-9) a confident rejection of his worry that it might suffer a perturbed
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Corollary 5. If the squares of the periodic times are as the cubes of the radii,
the centripetal forces are reciprocally as the squares of the radii. And conversely
$0.(29

Scholium. The case of the fifth corollary holds true in the heavenly bodies: the
squares of their periodic times are as the cubes of their distances from the
common centre round which they revolve. That it does obtain in the major
planets circling round the Sun and also in the minor ones orbiting round
Jupiter and Saturn®® astronomers are agreed.

Theorem 3. If a body P in orbiting round the centre S shall describe any curved line
APQ, and if the straight line PR touches that curve at any point P and to this langent
from any other point Q of the curve there be drawn QR parallel to the distance SP,*" and
if QT be let fall perpendicular to this distance SP: I assert that®® the centripetal force is
reciprocally as the ‘ solid> SP? x Q T?|QR, provided that the ultimate quantity of that solid
when the points P and Q come to coincide is always taken.

For in the indefinitely small configuration QRPT the®? line-element QR is,
given the time, as the centripetal force and, given the force, as® the square of the
time, and hence, when neither is given, as the centripetal force and the square
of the time jointly; that is, as the centripetal force taken once and the area SQP

‘exorbitation’ of significant size when. in the vicinity of Jupiter. Fifteen years before, in a
manuscript annotation on ‘pag 173 & 804’ of Vincent Wing’s Astronomia Britannica (London,
1669) inserted in the endpapers of his library copy of it (now Trinity College, Cambridge.
NQ. 18.36) he had similarly written: ‘An Jovis orbita ad hanc analogiam reduci potest haud
scio, id vero suspicor sed he ejus tabule non satis bene conveniunt cum observationibus’.
None the less, in his published Hypothesis V of Book 3 of his Principia (;1687: 403) he matched
his present confidence in the general validity of Kepler’s third planetary ‘law’—first pro-
pounded in the latter’s Harmonices Mundi Libri V (Linz, 1619)—by asserting without reservation
that ‘Planetarum quinque primariorum, &...Terre circa Solem tempora periodica esse in ratione
sesquialtera mediocrium distantiarum & Sole. Haec & Keplero inventa ratio in confesso est apud omnes
[Astronomos]’.

(27) In his manuscript figure, whether intentionally or no, Newton has in fact drawn QR to
be more nearly in line with $Q. It is tempting to think that he still wishes to make @R closely
approximate the true deviation arc, which will (see note (19)) be exactly parallel to SP only at
its end-point R. The distinction will, of course, have no significance in the sequel, where only
the length of Q R—and not its infinitesimal slope to SP—matters.

(28) Newton here first began to write ‘punctis [ 7P et Q coeuntibus}’ (with the points [ ?P
an(.i Q coming to coincide]). His intention that this ‘ultimate’ (limit) value of the following
ratio must be taken is somewhat cumbrously rephrased in the sequel.

(29) At this place in the redrafted version (see note (2)) Newton further sought to stress
that the deviation is vanishingly small by inserting the adjective ‘nascens’ (nascent). His
following ‘demonstration’ that, where the deviation QR is due to the continuous action of some
central force, fsay, directed instantaneously to the point § as the body in some infinitesimal
time, say df, traverses the infinitely small orbital arc 1552, then QR oc f.di? must inevitably seem
superficial to modern eyes attuned to the subtleties glossed over in Newton’s present assump-
tions; compare notes (12) and (19).

“Hypoth. 4.
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area SQP tempori proportionalis (seu duplum ejus SPx @7’) bis. Applicetur
hujus proportionalitatis pars utragg ad lineolam QR et fiet unitas ut vis centripeta
et SP1x QT4 SP1x QT4 @0
QR QR
Q.E.D.
Corol. Hinc si detur figura quzvis et in ea punctum ad quod vis centripeta
dirigitur, inveniri potest lex vis centripete que corpus in figure illius perimetro

. . SPexQTe. . . . X
gyrare faciet. Nimirum computandum est solidum ——QRQ—— huic vi reciproce

conjunctim, hoc est vis centripeta reciproc¢ ut

proportionale. Ejus rei dabimus exempla in problematis sequentibus.

Prob. 1. Gyrat corpus in circumferentia circuli [:] requiritur lex vis centripeta’
tendentis ad puncti aliquod in circumferentia.

Esto circuli circumferentia
SQPA, centrum vis centripetae®?
S, corpus in circumferentia la-
tum P, locus proximus in quem
movebitur Q. Ad $4 diametrum
et SP demitte perpendicula PK
QT et per Q ipsi SP paral-
lelam age LR occurrentem cir-
culo in L et tangenti PR in
R.®» Frit RP? (hoc est QRL) ad

31)

Y
QT7 ut S4¢ ad SP4. Ergo Qﬁ{q%q.&l = Q77 Ducantur he aeq;ahasi: OF et
¢ q q
punctis P et @ coeuntibus scribatur SP pro RL. Sic fiet i,iqq _@ Q?E . Ergo

(30) More precisely, since (in the terms of the previous note) QR =} f..dzt2 accurately
(compare note (19)), on setting SPx Q1" = ¢.dt there ensues f = 2(c%/SP?%). Qh_r)x}) (QR/QT?).

The full possibilities of this classical Newtonian measure of central force do not well appear in
this geometrical form. If we take S(0, 0) to be the origin of a system of polar coordinates in
which P is the general point (7, ¢) and its radius vector SP = 7 = 14 is regarded as a function
of the polar angle ¢, whose infinitesimal increment is PSQ = o, then to the infinitely near
point Q(rg+,, ¢ +0) corresponds the radius vector 8Q = 14y, = r+o.dr[d+ o d?rldd?+ ...,
while the perpendicular QT = rg,,.5in 0 = 0.7-+0%.dr/dp + ... cuts off

ST = 14,508 0 = r+0.dr[d +Fo%. (dPr|dp*—r) + ...,

i

and therefore (since PR is tangent at P to the arc P’@)
QR = SP—ST+QT.(dr[r dp) = }o?.(r—d?|dp?+ (2[r) . (dr[d$)*) + ...,
so that lim (QR/QT?) = Lr-2(r—d[dp>+ (2]r).(dr|d$)* = 3(r-14-d2(r1)[d¢?), and so the

central ofglfgfao f=f(r) is r2(r-1+d%r1)/d$?). In geometrical equivalent, Newton in his
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proportional to the time (or its double, SP X @ T') taken twice. Divide each side
of this proportionality by the line-element QR and there will come to be 1 as the
centripetal force and SP? x @ T?%/QR jointly, that is, the centripetal force will be
reciprocally as SP? x @ T%/QR.®® As was to be proved.

Corollary. Hence if any figure be given and in it a point to which the centripetal
force is directed, there can be ascertained the law of centripetal force which shall
make a body orbit in the perimeter of that figure: specifically, you must com-
pute (the quantity of) the ‘solid’ SP%x Q7?/QR reciprocally proportional
to this force. Of this procedure we shall give illustrations in following prob-
lemns.

Problem 1. A body orbits in the circumference of a circle: the law of centripetal force®D
tending to some point in its circumference is required.

Let SQPA be the circle’s circumference, S the centre of centripetal force,®V
P the body borne along in the circumference, @ a closely proximate position into
which it shall move. To the diameter $4 and to SP let fall the perpendiculars
PK, QT and through @ parallel to SP draw LR meeting the circle in L and the
tangent PR in R.®? There will be RP? (that is, QR x LR) to QT? as SA* to SP?,
and therefore QR x LR x SP?/SA? = QT2 Multiply these equals into SP?/QR
and, with the points P and @ coalescing, let SP be written in place of LR. In this

following Problems 1-3 will effectively compute the value of this function from the given polar
defining equations

rt = Risecd, r 1= RTJ[1+(/(1—-¢*)sin2¢] and 71 = RI1+ecos@)/(1—e?)

to deduce respectively f(r) oc =5, f(r) oc r and f(r) e r—2 Though Newton himself never
made such an inverse application of his present measure, there is in principle no bar to our
deducing—by two integrations of the ensuing equation f(r) = ¢%2(r—14+d%(r1)/d¢*)—the
polar equation of the general orbit traversible in any given central-force field f(r). In what
was to prove historically an expersmentum crucis of Newton’s general dynamical method at the
hands of Johann Bernoulli during 1710-19 (see D. T. Whiteside, ‘ The Mathematical Principles
underlying Newton’s Principia Mathematica’, Journal for the History of Astronomy, 1, 1970: 116-38,
especially 125-6), it is all but immediate that the conic r~! = A+ Bcos@, resolving the
equation r~14-d2(r~1)/d¢? = k/c?, is the most general orbit traversible in the inverse-square
force-field f(r) = k/r% In Newton’s own geometrical formulation, unfortunately, such a
consequence is far from clearly obvious, and he himself felt forced (as we shall see in com-
mentary upon the scholium to Propositions X—XIT of § 2 following) to use a less direct approach
i demonstrating this inverse of his present Problem 2.

(31) Newton here—and mutatis mutandis widely in sequel—initially wrote ‘gravitatis’. This
broadening beyond the immediate model of solar and terrestrial gravitation. is of considerable
significance in the developing sequence of his dynamical thought. Compare also note (93).
(32) The logical passage to the next sentence was later amplified by Newton’s insertion—
for Humphrey Newton to copy into the revised draft—of ‘et coeant 7Q, PR in Z. Ob simili-
tudinem triangulorum ZQR, ZTP, SPA [erit...]’ (and let TQ, PR meet in Z. Because the
triangles ZQR, ZTP, SPA are similar [there will be...]). In his accompanying figure,
correspondingly, he extended 7Q and PR to meet in Z.
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. . SPe
vis centripeta® reciproce est ut A7 id est (ob datum S49) ut quadrato-cubus

distantiz SP.®% Quod erat inveniendum.

Schol 39 Caeterum in hoc casu et similibus concipiendum est quod postquam
corpus pervenit ad centrum §, id non amplius redibit in orbem sed abibit in
tangente.®® In spirali que secat radios omnes in dato angulo®? vis centripeta
tendens ad Spiralis principium est in ratione triplicata distanti reciproce, sed
in principio illo recta nulla positione determinata spiralem tangit.

Prob 2. Gyrat corpus in Ellipsi veterum: requiritur lex vis centripete tendentis ad
centrum Ellipseos. 5

Sunto CA, CB semi- £
axes Ellipseos, GP, DK ¢
diametri conjugate,
PF, Qt perpendicula s
ad diametros,; QV ~ J/
ordinatim applicata v
ad diametrum GP et y N
Q VPR parallclogram- 3 7 p
mum.®® His construc- '
tis erit (ex Conicis®?)
PVG ad QV? ut PC4
ad CD? et QV4 ad Q4
ut PC? ad PF{, et G IS
conjunctis rationibus
PVG ad Q7 ut PC? ad
C_____D4P>(<quFq . Scribe QR pro PV et4® BC x CA pro CD x PF, nec non (punctis P et
Q coeuntibus) 2PC pro VG, et ductis extremis et medijs in se mutuo fiet

&
v

NG

k) A,

(33) Newton again (compare note (31)) initially wrote ‘gravitas’ (gravity). We will not
pinpoint further instances of this change. .
(34) In effect, Newton computes lim (QR/QT?) = R?[r’as r—3(ds/d¢)?, where (in analytical
Q—>P

equivalent) the polar equation r = 2Rcos¢ defining P(r, ¢) determines it to be on the circle
whose diameter joins $(0, 0) and A(2R, 0). The same result follows equally from computing
this limit in the equivalent form }(r—*+d2(r~1)/d¢?); compare note (30).

(35) This head was probably omitted—by carelessness on its copyist’s part?—from the
putative fair copy subsequently sent to London (see note (2)) since it is absent in both the
Royal Society and Halley transcripts. .

(36) If, of course, we may uniquely define that direction: Newton at once proceeds to give
a counter-instance. '

(37) The logarithmic (equiangular) spiral, that is. In this curve (already familiar to him
as the stereographic projection of the spherical loxodrome which meets all meridians at a
constant angle; see 1v: 126, note (24)) the infinitesimal elements will, for equal vanishingly
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way there will come SP5/8§42% = QT? x SP?/QR. Therefore the centripetal force®?
is reciprocally as SP%/SA42 thatis, (because S42is given) as the fifth power of the
distance SP.® As was to be found.

Scholium.®® In this case, however, and similar instances you must conceive
that after the body reaches the centre S it will no more return into its orbit but
depart along the tangent.®® In a spiral which cuts all its radii at a given angle®?
the centripetal force tending to the spiral’s pole is reciprocally in the tripled ratio
of the distance, but at that pole there is no straight line fixed in position which
touches the spiral.

Problem 2. A body orbits in a classical ellipse: there is required the law of centripetal
force tending to the ellipse’s centre.

Let CA, CB be the B R
ellipse’s semi-axes, GP 3
and DK conjugate dia- D P
meters, PF and Q¢ per- 24
pendiculars to these /
diameters, @ Vordinate /
tothediameter GP,and /
QVPR a parallelo- g 4
gram.®® With this con- ¢ /
struction there will P
(from the Conics®9) be
PV x VG to QV?as PC?
to CD? and again Q12
to Q2 as PC?to PF? and
on combining these
proportions PVx VG
to Q2 as PC? to CD?x PF2/PC?. Write QR in place of PV and®® BCx C4 in -
place of CD x PF, and in addition (with the points P and @) coalescing) 2PC in
place of VG, and when extremes and middles are multiplied into each other

small increments P?Q of its polar angle, retain the same proportion both to themselves and to
the radius vector SP; whence at once lim (QR/QT?) cc 1/SP, and so the central force to the
Q—P

pole § which induces such a spiral orbit varies as 1/SP3. This example is given the status of a
separate Propositio VIII in the amplified text reproduced in §2 following.

(38) However, in Newton’s accompanying figure (which is economically but somewhat
confusingly fashioned to illustrate both this and the following problem) QR is slightly distorted
in direction to be parallel to some mean between CVP and SXP. In our English version, here
and below, we split the manuscript figure into the two simpler diagrams which it combines,
there accurately drawing QR parallel to CP or SP accordingly as the text directs.

(39) Understand Apollonius, Conics 1, 11-19 or equivalent propositions in any of its more
modern reformulations. The reference was inserted as an afterthought.

(40) ‘Per Lem: [2]’ (by Lemma 2), as Newton was to add in his revise.
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2BC7 x CA?

g q 7% CA? . . . .
Qi x PCY _ 2BC7 X C . Est ergo vis centripeta reciproce ut —Ppc id est

QR PC
(ob datum 2BC? x CA?) ut P_IC’ hoc est directé, ut distantia PC.4Y Q.E.L

Prob. 3. Gyrat corpus in ellipsi: requiritur lex vis centripete tendentis ad umbilicum®®
Ellipseos.

Esto Ellipseos superioris umbilicus §. Agatur SP secans Ellipseos diametrum
DK in E.49 Patet EP ®qualem esse semi-axi majori AC €0, quod acta ab altero
Ellipseos umbilico H linea HI ipsi EC parallela, ob equales CS, CH m=quentur
ES, EI, adeo ut EP semisumma sit ipsarum PS, PI id est® ipsarum PS, PH
qua conjunctim axem totum 24C adequant.* Ad SP demittatur perpendi-

cularis Q T. Et Ellipseos latere recto principali (seu _Z_fi_gf ) dicto L, erit L X QR

ad L x PV ut QR ad PV id est ut PE (seu AC) ad PC. et Lx PV ad GVPut L ad
GV. et GVP ad QV7ut CP?ad CDe. et QV? ad Q.X? puta ut M ad N.49 et QX7 ad
QT ut EP? ad PFid est ut CA? ad PF? sive ut CD? ad CB. et conjunctis his
omnibus rationibus, Lx QR ad Q7% ut AC ad PC + L ad GV + CP? ad CD1
+ Mad N + CD7ad CB,id estut AC x L (seu2BC?) ad PC x GV + CP? ad CB?

(41) Newton straightforwardly evaluates his geometrical measure CP—2. lim (QR/Qt?) of
—P

Q
the force directed to C by compounding QR x VG: QV? = PC?: CD? and QV2: Q2 = PC®: PF*
to yield lim (PC?/VG x CD? x PF?) = {PC[BC?x CA4? o PC. ,
V—P

(42) Literally ‘navel’. This anthropomorphic designation had been invoked twenty years
before by Nicolaus Mercator in the preface of his Hypothesis Astronomica Nova, et Consensus ejus
cum Observationibus (London, 1664) to denote—as one component of an elaborate ‘humanist’
image of the planetary ellipse, according to which the line of apsides is divided in the pro-
portions of a male figure set with head at aphelion and feet at perihelion—the ‘belly-button’
centre of a Keplerian ‘vicarious’ equant circle dividing the distance between the solar focus
(at the ‘knees’) and upper focus (at the © breast’) in divine section. With the rise to popularity
of a simpler Boulliauist hypothesis of elliptical motion (see §2: note (163) below) the ‘umbilic’
soon came to be identified—for instance, by Claude Milliet Dechales in his Mundus Mathe-
maticus (Paris, 1674)—rather with the upper focus itself, and then by extension to be applied to
any focus of a conic in general: Isaac Barrow so denotes the focus of a parabola in his Lectiones
XVIII. . . Opticorum Phenomenwn. . . (London, 1669): 28: §x. 1, for example. Newton’s anato-
mically freakish present innovation of permitting his planetary conic to have two ‘navels’
S and H was afterwards continued by him in his published Principia. Earlier, in his youth (see
1: 32) he had been content to employ the now standard term ‘focus’—introduced by Kepler
in Caput 1v, §4 of his Ad Vitellionem Paralipomena. . . (Frankfurt, 1604) and afterwards popularised
by Mydorge and Descartes—and to this nomenclature he was, as we shall see in the next
volume, to return in his private papers in the 1690’s.

(43) In his revise (see note (2)) Newton later added in amplification ‘et lineam @V in X et
compleatur parallelogrammum QXPR’ (and the line QVin X, and complete the parallelogram
QXPR).

(44) Newton here subsequently inserted the parenthesis ‘ob parallelas Ii\I, PR & angulos
®quales IPR, HPZ’ (because of the parallels HI, PR and the equal angles IPR, HPZ), corre-
spondingly extending the tangent RP in his preceding figure to Z.
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there will come to be Q2 x PC?/QR = 2BC?x CA%/PC. The centripetal force is
therefore reciprocally as 2BC2 x CA%[PC, that is, (because 2BC? x CA? is given)
as 1/PC, or in other words directly as the distance PC.4V As was to be found.

Problem 3. A body orbits in an ellipse: there s required the law of centripetal force tending
to a focus® of the ellipse.

Let S be 2 focus of 7 R
the preceding ellipse. @
Draw SP cutting the X
ellipse’s diameter DK ’
in E®3 It is evident N /
that EP is equal to the Sy
semi-major-axis AC, E S0
seeing that, when from 3
the ellipse’sother focus /
H the line HI is drawn F
parallel to CE, because
CS and CH are equal
so are S and EI, and G K
hence EP is the half- -
sum of PS and PI,
that 15,49 of PS and PH which are jointly equal to the total axis 24C.49 To
SP let fall the perpendicular Q7. Then, on calling the ellipse’s principal latus
rectum (viz. 2BC?*[AC) L, there will be L x QR to L x PV as QR to PV, that s, as
PE (or AC) to PC;and Lx PV to GV X VP as L to GV;and GV x VP to QV? as
CP2to CD?%; and QV?%to QX2 as, say, M to N;@®and QX% to Q72 as EP?to PF?,
that is, as CA% to PF? or as CD? to CB?: and, when all these proportions are
combined, L x QR is to QT2 as

(ACto PC) x (L to GV) x (GP% to GD?) x (M to N)40x (GD* to CB?),

(45) This ‘evident’ property of the ellipse—and also, as Newton will soon show (in Pro-
position XT of §2 following), of the hyperbola—is clearly regarded by Newton as his present
dlscqvery, nor indeed have we found it listed in any preceding work on conics: of course
crucial though it is in the context of the present argument, it may (if known) have not been
regarded by geometers at large as basic enough to be accorded separate status as a theorem
(46) This separate denomination of the ratio @12 to QX2 seems entirely unnecessary.
part_lcularly since in the sequel it will, in the limit as @ coincides with P, become unity. Newtoxi
realised as much when he amended his subsequent revise (see note (2)), here altering the
senitence to read ‘et @F¢ ad QX7 punctis @ et P coeuntibus fit ratio equalitatis’ (and QV?2 to
QX2 comes, as the points  and P coincide; to be a ratio of equality), continuing in sequel ‘et
QX?seu QV2 est ad QT7...° (and QX2 or QV2 is to Q7T2...).

(47) These three  +M ad N’ (x (M to N)) were deleted by Newton in the revise in line
with the. emendation recorded in the previous note. The use of * 4+’ to denote ‘addition’
(composition) of geometrical ratios is copied from Isaac Barrow, who introduced this some-
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4+ M ad N,%9 sive ut 2PC ad GV + M ad N.49 Sed punctis @ et P coeuntibus
rationes 2PC ad GV et M ad N fiunt =qualitatis: Ergo et ex his composita ratio
. SPe SP1x QT1

L x QR ad Q@ T.%® Ducatur pars utracg 1n OF et fiet L x SP? = —OQR Ergo
vis centripeta reciproce est ut Lx SP?id est in ratione duplicata distantize.4®
Q.E.L

(0Schol. Gyrant ergo Planeta majores in ellipsibus habentibus umbilicum in
centro solis, et radijs ad Solem ductis describunt areas temporibus propor-
tionales, omnind ut supposuit Keplerus.® Et harum Ellipseon latera recta sunt

T . . \ . e ey . .
%—E ,62 punctis P et @ spatio quam minimo et quasl infinité parvo distantibus.

Theorem. 4. Posito quod vis centripeta sit reciprocé proportionalis quadrato distantie
a centro,® quadrata temporum periodicorumin Ellipsibus sunt ut cubi transversorum axum.

Sunto Ellipseos
axis  transversus
AB,®Y axis alter
PD, latus rectum
L,5® umbilicus al-
teruter S. Centro
S intervallo SP de-
scribatur circulus
PMD. Et eodem
tempore  descri-
bant corpora duo
gyrantia  arcum
Ellipticum PQ et
circulum PM, vi
centripeta ad um-
bilicum S tendente.
Ellipsinet circulum

what confusing notation inhis Lectiones XXIII. . . In quibus Opticorum Phenomenwn Genvine Rationes
investigantur, ac exponuntur (London, 1669) ;see especially hisintroductory list of symbols (signature
a2v), where ‘4.B+C. D’ is deemed to signify the ‘Rationes 4 ad B, & Cad D composite’.
(48) In his revise Newton likewise recast this sentence to read ¢ . . . punctis @ et P coeuntibus
equantur 2PC & GV: Ergoet L x QR & Q T zquantur > (... with the points @ and P coalescing,
9PC and GV are equal; therefore L x QR and QT also are equal).
(49) In sum, Newton here evaluates his measure SP-2. lim (QR/QT?) of the central force
—P

Q
to 8 by compounding (QR or) PX: PV = (PE or) CA: PC, PV x VG: QV? = PC?: CD? and
QX2: QT? = (PE? or) CA?: PF* to produce

SP-2. lim (CA3xPCx QV?[VGxCD?x PF*x QX?) = SP-2/L o SP7%,
Q,V,X—~>P

where the (principal) latus rectum L = 2BC?|CA.
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that is, as
(AC x L(or 2BC?) to PCx GV) x (CP?% to CB?) x (M to N),&?

or as (2PC to GV) x (M to N).4" But, with the points @ and P coalescing, the
ratios 2PC to GV and M to N become ones of equality, and so also therefore does
the ratio L x QR to @ T2.4® Multiply each member by SP?/QR and there will
come to be L xSP? = SP?x QT?/QR. Therefore the centripetal force is reci-
procally as L x SP?, that is, (reciprocally) in the doubled ratio of the distance.®%
As was to be found. '

GOScholium. The major planets orbit, therefore, in ellipses having a focus at the
centre of the Sun, and with their radiz (vectores) drawn to the Sun describe areas
proportional to the times, exactly as Kepler supposed.® And the latera recta of
these ellipses are Q T%/QR,5? where the distance between the points P and Q is
the least possible and, as it were, infinitely small.

Theorem 4. Supposing that the centripetal force be reciprocally proportional to the square
of the distance from the centre,®® the squares of the periodic times in ellipses are as the cubes
of their transverse axes. _

Let AB be an ellipse’s transverse axis,®¥ PD its other axis, L its latus rectum,®®
$ one or other of its foci. With centre § and radius SP describe the circle PMD.
Then in the same time let two orbiting bodies describe (respectively) the ellipse-

arc PQ and the circle-arc PM, with the centripetal force tending to the focus .

(50) Newton first began to enter a ‘Cor. Punctis P et @ coeu[ntibus ratio L x QR ad QT fit
@qualitatis ?]’ (Corollary. With the points P and @ coming to coalesce [? the ratio of L x QR to
QT2 becomes one of equality]).
(51) The ellipticity of Mars’ orbit was established by Kepler in his Astronomia Nova
AITIOAOTHTOZY, seu Physica Celestis, tradita commentariis De Motibus Stelle Martis (Prague
1609) and of that of the other solar planets—with some remaining degree of doubt as to it;
exactness—in his later Epitome Astronomie Copernicane (Linz, 1618-21) ; compare C. A. Wilson’s
W(?ll-documented recent analysis of the former in ‘Kepler’s Derivation of the Elliptical Path’
Isis, 59, 1968: 5-25. On Kepler’s formulation of the planetary areal law in his Astronomia Nov;
see note (19) above.
(62) Newton first began to write in sequel ‘existentibus figuris @ 7PR [? quam minimis]’
(where the figures @ TPR are minimally small).
(63) Understand the centre of force (at the ellipses’s focus §).
(54) Newton first began: ‘Sunto Ellipseos umbilici §, H, centrum C, axis transversus P4
tangens ad verticem PR’ (Let the ellipse’s foci be § and H, its centre C, transverse axis P4,
vertex tangent PR). Correspondingly, in his figure he originally denoted the vertex B by P’
and marked the position of the second focus (as here shown) but without naming it; centre(i
on S, furthermore, he drew two vanishingly small focal sectors SP@ and (in general position)
SEG suqh that the force-deviations, R and FG respectively, from the tangents PR and EF to
the czrb1.t were equal. It is clear that the simplification embodied in rotating SEFG round
to coincide with SPNM in the revised figure and resiting SPRQ in its present position occurred
to him only as he began to pen the present demonstration.
(65) That is, L = PD%/AB = PD?[2SP.

4
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tangant PR, PN in puncto P. Ipsi PS agantur parallele QR, MN tangentibus
occurrentes in R et N. Sint autem figure PQR, PM N indefinité parve sic ut (per
Schol. Prob. 8) fiat LXx QR = QT¢ et®® 98P x MN = MV4. Ob communem
a centro § distantiam SP et inde zquales vires centripetas sunt MN et QR
zquales. Ergo Q7% ad MV est ut L ad 2SP, et QT ad MV ut medium propor-
tionale inter L et 25P seu PD ad 25P. Hoc est area SPQ ad aream SPM ut area
tota Ellipseos ad aream totam circuli.6” Sed partes arearum singulis momentis
genite sunt ut are® SPQ et SPM atcg adeo ut arex totx, et proinde per
numerum momentorum multiplicate simul evadent totis @quales. Revolutiones
igitur eodem tempore in ellipsibus perficiuntur ac in circulis quorum diametri
sunt axibus transversis Ellipseon ®quales. Sed (per Cor. 5 Theor 2) quadrata
temporum periodicorum in circulis sunt ut cubi diametrorum. Ergo et in

Ellipsibus. Q.E.D.69

Let PR, PN be tangent to the ellipse and circle at the point P; and parallel t

PS draw QR, M N meeting those tangents in R and N. Now let ;he figures PQRO
PMN be indefinitely small, so that (by the Scholium to Problem 3) there com ,
to be Lx QR = Q72 and ®925P x MN = MV?2. Because of their commoes
distance SP from the centre § and therefore equal centripetal forces roclucinn
them, M N and QR are equal. In consequence Q@ T2is to MV?as L to QE‘P and .
QT to _M V as the mean proportional between L and 2SP, that is, PD ;o QS;’C')
accordingly, the area (SPQ) is to the area (SPM) as the total area’of the elli sé
to the total area of the circle.®? But the parts of area generated in individﬁa.l
moments are as the areas (§$PQ ) and (SPM), and hence as the total areas, and
c_onsequently when multiplied by the number of these moments the ’ will
simultaneously end up equal to the total areas. Revolutions in ellipses ther};fore

are completed in the same time as those in circles whose diameters a;"e equal t(;

Schol. Hinc in Systemate coelesti® ex temporibus periodicis Planetarum
innotescunt proportiones transversorum axium Orbitarum. Axem unum®?
licebit assumere. Inde dabuntur ceteri.

Datis autem axibus determinabuntur Q

Orbite in hunc modum. Sit .S locus Solis

seu Ellipseos umbilicus unusy, A4,B,C, D 49

loca Planetz observatione inventa et ¢ I
axis transversus®D Ellipseos. Centro 4 ’
radio Q—AS describatur circulus FG /
et erit ellipscos umbilicus alter in hujus /
circumferentia. Centris B, C, D, &c in- \\,;I/ ____________
tervallis Q —BS, Q—CS, Q—DS descri- N
bantur itidem alij quotcungg circuli & SN
erit umbilicus ille alter in omnium / N
circumferentijs atq adeo in omnidlin-  pd N
tersectione communi F. Siintersectiones N
omnes non coincidunt, sumendum J
erit punctum medium® pro umbilico.

Praxis hujus commoditas est quod ad unam conclusionem eliciendam adhiberi
possint et inter se expedite comparari observationes quamplurime. Planete

(56) In the case of the circle it is immediate that the latus rectum is equal in length to the
diameter.
(57) That is, §m. 4B X PD: 7.8P? = 1PD: SP, since AB = 2SP.
(58) In revision (see Propositions XITI/XIV of §2 following) Newton will prefer to prove
this third Keplerian planctary law directly from the result lim (QR/QT?) = 1/L without
Q—P

intervening appeal to the particular case of concentric-circle orbits.
(59) Understand the Keplerian Systema Copernicanum in which the planets traverse exact
ellipses round the sun set at a common focus.

will be permissible to assume one axis : €0
from that the rest will be given. Once
their axes are given, however, the orbits
will be determined in this manner. Let
S be the position of the Sun—one focus
of the ellipse, that is—, 4, B, C, D
positions of the planet found from ob-
servation, and @ the transverse axis®b of
the ellipse. With centre 4 and radius
@ — AS describe the circle FG and the
ellipse’s other focus will be in its circum-
ference. Correspondingly, with centres
B,C,D,...and intervals Q — BS, Q —CS,
Q—DS, ... describe any number of

other circles, and that other focus will be in all their circumferences and hen
at.tht.a common intersection of all of them. If all their intersections do n(c:)i
co.lnc1de, you will need to take a mean point®? for the focus. The advantage of
this technique is that a large number of observations, no matter how mgany
2

the transverse axes of. the ellipses. But (by Corollary 5 of Theorem 2) the squares
of jche periodic times in circles are as the cubes of their diameters. And so also in
ellipses, therefore. As was to be proved.®®

Scholium. HerebY in the heavenly system®® from the periodic times of the
planets are ascertained the proportions of the transverse axes of their orbits. It

(60) In practice this will
. : : , of course, usually be the diameter of th ? i
Teéllums orbis magnus’ as Newton names it below). © anihis orbit (the
, 5623 X[ore precisely, ‘longitx‘ldo axis transversi’ (the length of the transverse axis)
e a(s:sclillzzng t}_{?ht, a}lqc<})lrd1ng to some criterion, numerical ‘weights’ can be set on the
oy with w . s i
y ich the initial planetary positions 4, B, C, D, ... are computed, and
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autem loca singula 4, B, C, D &cex binis observationibus, cognito Telluris orbe
magno invenire docuit Halleus.®® Si orbis ille magnus nondum satis exacte
determinatus habetur, ex eo prope cognito, determinabitur orbita Planete
alicujus puta Martis propius: Deinde ex orbita Planet® per eandem metho-
dum determinabitur orbita telluris adhuc propius: Tum ex orbita Telluris
determinabitur orbita Planete multd exactis quam pritis: Et sic per vices
donec circulorum intersectiones in umbilico orbite utriusg exacté satis
conveniunt.

Hac methodo determinare licet orbi- L
tas Telluris, Martis, Jovis et Saturni, N
orbitas autem Veneris et Mercurij sic. L \
Observationibus in maxima Plane- e "
tarum a Sole digressione factis, haben- . .
tur orbitarum tangentes. Ad ejusmodi . s A
tangentem KL demittatur a Sole per- N ,
pendiculum SL centrog L et intervallo ~. e
dimidij axis Ellipseos describatur cir- —— e
culus KM. Erit centrum Ellipseos in
hujus circumferentia,® adeogs descriptis hujusmodi pluribus circulis reperietur
inomniumintersectione. Tum cognitis orbitarum dimensionibus, longitudines®®

’
-,

\

thereby on the trustworthiness of the trial positions F¥ (say F;, i =1,2,3,...) constructed from
these taken in pairs, it will be natural to choose the mean point F as the ‘centre of gravity’
of the severally constructed points F;; compare the concluding scholium (page 22) of Roger
Cotes’s © Astimatio Errorum in Mixta Mathesi’ (published posthumously in his Opera
Miscellanea | = Harmonia Mensurarum (Cambridge, 1722): 1-121]: 1-22). The simplest instance,
in which each of the positions 4,B,C, D, ... are taken to be computed with equal accuracy,
would then define the mean point F as satisfying 2 (F'—F;) = 0, where F', F; are the distances

K3

of F, F, from some arbitrary straight line—effectively the modern Gaussian least-squares test.

(63) In his ‘Methodus directa & Geometrica, cujus-ope investigantur Aphelia, Eccentri-
citates, Proportionesque orbium Planetarum primariorum. ..’ Philosophical Transactions of the
Royal Society, 11, No. 128 [for 25 September 1676]: 683-6. (Halley’s original English version,
¢ A direct Geometrical Process to find the Aphelion, Eccentricities, and Proportions of the Orbs
of the Primary Planets. ..’ enclosed with his letter to Oldenburg on the previous 11 July, is
reproduced in S. P. Rigaud, Correspondence of Scientific Men of the Seventeenth Century, 1 (Oxford,
1841): 237-41.) Newton is seemingly unaware that the technique here cited, of fixing the
position and relative sizes of planetary radii vectores by means of solar oppositions, is Halley’s
straightforward (if unacknowledged) borrowing from Kepler’s Astronomia Nova (note (51))—
a work which Newton himself almost certainly never read. The method is, of course applicable
only to determining the orbits of upper planets, since Mercury and Venus can never be in
opposition to the Sun (as viewed from the Earth).

(64) Newton first wrote ‘Martis’ (Mars), carrying over his preceding instance.

(65) For, if §" is the mirror-image of the orbital focus S in the tangent KL, the line S'H
drawn from S’ to the second focus H will meet KL in the point P of tangency, and also (since
SI = L§' and SC = CH) be parallel to LC, where C is the required centre; at once

LC = 3}S'H = }(SP+PH) = 4B,
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may be employed to elicit a single conclusion an i

with another. How, however, theg individual positignssp erC]lSﬂYCb;) Comgfa;ec}aoni
may b'e found from pairs of observations once the ‘greaic’ Ear:nu;ij .orbitf;f ?}‘13
Earth is known, Halley has explained.®® If that great orbit is not yet consider 3
to.be determined with sufficient exactness, the orbit of some planet—sa Marsi
wflglbe iietezfgi)iilﬁd ml())}“e (?o}iely from its close delimitation ; then from};he orbit
of the plane e orbit of the Earth wi i i

e at thomeafior o th will be determined still more closely by the

the orbit of the Earth the orbit of
the planet will be determined
much more exactly than before;
and so on in turn until the inter-
sections of the circles concur suffi-
ciently exactly in the focus of each
planet.
By this method we are free to
determine the orbits of the Earth,
Mars, Jupiter and Saturn: to as-
certain the orbits of Venus and
Mercury, however, do as follows.
From observations made at the
maximum digression of these
planets from the Sun tangents
to their orbits are obtained.
To a tangent KL of this type
let fall the perpendicular SL from the Sun, and then with centr
L and radius half the ellipse’s axis describe the circle KM: the cent .
o.f the ellipse will be in its circumference,®® and hence V\;hen sevrgrr?
circles of this sort are described it will be found at their joint interseétioz
Thereafter, once the dimensions of their orbits are known, the lengths(“')

where 4B is the orbit’s axis. As Newton ma
h . y well here assume his reader to know, th i
I{alent proposition .that the foot of the perpendicular from the focus of an ellipse t(g) at,1 ‘ce gent
1es on its circumecircle is Apollonius, Conics, 111, 49. P v tangent
th?SZCgéldCEStind their absolute sizes (as distinct from their relative proportions, now—by the
us techniques—assumed to be known). This use of (twin) ob ions i
of Merenty s saniac~, . Tt (twin) observations of the transits
vy Venus across the solar disc to determine, b i
of the Sun from the Earth (and theref; o o e s ot o ot
1 ( erefrom the absolute dimensions of the orbits of the sol
gf;ef}i i;je:;;n 'Si'i;bs;: l}?ubllcly s;ggested b}}; James Gregory in a brief scholium to Prop(fsoiteilg
. ilissimorum Astronomie Problematén resoluti hib i i 1
. 1onem exhibens concluding his Opt
u:&?;zlftasgﬁo?don, 1663),'where (Page 130) he wrote that ‘Hoc Problema pulcherrixr%urlr? hﬁgz
obscu’r o | orsan, 'Iabono?um, in observationibus Veneris, vel Mercurii particulam Solis
s: ex talibus enim solis parallaxis investigari poterit.’ Halley, who had witnessed
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horum Planctarum exactilis ex transitu per discum Solis determina-
buntur.®?

Prob. 4. Posito quod vis centripeta sit reciprocé proportionalis quadrato distantie a centro,
et cognita vis illius quaniitale, requiritur Ellipsis®® quam corpus describet de loco dato cum
data celeritate secundum datam rectam emissum.

Vis centripeta tendens ad punctum S ea sit qua corpus 7 in circulo 7y centro S
intervallo quovis S7 descripto gyrare faciat. De loco P secundum lineam PR

emittatur corpus P et
mox inde cogente vi cen-
tripeta deflectat in Ellip-
sin PQ. Hanc igitur recta
PR tanget in P. Tangat
itidem recta mp circulum
in 7 sitg PR ad 7p ut
prima celeritas corporis
emissi P ad uniformem
celeritatem corporis 7.
Ipsis SP et Sm parallele
agantur RQ et py;,; hac
circulo in yilla Ellipsiin @
occurrens, et a Q et y ad SP et 57 demittantur perpendicula QT et nr. Est RQ
ad py ut vis centripeta in P ad vim centripetam in 7 id est ut S7a*2% ad SPauad.,

adeog datur illa ratio. Datur etiam ratio Q7T ad y7. De hac ratione duplicata
auferatur ratio data QR ad yp® et manebit data ratio -%7% ad %r; ,id est (per

Schol. Prob. 3) ratio lateris recti Ellipseos ad diametrum circuli: Datur igitur
latus rectum Ellipseos. Sitistud L. Datur praterea Ellipseos umbilicus S. Anguli
RPS complementii ad duos rectos hat angulus RPH et dabitur positione linea
PH in qua umbilicus alter H locatur. Demisso ad PH perpendiculo SK et erecto

semiaxe minore BC est
SP1—92KPH-+ PHt=SH!™=4BH?— 4BC? =8P PHawad — [ x SP+ PH
— SP7+ 2SPH -+ PH¢— L x SP+PH.

a transit of Mercury at St. Helena in October 1677, and may well have directed Newton’s
attention to the possibilities during his visit to Cambridge in August 1684, was later (in papers
published in the Philosophical Transactions in 1691 and 1716; see A. Armitage, Edmond Halley
(London, 1966): 103—4) successfully to overcome the formidable practical difficulties involved
in pinpointing the moment of occultation, synchronising the clocks of widely distant observers,
and making adequate allowance for the diurnal motion of the Farth and inferior planet.
Even so, it proved impossible to test the worth of his procedure till the time (1761 and 1769) of

the next pair of Venus transits.
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of these planets will more exactly be determined from their passage over the
Sun’s disc.®?

Probl.em 4. Supposing that the centripetal force be reciprocally proportional to the square
of the distance from its centre, and with the quantity of that force known, there us required
the ellipse®® which a body shall describe when released from a given pos;tion with a given
speed following a given straight line.

Let the centripetal force tending to the point $ be that which shall make the
body 7 orbit in the circle my described with centre §' and any radius S7. Let the
body P be released from the position P following the line PR®® and directly
thereafter under the compulsion of the centripetal force be deflected into the

e.llipse PQ. This, therefore, the straight line PR will touch at P. Let the straight
line mp correspondingly touch the circle at 7, and let PR be to 7p as the initial
speed of the body P on release to the uniform speed of the body 7. Parallel to
SP. anc! S draw RQ and py, the latter meeting the circle in y, the former the
ellipsein Q, and from @ and y to SP and S7let fall the perpendiculars Q T'and y7.
Now RQ is to py as the centripetal force at P to the centripetal force at 7, that
is, as S to SP2, and hence that ratio is given. The ratio of Q7 to yr i; also
given. From this latter ratio doubled take away the given ratio of QR to yp?
and t.here will remain given the ratio of @ 7T?/QR to y7®[yp, that is, (by the
Sf:hohum to Problem 3) the ratio of the ellipse’s latus rectum to th,e circle’s
diameter; accordingly, the ellipse’s latus rectum is given. Let that be L. There

is given, furthermore, the ellipse’s focus S. Make the angle RPH the supplement

N
of the angle RP:S' and there will be given in position the line PH in which the
other. focus H is located. On letting fall the perpendicular SK to PH and
erecting the semi-minor-axis BC, there is

SP2—2KP x PH-+PH? = SH?) = 4 BH?*— 4B(? = (SP+PH)>*— L x (SP+ PH)
= SP>42SP X PH+PH?—L x (SP+PH).

(67) In his revise (see note (2)) Newton here added in se
quel a further paragraph, touchi
31.1 the system of §olar planets as a collective whole and remarking orll) ‘chgOT ‘sﬁperh?l(;n;?lg’
~1fﬁculty of redqmqg their mutual gravitational perturbations to a ‘suitable calculus’. We
1612125%(;111(;(: it for its intrinsic interest in Appendix 1 following. ‘
Assuming, of course, that the given speed i i i i
. . , peed is low enough for th
the orbit, as Newton will make clear below. h for this species of conic to be
'(69)‘ A canc.elled first yersion of the next two sentences reads in immediate sequel at this
zzmt ea cele(rltaga %uae sit ad celeritatem uniformem corporis 7 ut recta quevis PR ad rectam
Juamvis 77p° (with that speed which shall be to the uniform d i
hng e speed of the body 7 as any straight
70) That is, divide the given ratio @ T%: 72 i i
( at is, di : x72 by the given ratio QR: xp. N igi
C.or(1;11r3ued et dabitur’ (and there will be given...). s QI xp- Newton originally
In his later revise (see note (2)) Newton subseque i ¢
14 : nitl ted ¢ = (= i
minimal clarification of the next equality. : y inserted s Ady i
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Addantur utrobig 2KPH+ L x SP+ PH—SP?— PH1 et fiet
LxSP+PH=2SPH-+2KPH,

seu SP-+PH ad PH ut 2SP+2KP ad L. Unde datur umbilicus alter H. Datis
autem umbilicis una cum axe transverso SP-+PH, datur Ellipsis. Q.E.L

Hac ita se habent ubi figura Ellipsis est. Fieri enim potest ut corpus moveat)
in Parabola vel Hyperbola. Nimirum si tanta est corporis celeritas ut sit latus
rectum L zquale 2SP+2KP, Figura erit Parabola umbilicum habens in puncto
S et diametros omnes parallelas linee PH. Sin corpus majori adhuc celeritate
emittitur movebitur id in Hyperbola habente umbilicum unum in puncto §
alterum in puncto H sumpto ad contrarias partes puncti P et axem transversum
xqualem differenti lineard PS et PH.

Schol. Jam verd beneficio hujus Problematis soluti [Com]etarum®® orbitas
definire concessum est, et inde revolutionum tempora, et ex orbitarum magni-

(72) This was afterwards augmented to the more natural ‘moveatur’ in Newton’s revise.
(73) For, as Newton will prove explicitly in Propositions XI and XII of §2 following,

lim (Q T?%/QR) may likewise be shown to be the length of the latus rectum L when the orbit is
Q—>P
a hyperbola or parabola of focus §, and hence the preceding demonstration holds unchanged

for the general conic. The very concreteness of Newton’s geometrical argument tends to
conceal certain of its general implications. If, in modern g\nalytical equivalent, we suppose
that the body P sets off in the direction PR—at an angle SPR = a, say—with speed v, and is
thereupon ‘instantancously’ diverted towards the centre S by an inverse-square force of
magnitude g at P, and if v be the speed of the body 7 which rotates in a circle in the same
force-field, then in the limit as the arcs P/Q, 7x vanish to zero there will follow by Newton’s
line of reasoning (since PR: mp = v: v and v*/S7m = g.Sm2/SP~?)
Lj287 = (QT*QR)[(mp*/xp) = (PR*.sin*afmp®) x (xp/QR)
= (v2.sin2afv?) X (Sm—2[SP-%) = v?.sinalg.Sm,

whence L = 2(v?/g) .sin?c.. (This circuitous appeal to an auxiliary circle orbit is not, we may
remark, at all necessary, since, where dz is the time of passage from P to @, at once

L = lim (QT2/QR) = lim (PR?.sin%af}g.di?)
QP R—P

with lim (PR/dt) = lim (13Zz/dt) = v.) Further, on taking SP = R, there ensues
R—P Q—P
PK = —Rcos2a
and so SP+PK = 2Rsin®«, whence (SP+PH)[PH = 2(SP+KP)|L = 2/(v*/gR) and therefore
SP+PH = 2R|/(2—1?/gR); accordingly, the conic’s eccentricity is
J[1—L/(SP+PH)] = |J[1— (*gR) (2~v*[gR)sin’c].

The unexpected consequence, considerably veiled in Newton’s geometrical guise, that the
length SP 4+ PH of the transverse axis of the resulting conic orbit depends only on the speed of
projection v and the size g of the central force at P was later to be implicitly invoked by him in
criticism of a ¢ Platonic’ hypothesis of Galileo’s that, as he noted it in a letter to Richard Bentley
on 17 January 1692/3, ‘y* motion of y° planets is such as if they had all of them been created
by God in some region very remote from our Systeme & let fall from thence towards y® Sun,
& so soon as they arrived at their several orbs their motion of falling turned aside into a
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Add 2KP x PH+ L x (SP+PH)—SP?— PH? to each side and there will come
Lx (SP+PH) = 25Px PH+2KP x PH, that is, SP-+PH to PH as 25P+2KP
to L. Whence the other focus H is given. Given the foci, however, along with the
transverse axis SP+ PH, the ellipse is given. As was to be found.

This argument holds when the figure is an ellipse. It can, of course, happen
that the body moves in a parabola or hyperbola. Specifically, if the speed of the
body is so great that the latus rectum L is equal to 2SP+ 2KP, the figure will be a
parabola having its focus at the point §' and all its diameters parallel to the line
PH. Butifthe body is released at a still greater speed, it will move in a hyperbola
having one focus at the point $, the second at the point H taken on the opposite
side of the point P, and its transverse axis equal to the difference of the lines PS
and PH.(®

Scholium. A bonus, indeed, of this problem, once it is solved, is that we are now
allowed to define the orbits of comets," and thereby their periods of revolution,

transverse one’ (Correspondence of Isaac Newton, 3 (Cambridge, 1961): 240) ; rather, as he wrote
again a month later on 25 February, ‘there is no common place from whence all the planets
being let fall & descending wt* uniform & equal gravities (as Galileo supposes) would at their
arrival to their several Orbs acquire their several velocities wt w they now revolve in them.
.If We Suppose y* gravity of all the Planets towards the Sun to be of such a quantity as it really
is [sc. varying as the inverse-square of their distance from it] & that the motions of the Planets
[m' their effectively concentric-circle orbits] are turned upwards, every Planet will ascend to
twice its height from y® Sun....And then by falling down again from y® places to w*® they
ascended they will arrive again at their several orbs w® the same velocities they had at first &
wib WCh they now revolve’ (ibid.: 255). (Compare I. B. Cohen’s exhaustive discussion of this
‘Qallleo*Plato’ problem in his ‘Galileo, Newton and the Divine order of the solar system’
[in (ed. E. McMullin) Galileo: Man of Science (New York, 1967): 207-31]. Newton himself
went on to remark that, if after a fall from infinity in an inverse-square field ‘the gravitating
power of y¢ Sun’ doubled at the moment each planet was diverted into circle orbit, all would
pe well: equally, he might have supposed that by ‘divine’ judgement the solar field was
inverse-cube at the time the planetary system was created!) The still more fundamental
corollary that none but conic orbits are traversible in an inverse-square central-force field—
since for every initial speed » and angle of projection a a unique conic trajectory (an ellipse

parabola or hyperbola according as v < /[2gR], v = \/[2¢R] or v > J/[2gR], namely) ma;i
correspondingly be defined, so exhausting all possibilities of motion from the given point P

distant R from the force-centre, under a central ‘gravity’ of intensity g—is here (not unj
reasonably ?) taken by Newton to be self-evident. T'wenty five years later, after strong criticism
from Johann Bernoulli for a like ‘deficiency’ in thus failing to underline the obvious in the
essentially unaltered equivalent Proposition XVII of Book 1 of his published Principia (;1687:
58-9), he decided to insert in its second edition—in. the closely similar context of Gorolllary L

to the preced%ng Propositions XI-XIII (Principia, ,1713: 53)—a sentence justifying the
I;mgueness of inverse-square conic motion by just such an exhaustion of the possibilities of

otion.

(74) In the manuscript Newton initially wrote ‘Planetarum’ (of planets), a careless slip
copied not only into the putative fair copy—since it occurs in Halley’s transcript (see note (2))

~b1‘1t also into the revise before Newton caught it, though he then took pains to correct both
versions.
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tudine, excentricitate, Aphelijs,™ inclinationibus ad planum Ecliptice et nodis
inter se collatis cognoscere an idem Cometa ad nos sepius redeat.("® Nimirum ex
quatuor observationibus locorum Cometz, juxta Hypothesin quod Cometa
movetur in linea recta, determinanda est ejus via rectilinea.?” Sit ea APBD,
sintq 4, P, B, D loca cometx in
via illa temporibus observatio-
num, et S locus Solis. Ea celeri-
tate qua Cometa uniformiter
percurrit rectam AD finge ip-
sum emitti de locorum suorum
aliquo P et vi centripeta mox
correptum deflectere a recto
tramite et abire in Ellipsi Pbda.
Hxc Ellipsis determinanda est
ut in superiore Problemate.
In ea sunto a, P, b, d loca
Cometz temporibus observationum. Cognoscantur horum locorum e terra
longitudines et latitudines. Quanto majores vel minores sunt his longitudines
et latitudines observate tantd majores vel minores observatis sumantur longi-
tudines et latitudines nova.™ Ex his novis inveniatur denud via rectilinea
cometz et inde via Elliptica ut prits. Et loca quatuor nova in via Elliptica
prioribus erroribus aucta vel diminuta jam congruent cum observationibus
exacte satis.7® Aut si forté errores etiamnum sensibiles manserint potest opus

(75) Another carelessness: Newton manifestly intends Perihelijs’ (perihelia). No solar
comet known in his day is visible in the region of its aphelion from the Earth.

(76) This periodicity Halley was afterwards in his rare (but frequently reprinted) folio
pamphlet, Astronomie Cometica Synopsis (Oxford, 1705), to verify in the celebrated instance of
‘his’ 1682 comet, not only deducing from his detailed computation of their elements of orbit
that it was identical with those which had appeared before in 1531 and 1607—and hence,
from the rough equality (75-76 years) of the intervening time-periods, probably also with still
earlier ones more vaguely recorded—but accurately predicting its reappearance in late 1758
(after his death).

(77) Doubtless by the Wrennian method in ‘Prob. 52’ of his contemporary Lucasian
lectures on algebra (see v: 298-302) or—where the Earth may be considered as motionless to
sufficient accuracy—by the simpler ‘Prob: 16° preceding (v: 210-12). We have also repro-
duced in the previous volume (v: 524-9) two versions of an abortive attempt by Newton in the
autumn, of 1685 to apply the former technique to locating in rough position the out-going
arc of the 16801 comet (or, more accurately, its orthogonal projection upon the ecliptic).

(78) In his revise (see note (2)) Newton later added the clarifying phrase ‘id adeo ut
correctiones respondeant erroribus’ (this so as to make the corrections correspond to the
errors). g

(79) This makeshift construction—quickly to be superseded by more viable methods (see
2, §2 below) if indeed it was ever at any time put into practice—seems more optimistic of a
chance success than solidly reasoned. If T, T, T, T are the points in the Earth’s solar
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and then to ascertain from a comparison of their orbital magnitude, eccentri-
cities, aphelia,™ inclinations to the ecliptic plane and their nodes whether the
same comet returns with some frequency to us."® To be specific, from four
observations of a comet’s positions we need, under the hypothesis that a comet
moves in a straight line, to determine its rectilinear path.? Let it be APBD

with 4, P, B, D the positions of the comet in that path at the times of observatior;
and § the position of the Sun. At the speed with which it uniformly traverses the
straight line AD imagine that the comet is released from some one of its places P
and, snatched up immediately by the centripetal force, is deflected from its
straight-line course, going offin the ellipse Pbda. This ellipse is to be determined
as in the above problem. Initlet a, P, 4, d be the positions of the comet at the
times of observation, and ascertain the longitudes and latitudes of these places
from the Earth. As much as the observed longitudes and latitudes are greater
than these take new longitudes and latitudes greater or less than the observed
ones.™ From these new ones let the comet’s rectilinear path be found afresh

and therefrom the elliptical path as before. The four new positions in thé
elliptical path, increased or diminished by the previous errors, will now agree
exactly enough with their observations. Or, should perhaps the errors even

orbit (effectively a minimally eccentric circle round §) from which the primitive sighti

ric primitive sightings
T, ,A, T, P, Ty Band T D of the orbiting comet at «, P, £ and & respectively are madtf Nev%—
ton’s hypothesis that the points 4’, B and D' from and to which the comet would uniform}
travel in the tangent at P with the speed which it there has (in the same time as it in fact, drawz

towards the Sun S, orbits from and to a, f and d) approximately satisfy aT/":A = AT/’:{ A

A~ o, A o~ .
bTyB =B ,TBZ? arfd a’ TpD = DTy D' is palpably false in general. Where the tangential pointg
A, B, D; A, B', D' rigorously correspond to contemporaneous points g, b, d; @', b’, d' in the
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totum repeti. Et né computa Astronomos moleste habeant suffecerit hac
omnia per praxin Geometricam® determinare.

Sed areas aSP, PSh, bSd temporibus® proportionales assignare difficile est.
Super Ellipseos axe majore EG describatur semicirculus EHG. Sumatur angulus
ECH tempori proportionalis. Aga- w
tur SH eiq parallela CK circulo
occurrens in K. Jungatur HK et
circuli segmento HKM (per tabu-
lam segmentorum vel secus) 2quale
fiat triangulum SKN. Ad EG de- i
mitte perpendiculum NQ, et in eo }
cape PQ ad NQ ut Ellipseos axis !
minor ad axem majorem et erit g & 5 -
punctum P in Ellipsi;, atg acta : : :
recta SP abscindetur area Ellipseos EPS tempori®® proportionalis. Namg area
HSNM triangulo SNK aucta et huic equali segmento HKM diminuta fit
triangulo HSK id est triangulo HSC xquale. Hec ®qualia adde arex ESH,
fient arex® mquales EHNS et EHC. Cum igitur Sector EHC tempori propor-
tionalis sit et area EPS aree EHNS, erit etiam area EPS tempori pro-

portionalis.®®

cometary orbit, then Aa, Bb, Dd; A'd', BY, D'd’ are the deviations due to solar gravity, and

therefore (since the total cometary arc aPbd to be determined is, by implication, s/niall) are all

very nearly parallel to the solar vector SP; whence to a close approximation aSA = ATS‘)I’,

N L oo o, . * . . .
3SB = BSB' and dSD = DSD'. It follows that Newton’s basic premiss for constructing his

revised longitudes (and, by simple trigonometry, the corresponding latitudes) holds only when
the Earth’s orbit T4 T'» T T effectively shrinks to a point T in the immediate region of the
Sun S; here, however, we do not need the full Wrennian method to construct the uniform
tangential path 4'PB'D’ but only the simpler ‘Prob: 16’ of Newton’s algebraic lectiones (see
note (76)), while the points d', &', d ' of orbit are derived immediately as the meets of the
parallels A'a’, B'Y, D'd’ to (SP or) TP with the respective sightings TA, TB, TD. Newton
for in the following autumn of 1685 he made at least one determined
effort, without conspicuous success, to apply this simplification of his present cometary method
to constructing the section of the out-going orbit of the 1680-1 comet visible between 21
December and 25 February; the essence of the worksheet (ULC. Add. 3965.11: 1637) on

which he then penned his computations is reproduced in Appendix 2 below.
(80) Newton subsequently amended this to read ‘per descriptionem linearum’ (by the
description of lines). It is unlikely that contemporary astronomers, rigorously trained (in the
e of numerical and trigonometrical techniques, would have preferred the

main) in the practic
relative inaccuracy of such an equivalent geometrical construction, however easy to effect.
—

(81) Understand in. which the preceding ellipse-arcs aP, ﬁ, Pd are described.
(82) Of orbit, that is, in the ellipse-arc EP, from E to P. Notice that Newton measures this
‘mean anomaly’ in modern style from perihelion (and not, as was the usual contemporary

practice, from the aphelion G).

came to realise as much,
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now r‘emain sensible, the whole process can be repeated. And, in case the com-
putations prove troublesome to astronomers, it will be enough to determine all
these things by a geometrical procedure.®0

But to assign areas aSP, PSb, bSd proportional to the times® is difficult. On
the major axis EG of an ellipse describe the semicircle ZHG. Take the angle

N

ECH proportional to the time. Draw SH and parallel to it CK, meeting the
circle in K; then join HK and make the triangle SKN equal to the circle’s
segment HKM (by means of a table of segments or otherwise). To EG let fall the
perpendicular NQ and in it take PQ to NQ as the ellipse’s minor axis is to its
major axis, and the point P will then be in the ellipse, while the straight line SP
will, when drawn, cut off an area (EPS) of the ellipse which is proportional to the
time.® For the area (HSNM), augmented by the triangle SNK and diminished
by the segment (HKAM) equal to this, becomes equal to the triangle ASK, that is

to the triangle HSC. When these equals are added to the area (ESH) they wili
form equal areas (EHNS) and (EHC). Since, therefore, the sector (EHC) is
proportional to the time, and the area (EPS) to the area (EHNS), the area
(EPS) also will then be proportional to the time.®

(83) This was trivially changed in Newton’s revise (note (2)) t d equi ¢ i
e S ( (2)) toread equivalently * . . .addita
(84? Since Newton equates the segment (HKM) to the area of the triangle SK N—and not
the mlmmally_larger focal sector (SKN)—his construction will not be rigorously exact, though
we may readily show how finely it approximates to the truth. If, in simplest analytical
equivalent, we suppose the ellipse to have semi-axes EC = CG = 1 and eccentricity SC = ¢

then define the position P of the orbiting body in the arc EPG by the eccentric angle E/C\N =6

{(not shown in Newton’s figure) and the time of orbit over EP by the angle E/aH = T, where
(by the areal law) ’

. T:m = (ESP): (ESGP) = (ESN) [or (0 —esin®)]: (ESGN) [or}n],
it wﬂ! be clear tl.lat Newton’s construction approximately resolves the ensuing equation
6 —esin 6=T (glven), and hence the general ‘Astronomicum Problema’ propounded by
Kepler in 1609 in Chapter 60 of his Astronomia Nova (see 1v: 668, note (38)) which is its
geometrical rng(iel: naril\ely, he there successively adduces to that end
HCK(= SHC) = a = tan{esin T/(1 —ecos T')]

= esin T+ 362sin 2T +3Asin3 T+ 3e*sind T+ ...,
segment (HKM) = $(a—sina) where
a—sing = f = tad+... = 2¥(B3sin T—sin37) +7%5¢*(2sin 27" —sind T')...

N 2
(CKN) =~ (SKN)/(1 + (SC/CK). cosKCG) = /(1 —ecosO)
to derive in equivalent terms the solution, correct to O(e%),
0~ THa—p/(l—ecosT) = T+esin T+3e2sin27T+363(3sin 37 —sin T')
. +§64(2sind T—sin27) +....
As Newton may well /h\aVe known, the simpler approximation
6 ~ ECK = T+sina = T+esin T[4J[1—2ecos T+e?]
= T+esin T+ 3*sin27 +363(3sin3T—sin T) +...,

and sector




62 The original tract * On motion’ [1,§1]

Prob. 5. Posito quod vis centripela sit reciproce proportiorfalis quac?rqto distantie a
centro,® spatia definire que corpus rectd cadendo datis temporzl?us.descrzbzt. .
Si corpus non cadit perpendiculariter describet id Ellipsin®® puta APB cujus
umbilicus inferior puta § congruet cum centro terre.®? 4
Id ex jam demonstratis constat. Super Ellipseos axe
majore AB describatur semicirculus ADB et per corpus
decidens transeat recta DPC perpendicularis ad axem,
actisqg DS, PS, erit area ASD arex ASP atg aded tem- © 7
pori proportionalis. Manente axe 4B mil?uatur per-
petud latitudo Ellipseos, et semper manebit area A;SD
tempori proportionalis. Minuatur latitudo illa in 1n-
finitum et Orbita APB jam coincidente cum axe AB
et umbilico S cum axis termino B®® descendet corpus
in recta AC et area ABD evadet tempori proportion-
alis.® Definietur itacg spatium AC quod corpus de loco
A perpendiculariter cadendo tempore dato describit si
modd tempori proportionalis capiatur area ABD et a s
puncto D ad rectam AB demittatur perpendicularis

DC. Q.E.F. : o _
Schol.®9 Priore Problemate®? definiuntur motus projectilium®in aere nostro,

B

correct to O(et), had long before been derived by ]'30n23.vent'ura Qavalieri in an effscti.vely
identical manner (by drawing CK parallel to SH) in his Direclorium Gener.ale. Uranometricun,
In quo Trigonometrie Logarithmice Fundamenta, ac Regule demonstrantur, Astronomiceque Supputationes
ad solam_fere Vulgarem Additionem reducuntur (Bologna, 1632): 152, and repeated—with full credit
given to Cavalieri—in G. B. Riccioli’s widely studied Aimagestum Novum, Astronomzaﬂf Vetere.m
Novamgque complectens (Bologna, 1651): 535. Just three years before Newton contrived his
present improvement—unpublished in his lifetime——Ghr}stlaan Huygens had. made tbe
Cavalierian approximation the basic regulator of the varying planetary spe<?ds (in eccentric
circle orbits) in the ‘automatic’ plan)etalr‘ill:;m8 whose model he completed in 1682; see his
omplétes, 21 (The Hague, 1944): —8. ' ' . .
@7{;75@)5 cNvaton has (deleted t%le qualification ‘terra’ (of the earth) in line VV’It}.'l his systematic
alteration throughout the present text of (solar or terrestr.ml) ‘gravitas® into a ‘generalz
unspecified ‘vis centripeta’ (compare note (31)). Correspondingly, the u?restrlc’:ted corpus
P whose motion is here determined was initially described throughout as a “grave (gravitating
bo?Byﬁ)). Since Newton’s argument requires only a Vanishinglxsmall'initi.al speed of Prqjectlon
transverse to the path A of rectilinear fall, there is no deficiency in his thus restricting the
i onic orbit. . . .
ens(18n7I;gTChIiz1 unwanted survivor of an earlier, more restricted dynamical' vww{'pomt—stlll
uncancelled in both the Royal Society and Halley transcripts of the putative fa:xr copy (se‘e
note (2))—was afterwards deleted by Newtor'). (compare §2: note (166)) in line with ?15
preceding enunciation (see note (85)). In making similar omission of a terrestial location for
S we stress in our English version that it is a general centrum virium’. .
(88) Since the eccentricity of the ellipse 4PB approaches 1nd'eﬁn1te.ly close to unity.
(89) Newton’s procedure of maintaining the length of the orbital axis 4B unchanged while
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Problem 6. Supposing that the centripetal force be reciprocally proportional to the square
of the distance from the centre,® to define the distances which a body falling straight down
describes in given times.

If the body does not fall perpendicularly it will describe an ellipse,®® suppose

APB, whose lower focus, say §, will coincide with the centre [of force].®? This is
settled from what we have already demonstrated. On the éllipse’s major axis
AB describe the semicircle ADB and let the straight line DPC pass through the
dropping body perpendicular to the axis, and when DS, PS are drawn the area
(45D) will be proportional to the area (45P) and so also to the time. With the
axis AB remaining fixed, perpetually diminish the width of the ellipse and the
area (ASD) will ever remain proportional to the time. Diminish that width

indefinitely and, with the orbit APB now coming to coincide with the axis AB
and the focus $ with the end-point B of the axis,®® the body will descend in the
straight line AC and the area (4BD) will turn out to be proportional to the
time.® In consequence, the distance AC described by a body falling perpendi-
cularly from the position 4 in a given time will be defined if only the area (4BD)
be taken proportional to the time and then from the point D the perpendicular
DC be let fall to the straight line AB. As was to be done.

Scholium.®® By the previous problem ®V the motions of projectiles®® in our

continuously enlarging the initial distance AS of the body from the centre of force till it coin-
cides with AB—and so, correspondingly, varying the gravitational
constant in the force-field, £/SP? round S—seems needlessly com- 4
plicated and its subtlety is far from adequately explored. The natural
approach, avoiding such a complex detour, is to keep the distance

AS unchanged but (by allowing the initial velocity of projection at

4, normal to A4S, to become vanishingly small) continuously to
diminish the orbital diameter AB till B coincides with §; the ‘last’ € D
ratio of the elliptical sector (4ASP) and the infinitely narrow semi-
ellipse (ABP) is then straightforwardly that of the segment (4$D)
and the full semicircle, and Newton’s desired result that the time of
fall along the orbital arc AP, that is (in the limit) 4C, is measured
by the circle segment (4SD) follows immediately. Unless the falling
body, when it attains the force-centre S, is (by its impact with it or
some other means) conceived to have its direction of motion there
instantaneously reversed, there will be a discontinuity in this argu-
ment from the vanishingly small approximating ellipse which
Newton fails to appreciate: namely, the body will continue past §
at a slowing speed analogously proportional to the inverse-square S/B

of its distance from it till it comes momentarily to a halt at (say) 4’

where 4" = AS, thereafter falling back towards § and past it to halt momentarily at 4 and
then going on to repeat this cycle indefinitely.

(90) In his revise (see note (2)) Newton extensively amplified this scholium, asserting that
any postulated interplanetary ether cannot offer appreciable resistance to orbiting bodies (and
so will not be a set-back to the application. of the preceding Problems 3 and 4) and referring
to his correspondence with Robert Hooke (in the winter of 1679-80) on the apparent deviation
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hacce motus gravium perpendiculariter cadentium ex Hypothesi quod gravitas
reciproce proportionalis sit quadrato distantiz a centro terre quodgg medium
acris nihil resistat. Nam gravitas est species una vis centripeta.®®
Prob. 6. Corporis sola vi insita per medium similare resistens
delati motum definire.
Asymptotis rectangulis ADC, CH describatur Hyper- "
bola secans perpendicula 4B, DG in B, G. Exponatur

tum corporis celeritas tum resistentia medij ipso motus G
initio per lineam® AC;, elapso tempore aliquo per B
lineam® DC,, et tempus exponi potest per aream
4 D c

ABGD atq spatium eo tempore descriptum per lineam
AD. Nam celeritati proportionalis est resistentia medij et resistentie pro-

portionale est decrementum celeritatis,®® hoc est, si tempus in partes aequales

the northern hemisphere, he would argue—of a body let fall

—to the south as well as east in
Farth. For its considerable intrinsic interest we reproduce its

from a height onto the rotating
major portion in Appendix 1 below.

(91) Problem 4, that is.
(92) Newton first wrote ‘gravium’, carelessly anticipating his next clause. 1t is, of course,

his wish to distinguish here between bodies impelled ‘artificially’ at some point and those which

fall ‘naturally’ under terrestrial (inverse-square) gravitation alone.

(93) We have already pointed (see note (31)) to the significance of Newton’s specification
of “gravity’ (solar or terrestrial) as but one instance of the general central force (vis centripeta)
whose accelerative effects he begins—for the first time—to discuss abstractly in his present
treatise. In the manuscript he has, for no clear reason, cancelled an immediately preceding
sentence ‘Sequentibus resistentia medij similaris primum absc gravitate dein cum gravitate

consideratur’ (In the following [problems] the resistance of a homogeneous medium is con-

sidered, first in divorce from gravity and then in company with it). This smooth transition to
was repaired in Newton’s

the final Problems 6 and 7 (and their scholium), so harshly broken,
revise by the insertion of an appropriate subhead underscoring the change of theme to ‘the
motion of bodies in resisting media’. Compare Appendix 1 below.
The extant portion of Halley’s transcript of the fair copy terminates at this point. The
remaining pages were sent by him to John Wallis two years after he penned them, and are now
lost. In his covering letter to Wallis on 11 December 1686 he recalls that ‘Mr Isaac Newton
about 2 years since gave me the inclosed propositions, touching the opposition of the Medium
to a direct impressed Motion, and to falling bodies, upon supposition that the opposition is as
the Velocity; which tis possible is not true: however I thought any thing of his might not be
unacceptable to you, and 1 begg your opinion thereupon, if it might not be (especially the
7th problem) somewhat better illustrated’ (from the original in Trinity College, Cambridge.
R.4.45.111B, first published in E.F. MacPike, Correspondence and Papers of Edmond Halley
(London, 1932): 74-5). As newly appointed Clerk to the Royal Society, responsible among
other things for restoring the health of its ailing Transactions, Halley was primarily concerned
not to divulge the content of Newton’s researches into resisted motion (the text of which, let
it be said, had already (see note (2)) been transcribed into the Society’s Register Book, and so
was accessible to any Fellow) but to use the communicated propositions as bait to persuade
out of Wallis his own ‘ conclusions concerning the opposition of the Medium to projects moving
through it; .. .not doubting but that your extraordinary talent in matters of this nature, will
be able to clear up this subject which hitherto seems to have been only menconed among
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atmosphere are defined, and by the i
' . , . present one those of heavy bodies falli
perp.endlcularly, in accord with the hypothesis that gravity is reciprocally prr(l)g:
por(‘;l.onal ’;0 l;clhe square of the distance from the earth’s centre and that the
medium of t i i ity i i
medin e air resists not at all. For gravity is one species of centripetal
Problem 6. To define the motion of a body borne by its 1
t .
homogeneous resisting medium. ’ y i tanat Jovee alons through @
With rectangular asymptotes ADC, CH descri
. 1 , ibe a hyperbola cutting th
per-pendlculars AB, Z?G in B and G. Express both the body’s speed ang th:
remztsar%ce of the medium by the®?® line AC at the very start of motion and b
the® line DC after some lapse of time: the time can then be expressed by ch
area ABGD and the .dlstance described in that time by the line 4D. For the
resmtag;c.e of the med1um is proportional to the speed and the decrement of the
speed®®is proportional to the resistance ; that is, if the time be divided into equal

lliy/l:;f,ilg?'ati(fiznsé n}(lever yet fully discussed’ (¢bid.). (Like every one else in England at the time
\ included, he was unaware that Huygens had fully solved th bl i '
simple gravity when the ‘opposition’ is instantaneousl el vo e Hight spond et
: y proportional to the flight

Kxa}r{ sgenteen years fearher; see note (113) below.) After some initial hesi‘iinc Sp(eceodmmore
f . z;.ll, Ballzstz.cs in the Seqenteenth Century (Cambridge, 1952): 130-1) Walli}; was oo
aftte}fwztj ] co.axed into composing a short, woollily argued ‘Discourse concerning the Meassoon
;I ar:h igsge]sls;%gcz (t)()) BOdlﬁs r}rlloved in it’ (Philosophical Transactions, 16, No. 186 [forjanua;l;e
: 269-80) in which the horizontal and vertical ents of ¢ jecti h

e ) components of the projectile path

: g.dylds are accurately rendered imi i
base variable) of the respective diﬁ'erence-equitioﬁs ered as the fimit (B¢ >0, where £s the

v —Y, = =70 — =
x+1 x * and Yy Uy_—rvy"l'g: X Y =0,1,2, 3, ..y

and the former’s ‘integral’ ¢ oc lo i i
. g (vy/v,) is correctly deduced in the tri
h_yperbol_lc area, !out .thc. corresponding solution. (v, ~> v, —g/r) is missgflozlr?dr:giorfg dell o
zlgli)rmg Jlustcllﬁcatlon is given fpr his assertion (ibid.: 27) that ‘the line of ’Projects r(lt?egrr?bilo
Con:gzdiong ‘ :}tl“zll*irzgi :rzlxln tlri—sj[lgllllt p}elrl(liaps derived largely from his private view' of Newton?:
: . That Halley had not sought Newton’s pri i ion i
clear from his letter to Newton on 24 Febr D o D ot
: uary 1686/7, where, in referring to ‘D is hi
papers’, he remarked that Wallis ‘had the hint f ’ ’ ion of wh N
ST int from an account I gave him of what you had
saac Newton, 2, 1960: 469). A fortni
AR , 2, : . A fortnight or so before Newton
' quiries, through Edward Paget, of Wallis® thi jecti
pretty like those of mine in y® papers Mr P fi ’ an o e
By e those of min Wheth(}:)r ? aget first shewed you’ and had been reassured that
€\ intend to print mine’, ash
(tbid.: 464). Luckily for Halley (and i : § the st of fhe s
4). Wallis), Newton had th i i
book of b Privsis it i y (and Wallis), ad the manuscript of the second
, in its first section, improved versi f hi
et e (o0 A . , Ip rsions of his present Problems 6 and 7
ppendix 3 following) ready to go t i
sq\zgz;al% ﬁvas avc.:rted.by its arrival in London 531 28 I\Zarcio (z'(l))zg?siag?d # potentally nasty
el ine ctlacxl‘lﬁcatxon_ quam:/is datam’ (any given) is deleted. In revise (see note (2))
ot serte t}}e equ1va:1ent date longitudinis’ (of given length) after *...AC’
) Uzcszrqzlaléﬁedgs ‘indefinitam’ (indefinite) by Newton in his revise.
stan i i :
L ey , as Newton at once effectively specifies, over a correspondingly infinitesimal

5
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66 The original tract * On motion’

dividatur, celeritates ipsarum initijs sunt differentijs suis proportionales.
Decrescit ergo celeritas in aproportione Geometrica dum tempus crescit in
Arithmetica. Sed tale est decrementum linew DC et incrementum aree
ABGD,® ut notum est. Ergo tempus per aream et celeritas per lineam illam
recté exponitur. Q.E.D. Porrd celeritati atq adeo decremento celeritatis
proportionale est incrementum spatij descriptiy, sed et decremento linee DC
proportionale est incrementum linee AD. Ergo incrementum spatij per
incrementum linee AD, atg adeo spatium ipsum per lineam illam recte
exponitur. Q. E.D.69

Prob. 7. Posita uniformi vi centripeta, motum corporis in medio similari® rectd
ascendentis ac descendentis definire.1%”

Corpore ascendente exponatur vis
centripeta per datum quodvis rectangu-
lum BC et resistentia medij initio as-
census per rectangulum BD sumptum
ad contrarias partes. Asymptotis rect- .
angulis AC, CH, per punctum B descri- g , 3
batur Hyperbola secans perpendicula [ — @E

. G 'z

DE, de in G, g et corpus ascendendo

tempore DGgd describet spatium EGge,
tempore DGBA spatium ascensus totius EGB, tempore AB2G2D spatium descen-

sus BPE2G atqg tempore 2D%Gg*d spatium descensus 2G@E®Rl?g: et celeritas
corporis resistentizz medij proportionalis, erit in horum temporum periodis
ABED, ABed, nulla,®™ AB2E2D, AB®¢d; atqg maxima celeritas quam corpus
descendendo potest acquirere erit BC. :

Resolvatur enim rectangulum@®® AH in
rectangula innumera Ak, Ki, Lm, Mn &c
que sint ut incrementa celeritatum &qua- v

H

1
i
D d 4 D % C

libus totidem temporibus factay,; et erunt e

Ak, Al, Am, An &c ut celeritates tote atg E B AT L o
adeo aut resistentie medij in fine®®® sin- ¢ k': b

gulorum temporum zqualium. Fiat AC L y + L: A'x“fv .

ad AK, vel ABHC ad ABKK ut vis cen-

(97) Changed by Newton in his revise to read ‘Sed proportione priore decrescit linea DC
et posteriore crescit area ABGD’ (But the line DC decreases in the former proportion and the
area ABGD increases in the latter one).

(98) If (in more easily assimilable modern analytical equivalent) we suppose that the body,
starting off from A along ADC with an initial speed V,, is in time ¢ slowed by the resistance
acting over AD = x down to the speed v, at D, then, (with Newton) appropriately absorbing
the constant of proportionality into /, we may set the resisting force 9, (= dv,/dt) to be equal
to the speed v, = & (= dx[di); accordingly, by Lemma 1 (compare note (13) above) the
fluxional equation v, = —v, yields as its ‘integral’ log(v,/V,) = —1 while its equivalent
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parts, the speeds at the beginnings of these are proportional to thei
dlﬁ‘e%"enc?s. The speed therefore decreases in a geometrical proportio ar cilv'vln
the time increases in an arithmetical one. But this is the mannerpof d rease of
jche line DC and of increase of the area ABGD,®" as is known. Thereft e(fcifas'e o
is correctly expressed by the area and the speed by that line. As was tc()) ];Jee y tm:ie
Furthermore, the increment of the space described is proportional to thIZ:r: e d
and hence to the decrement of the speed, but so also is the increment of th pl(:f N
AD propo_rtlonal to the decrement of the line DC. Therefore the increme tmef
the space is correctly expressed by the increment of the line AD, and he ent}?
SP;CC bl;self7 b},sf' that line. As was to be proved.®® ’ e
roblem 7. Supposing a uniform centripetal for (100 1
ascending and descending straight up and ﬁown zj:z ac (;;OZOEegffjus(;’)tiidz?quon ooy
Where the body ascends, let the centripetal force be represen.ted b
arbitrary rectangle (4)B(H)C and the resistance of the medium at the S’Zl a‘én};
ascent by the rectangle (4)B(E)D taken the opposite way. With rectan fﬂo
Iajse};rpi;:gitslsl liC,D%H dth.roz;gh :cihe point B describe a hyperbola cuttingg tl?(l;
ulars DE, dein G and g: the body in ascent i i i
then describe the .distance (EGge) and in tlr}lfe time (Dé%ztél})leatiinilsia(ifi?t‘?li
ascent (EG_B.), whlle in the time (4B%G%D) it will cover the distance (BZEZG(; ;
descent and in .the (further) time (2D?G%g?%d) a descent (2G2E22g) ; also the bod o
speed, proportional to the resistance of the medium, will at thesia oint in time
be (ABEP), (4Bed), nothing,%) (AB2E2D) and (AB%2d) whils th greaton
speed which the body can acquire in its descent will be BC, © greatest
MF or resolw? the rectangle A(B?H (C) into innumerable rectangles Ak, Kk, Lm
By which shall be as the increments of speed brought about in> orre.
sponding number of divisions of time, and Ak, 41, Am, An will the ba s the
whole speeds and hence® as the resistances of the meéiur;l 'a;;:’the end(ﬂm) e? Y
of the corresponding equal times. Make AC to AK, or ABHC to ABLK Oa: ?c;};

U, = — 4 produces straightforwardly v, — V, = —
therefore, it follows, on putting Ag’ s V: = x. In the terms of Newton’s hyperbolic model,

. proodeC(= V,—x) = v, and (4ABGD) c log (AC/DC) = log (Vfv,) = t
emonstrates somewhat cumbrously that, where dt is a vanishi dy .
. 4 h i ;
of the base variable #, then d(DC) = —d(4D) and d(ABGD) = \gln)li zllr(lilg)sgcmilc; (nDClCe)I?DerCth

so that (as it) i i
(as Newton puts it) if the area (ABGD) increases arithmetically—and so its increments

( BGD) are constant—
d A - then d DC oC D i
H ] ] . ]. ance Z )C '[(( g,. C and therefore the mcrements ()fDC Vary g(:OIIl(:lli-

(?9) Understand ‘resistente’ (resisting) as before.

(100) Neyvton first wrote ‘exponere’ (to represent).

(101) This replaces ‘nihil® (nil).

883; IThe eguixlr\:ralent ‘parallelogrammum’ was first written

‘ n revise Newton improved his phrasing slightly to ‘d ¢ ihi

An-&c. . .in principio’ (and nil, 4k, Al,-Am, An, .. g wil}; thsr?abe. .e t air?}ils Irolggllrjlrfﬁjgfl’ An

5-2

“Lemma 1

“Hypoth. 1.
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tripeta ad resistentiam in fine temporis primi®® et erunt ABHC, KkHC,
LIHC, [Mm]HC &c ut vires absolute quibus corpus urgetur ata adeo ut
Lem. [1] incrementa celeritatum, id est ut rectangula Ak, KI, Lm, Mn &c & tproinde in

progressione geometrica. Quare si recte Kk, LI, Mm, Nn [&c] productz
occurrant Hyperbole in &, 4, 4, v & 199 erunt arex ABxK, KkAL, LAuM, MuwN
&c @quales, adeo tum temporibus qualibus tum viribus centripetis semper
aqualibus analoge. Subducantur rectangula Ak, KI, Lm, Mn &c viribus
absolutis analoga et relinquentur arez B, kA, um, mpvn &c resistentijs medii
in fine singulorum temporum, hoc est celeritatibus atcg adeo descriptis spatijs
analogee.199 Sumantur analogarum summa et erunt aree Bkk, BIA, Bmu, Bnw &c
spatijs totis descriptis analoge, nec non arex ABkK, ABAL, ABuM, ABvN &c
temporibus.@9? Corpus igitur inter descendendum tempore quovis ABAL
describit spatium BIA et tempore LA[v]N spatium M. Q.E.D. Et similis est
demonstratio motus expositi in ascensu. Q.E.D.A%®

Schol. Beneficio duorum novissimorum problematum innotescunt motus
projectilium in a€re nostro, ex hypothesi quod aer iste similaris sit quodgs
gravitas uniformiter & secundum lineas parallelas agat. Nam si motus omnis
obliquus corporis projecti distinguatur in duos, unum ascensus vel descensus,
alterum progressus horizontalis: motus posterior determinabitur per Problema
sextum, prior per septimum ut fit in hoc diagrammate.9

centripetal force to the resistance at the end of the first time-division,@0%
ABHC, K]cHC’, LIHC, MmHC, ... will then be as the absolute fo\;fflzgrg w}?iréﬁ
the body is urged and hence as the increments of speed, that is, as the reZtangles
Ak, [.(Z, Lm, Mn, ... and consequently® in geometrical progression. Wherefore, if 1,
the hﬁgs Kk, LI, Mm, Nn, ... when produced meet the hyperbola in «, A ’,u e 1
vy venyt )th‘e areas (ABxK), (KkAL), (LAgM), (MuvN), ... will be equal and ,he;mé
in proportion both to the equal times and to the ever equal centripetal forces
Take away t.he rectangles 4k, KI, Lm, Mn, ... proportional to the absolute forceé
anc.i there will be left areas (Bkk), (kkAl), (IAum), (muvn), ... proportional to the
resistances of the medium at the end of the separate intervals of time, that is, t
the speéds and hence to the distances described.%® Take the sur;ls of th,esz
proportionals and the areas (Bkk), (BIA), (Bmu), (Bav), ... will be in proportion
to the total distances described, and also the areas (4B«K) (AB/IL)p (APB M)
(ABvN), ... to the times.199 The body, therefore, during its ’descent i;1 an ﬂtimé
(ABAL) describes the distance (BI1) and in the (further) time (LAvN) the diZtance
(Alny). :As was to be proved. The demonstration for the motion represented i
ascent is similar. As was to be proved.1® ’ .
. S.c/zolz'um. With the aid of the two most recent problems the motions of pro
jectilesin our .zxjr are discoverable, on the hypothesis that this air is homo entlaoou;
and .that gravity acts uniformly and following parallel lines. For if ever %)bli ue
motion of a projected body be distinguished into two, one of ascent ory descgnt
t.he other of horizontal advance, the latter motion will be determined b thé
sixth problem and the former by the seventh, as happens in this diagram}’m")

(104) This, correspondingly, was later changed to ‘in principio temporis secundi’ (at the
beginning of the second time-division), while the sequel was considerably amplified to read
‘decg vi centripeta subducantur resistentiz et manebunt ABHC, . . .quibus corpus in. principio
singulorum temporum urgetur. . .* (from the centripetal force take away the resistances and
ABHC, .. .will then remain. . .by which the body is urged at the beginning of the individual
times).

(105) Newton subsequently inserted a clarifying parenthesis ‘ob proportionales 4K ad KL
ut KC ad LC hoc est ut LA ad K« (because of the proportionals AK to KL as KCto LC, that is,
as LA to Kk).

(106) This sentence was afterwards substantially augmented to read: ‘Est autem area
ABxK ad aream Bkk ut Kk ad 3kk seu 4C ad 34K hoc est ut vis centripeta ad resistentiam in
medio temporis primi. Et simili argumento arez kKL, ALMu, pMNv &c sunt ad areas KKIA,
Mmpu, pmny &c ut vires centripeta ad resistentias in medio temporis secundi tertij quarti &c. plicity) 4B = DE = 1 that
Proinde cum arez equales BAKk, kKLA, ALMp, uMNv &c sint viribus centripetis analoga, _
erunt aree Bkk, Kkl)\fl Mmp, pmny &c resistentijs in medio singulorum temporum, hoc est. .. and (DGgd) = CAlog (CD]ed) = glog ((V,+8)/(v,+g)) = gt
descriptis spatijs analoge’ (Now the area (4B«K) is to the area (Bkk) as Kk to $kk or AC to 50 that (GE (DEed) = Dd = V,—v, = y+gl,

1AK, that is, as the centripetal force to the resistance at the middle of the first time-interval. spondi (Glieg) A Conw?r sely, where the constant force g accelerates the motion, the cor
And by a similar reasoning the areas (kKLX), (ALMp), (pMNv),. . .are to the areas («kIA), ponding equation of motion dv,/dt = —v,+g yields ’ re
log ((v,—g)/(V,—¢g)) =—t and (v,—g)—(V,—g) =
y—& =—y+gt

(Mmp), (pmny),. . .as the centripetal forces to the resistances at the middle of the second, third,
forth, . . .time-intervals. Consequenily, since the equal areas (BAKk), (kKLA), (ALMpy), hence in the geometrical model i =
and 4% — 9. there ensu::o el, on taking C4 = g and AB = 1 as before but now 42D =V,

(uMNv),. . .are proportional to the centripetal forces, the areas (Bkk), (xkIA), (Almp),

v),...willb tional to the resistances at the middle of the individual time-intervals,
(jomny) i W o esistance ¢ €e ' (2D%G?g%) = CAlog (C?D[C?%d) = gt and (2D2E?%?%d) = 2D% = —y +gt
so that (2G2E%2%) = y. yrg,

that is,. . . to the distances described.)
(107) In revise Newton stressed the passage to the limit implied in sequel by inserting ‘Et (109) H fth
ere, if the body shot offat D along DP traverses the arc Das
; ; ¢ Dar = sundersi i
g (acting vertically downwards) to r(x, y), defined by the coordinates DR zrzlfr{)ée]%:allt;,

(And when the rectangles come to be infinite i
od : nfinite in b infini
cm(ri((:)léi)e 'i/s?th the [corresponding] hyperbolie ones) .num cr and infiniely small, these areas
, in analytical clarification, we su i
: \ ppose that the moving body starts off wit
tI;y and, ever subject to a constant decelerating force g, is in time tfurchr slowsez by ltlilesfee;?i
mgtc;;naiéugg Zvel:i a distance g, dow'n to the speed v, = dy/dt, then we may set the equation of
once log ((v e—i—zy)// (tV:+;’§$)l*g’ ﬂ;z’;li: Ei(vﬂ-+3g)/tl(’tV: _)(”y+g) o the.tonms of Nowiors
((, Y =- v,4+g)—(V,+g) =—y—gt. In t ’
hyperbolic model, therefore, it follows f)n puttingy Cfl =g i/‘ng: ; ?4(:1 Tr?8a32§gyts?;s
3 ¥ = Yy =

hze arew ubi rectangula numero infinita et infinite parva evadunt coincidunt cum Hyperbolicis’
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Ex loco quovis D ejaculetur corpus secundum lineam quamvis rectam DP,
& per longitudinem DP exponatur
ejusdem®19 celeritas sub initio motus. P
A puncto P ad lineam horizontalem
DC demittatur perpendiculum PC; ut
et ad DPMD perpendiculum CI, ad N
quod sit DA ut est resistentia I'nec.lij
ipso motus initio ad vim gravitatis.
Erigatur perpendiculum AB cujusvis
longitudinis et completis parallelo-
grammis DABE, CABH, per punctum
B asymptotis DC CP describatur Hy-
perbolasecans DEinG. Capiaturlinea
N ad EG ut est DC ad CP et ad recte
DC punctum quodvis R erecto per-
pendiculo RtT, in eo cape

 DRtE—DRTBG
- N

et projectile tempore DRTBG per-
veniet ad punctum 7, describens cur- L
vam lineam DarFK quam punctum 7

semper tangit, perveniens autem ad o -
maximam altitudinem « in perpendiculo 4B, deinde incidens in lineam

horizontalem DC ad F ubi aree DFsE, DFSBG aeqx.lan.tur,(llz) ct postea
semper appropinquans Asymptoton PCL. Estcg celeritas ejus in puncto quovis 7

ut curve tangens 7L,%

Rr

there attaining the orbital speed v = ds/dt after time /, then (on pre.:sux.ning., with I;I)ew‘;;)rg ti)}al.;
the constant of proportionality of resistance to instantaneous Veloc1t’y is suitably a sort' e )that
equation of motion of the body at 7 is dv/(%’t = —v—g.dy[ds. Newton’s pres;nt _assump 1o_n o
this may be split into horizontal and vertical components, respect.wely dv fdt =—v, v, = >
(see note (98)) and dv, [dl = —v,— &V, = dy/dt (see note (108)), is accurate (for, because DRr
is right, 2 = v3+v} and therefore
dvjdt = v.dvlds = v,.dvJds+v,.dv[ds = (dx/ds) .dvx/dt-}—(dy/ds).fivy/a’t) o

for all its plausibility, not a self-evident truth; i't is, indeed, 1mp‘erm1551 e c:
i);liic the general pequationydv/dt =—1— gdy/ds (n =+ 1) into compa(;*able ‘cocrlnproorlliegisa )
dv jdt = —v and dv [/dt = —vj—g, as Leibniz in 1588 Flalmed .mlght be oned——dse_p— iitas
hic vitanda est’—in the instance n = 2 (that of resistentia respectiva, deﬁr%ed by v/ sd-: &v when
g = 0) in Article VI of his insufficiently pondered ¢Schediasma de R651‘sjcent1a Medii, a(; te
projectorum gravium in medio resistente’ (purportedly mapped out ‘jam pro magll';? I;tion
Parisiis duodecim abhinc annis’ [se. in 1676] but composed only shortly }aefore 1tjswpuh ic tlon
in Acta Eruditorum (January 1689): 38-47 [= (‘ed. C. L (?erha.rdt) Lezbnzz;ﬂscs (}llt gfm ;;vla’
Schriften, 6 (Halle, 1860): 135-43]). Newton seemingly remained ignorant of the Schedias
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Let the body be hurled from any position D following any straight line DP,
and let its19 speed at the start of motion be expressed by the length DP. From
the point P let fall the perpendicular PC to the horizontal DC, and also drop the
perpendicular CI to DP ;1D then let DA be to CI as the resistance of the medium
at the very start of motion is to the force of gravity. Erect the perpendicular 4B
of any length and, having completed the parallelograms DABE, CABH, through
the point B and with asymptotes DC, CP describe an hyperbola cutting DE in G.
Take the line N to EG as DC is to CP and, having erected the perpendicular
RtT at any point R of the line DC, take in it Rr = ((DRtE) — (DRTBG))/N and
the projectile will in time (DRTBG) reach the point 7, describing the curve
DarFK with which the point ris ever in contact—attaining, indeed, its maximum
height at @ in the perpendicular 4B, then falling onto the horizontal DC at F,
where the areas (DFsE) and (DFSBG) are equal,™® and ever afterwards
approaching the asymptote PCL; and its speed at any point r will be as the
curve’s tangent 7L.113)

for a quarter of a century till John Keill freshly brought it tohisnotice in the heat of the fluxion
priority squabble as one more stick with which to belabour Leibniz, but afterwards he was only
too ready to criticise Leibniz’ ‘erroneous’ attempt ‘to find the Curve described in a Medium
where the resistance was in a duplicate ratio of the velocity [by] compos[ing] the horizontal &
perpendicular motions of the projectile’ (ULC. Add. 3968.31: 457", extracted from a draft
‘Supplement’ to Desmaizeaux’ editorial Preface introducing his Recueil (note (4)), 1: i-Ixxxi in
1720). Above all, in a developed critique of Leibniz’ paper which he sent to John Keill in
May 1714 he wrote: ‘In sexto [Articulo] Propositiones sunt tantum duz, et utrac falsa est.
Corpus enim, ubi resistentia est in duplicata ratione velocitatis, non fertur motu composito ex
motibus duorum Articulorum precedentium [dv,/dt = —v3 and dv, [dt = —12+ g respectively]’
(ULC. Res. 1893.8, published in Joseph Edleston, Correspondence of Sir Isaac Newton and
Professor Cotes (London, 1850): 309-10). Newton himself straightforwardly discussed these
‘component’ Leibnizian rectilinear motions in Propositions V-VII and VIII/IX respectively
of Book 2 of his published Principia (see Appendix 2: note (17) below), but, in seeking in his
following Proposition X to reduce the general equation dv/dt = —p+g. dylds of motion under
constant gravity g and resistance p, he was forced to concoct ad hoc a cumbrous, circuitous
method which in a particular instance, as Johann Bernoulli brought to his attention in autumn
1712 (though he himself could not accurately trace the error—an inexact infinitesimal approxi-
mation—in Newton’s general argument), led ineluctably to a numerically false result.
{Compare D. T. Whiteside, ‘The Mathematical Principles underlying Newton’s Principia
Mathematica’® (note (30)): 128-9.) Extracts from the sequence of manuscripts in which Newton
came to appreciate his mistake and to give several variant proofs of the correct result—only
one of which was set, in a last minute stop-gap, in the new edition of his Principia (,1713:
232-40)—will be reproduced in the eighth volume.

(110) Initially ‘projecti’ (the projectile’s) was written.

(111) Accurately, this should (see note (113) below) be ¢...ad parallelam ipsi DP ductam
per 4’ (to the parallel to DP drawn through 4), or some equivalent which reduces the length of
Newton’s perpendicular CT in the ratio AC/DC.

(112) Perhaps because it merely states the obvious, this clause ‘deinde. . .zquantur’ (then
- ..are equal) was cancelled by Newton in his redraft.

(113) Where (as in note (109)) the body, shot off at D under simple downwards gravity g

and perpetually slowed by a resistance equal to its orbital speed, traverses Dar in time ¢,
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Si proportio resistentia aeris ad vim gravitatis nondum innotescit: cogno-
scantur (ex observatione aliqua) anguli ADP, AFr®® in quibus curva DarFK
secat lineam horizontalem DC. Super DF constituatur rectangulum DFsE
altitudinis cujusvis, ac describatur Hyperbola rectangula ea lege ut ejus una
Asymptotos sit DF, ut arez DFsE, DFSBG zquentur et ut s sit ad EG sicut
tangens anguli AFr®% ad tangentem anguli ADP. Ab hujus Hyperbola centro C
ad rectam DP9 demitte perpendiculum CI ut et a puncto B ubi ea secat
rectam FEs, ad rectam DC perpendiculum BA, et habebitur proportio quasita
DA ad CI, que est resistenti medij ipso motus initio ad gravitatem projectilis.
Quz omnia ex predemonstratis facilé eruuntur. Sunt et alij modi inveniendi
resistentiam aeris quos lubens pratereo. Postquam autem inventa est hec
resistentia in uno casu, capienda est ea in alijs quibusvis ut corporis celeritas et
superficies spherica conjunctim, (nam projectile spharicum esse passim sup-
pono;) vis autem gravitatis innotescit ex pondere. Sic habebitur semper pro-

attaining at point r (defined by DR = x, Rr = y) the speed ds/dt = v of respective horizontal
and vertical components dx/dt = v, and dyldt = v,, we may integrate the corresponding
equations of motion dv,Jdt = —v, and dv,|di = —v,—g 1O produce Vy—v, = %, log (Vylvy) = ¢
(note (98)) and V,—vy = y+8i, log ((Vy+g)/(vy+g)) = t (note (108)), where V,, V, are the
initial values (at D) of vy, vy. At once Vofv, = of (Vo—2) = (Vy+8)/(vy+8) and so

%[V = (Vﬂ_vy)/Vﬂ+g))

whence y = ((V,+8)/Va)%— glog (V,/(V,—x)) is the defining Cartesian equation of 7(x, ¥).
y) when v, = 0 and hence

Clearly, the projectile will reach its maximum height at a(x,
DA = V,V,/(V,+g),and attain a maximum horizontal range DC = Xatvy = Vo—X =0 and
so DC = V,,; whence CP = V,, DP =V, AC = g.V,|(V,+g) and RC = Vy—x = vy 5O that
the tangent rL = v,.ds/dx = v. Further, since 4B X AC/EG = ACx DCIDA = (V,/V,)g, on
taking (with Newton) V/V, = N, |EG, there results

(DRIE) = ABX DR = (N.g/]AC) DR = N.(Vy+8)|Va)x
and (DRTBG) = ABx AC.log (DC|RC) = N.gt o i,

so that Rr = ((DRtE) —(DRTBG))[N. Lastly, the ‘resistentia medij ipso motus initio” Vis to
the ‘vis gravitatis’ g as V,V,/g- CI, that is,—on correcting a trivial Newtonian slip—as DA/[CI’,
where CI' = CI.g/(V,+g) = CI.(AC|DC).
Newton was to set Problems 6 and 7 and the preceding portion of the present scholium with
minimal revision as the opening Section I of Book 2 of his Principia (;1687: 236-45), there
presenting in Proposition IV a geometrical demonstration of what he here merely asserts. For
purposes of comparison with our modern analytical justification we reproduce the text of this
geometrical revision in Appendix 3. 1/3 following. The novelty of his present solution to the
problem of motion under resistance varying as the speed and a constant uni-directional
diverting force should not be over-stressed ; though Newton was still himself unaware of it in
1687, Christiaan Huygens had here anticipated him by nearly two decades. (Huygens made
public announcement of his own near-identical researches only three years afterwards in the
concluding pages of his reworked Discours de la Cause de la Pesanteur (Leyden, 1690): 168-80
[ = Guvres complétes, 21 (The Hague, 1944): 478-93], there remarking that ‘J°ay vu avec plaisir
ce que Mr. Newton écrit touchant les chites & les jets des corps pesants dans ’air, ou dans
quelqu’ aut[rje milieu qui resiste au mouvement; m’estant appliqué autrefois a la mesme

[1,81] The original tract * On motion’ 79

If the ratio of the resistance of the air to the force of gravity is not yet ascer-
tained, let there (from some observation) be learnt the angles ADP and A/ﬁr(ll‘l)
in which the curve DarFK intersects the horizontal DC. On DF form the
recta.ngle DF5E of any height, then describe a rectangular hyperbola with the
restrictions that DF be one of its asymptotes, that the areas (DFsE), (DFSBG)

be equal, and that 5§ be to EG as the tangent of the angle AFr19 to the tangent

N
of ADP. From the centre C of this hyperbola let fall the perpendicular CI to
the line DP,11® and also from the point B where it cuts the line Es drop the
perpendicular BA to the line DC, and the required ratio DA to CI—that of the
resistance of the medium at the very start of motion to the gravity of the pro-
jectile—will be had. All these results z
are easily derived from what has pre- -
viously been demonstrated. There are p /
other methods, too, of finding out the ,
resistance of the air, but these I readily
pass over. After this resistance has been /
determined in one case, however, it
needs to be taken in any others jointly /
as the body’s speed and its spherical
surface (for I suppose throughout that /
the projectile is spherical); while the /
force of gravity is ascertainable fromits /

e

recherche. . . .Jexaminay premierement ces

mouvemens, en supposant que les forces de '
la Resistance sont comme les Vitesses des /
corps, ce qui alors me paroissoit fort vrai- /
semblable’ (ibid. : 168--9). His original manu-
SCI‘lp.t article ‘De proportione gravium ca- /
dentium habita ratione resistentie aeris vel /
:?Lquae’, precisely dated in his usual way by a

e.ﬁpn/«x 28 Oct. 1668’ [N.S.], is printed in
his Buvres complétes, 19, 1937 : 102—-18.) In the //
i\fI:cond edition of his Principia (,1713: 215-19) / /

ewton amplified his earlier discussion of the

logarithmic projectile-path DarK, inserting // /—
two new Clorollaries 1 and 2 which we likewise b7 B
reproduce in Appendix 3.2. In essence, if CP GI7 /r
15 extended to Zso that PZ = g and Rr drawn L
to meet DZ in X, then XR = (V,/(V,+g))x P 4 /R ¢
and so 7X = gt It follows at once that the N /
body » moves uniformly away from DZ as it ~a !
traverses DarK—in other words, if Dp is AN
the perpendicular from D to the line pro v
drawn through r parallel to DZ, then K -

~
—— e e e — — — =

~
~




74 The original tract * On motion’ [1, §1, Appendix 1]

portio resistentiz ad gravitatem seu linez DA ad lineam CI. Hac proportione et
angulo ADP determinatur specie figura DarFKLP: et capiendo longitudinem
DP proportionalem celeritati projectilis in loco D determinatur eadem magni-
tudine sic ut altitudo Aa maximz altitudini projectilis et longitudo DF longi-
tudini horizontali inter ascensum et casum projectilis semper sit proportionalis,
atq aded ex longitudine DF in agro semel mensurata semper determinet tum
longitudinem illam DF tum alias omnes dimensiones figure DarFK quam pro-
jectile describit in agro. Sed in colligendis hisce dimensionibus usurpandi sunt
logarithmi pro area Hyperbolica DRTBG.19

Eadem ratione determinantur etiam motus corporum gravitate vel levitate &
vi quacungs simul et semel impressa moventium in aqua.

APPENDIX 1. THE AUGMENTED TRACT ‘DE MOTU
CORPORUM’ (DECEMBER 1684?).0

Excerpts from the corrected amanuensis copy'® in the University Library, Cambridge

DE MOTU sPHZRICORUM CORPORUM IN FLUIDIS.®)

Def. 1. Vim centripetam appello qua corpus attrahitur vel impellitur versus

punctum aliquod quod ut centrum spectatur.
Def. 2. Et vim corporis seu corpori insitam qua id conatur perseverare in motu

suo secundum lineam rectam.

Dp(= (V,/V)g.t)  t. The basic subtangential property of the logarithmica DarK, defined by
Xr = (—g.log (RC/DC) or) —g.log (ZX|ZD) with respect to the oblique Cartesian coordinate-
lengths ZX and X7, gives straight-forwardly Lo = ZX. d(Xr)[d(ZX) = ¢ = PZ, constant,
with 7L = v its oblique projection; whence, as a corollary, the terminal speed of the projectile
as it nears the asymptote ZPC is g. (See also J. A. Lohne, ‘The Increasing Corruption of
Newton’s Diagrams’ [History of Science, 6, 1967: 69-897: 76-80.)

(114) Newton assumes, for simplicity of reference, that the small arc Fr is effectively a
straight line.

(115) Again (compare note (111)) this should be ‘... ad parallelam rectz DP per 4
transeuntem’ (to the parallel to the line DP passing through 4), or some equivalent diminishing

CI in the ratio AC/DC.
(116) A somewhat needless reminder to anyone who has read the preceding paragraphs with

understanding, surely?

1) As we have earlier indicated (see §1: note (2) preceding), this immediate revise 1is
basically Humphrey Newton’s secretarial transcript of the corrected state of Newton’s primary
autograph, amplified by an augmented set of introductory ‘Definitions’ (now also including
five ‘Laws’) and ‘Lemmas’ and by new scholia to Theorem 4 and Problem 5, and further
altered and lightly amended by Newton’s own hand. By and large these latter changes convert
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weight. In this way the ratio of the resistance to gravity—that is of the line DA to

the line CI—will always be had. From this ratio and the angle ADPthe configura-
tion DarF’KLPis determined in species ; and by taking thelength DP proportional
to the speed of the projectile at the position D it is determined in magnitude:
accordingly the altitude 4a is ever proportional to the maximum altitude of the
projectile and the length DF to the horizontal length covered by the projectile
during its rise and fall, and hence, once the length DF is measured in the field
it will always determine not merely that length DF but also all other dimension;
of the figure DarFK which the projectile describes in the field. But in obtaining
these dimensions logarithms must be employed in place of the hyperbolic area
(DRTBG).A18)

By the same procedure are determined also the motions of bodies moving in
water under gravity or levity and any arbitrary force impressed once and
instantancously.

Def. 3. Et resistentiam que est medij regulariter impedientis.
Def. 4. Exponentes quantitatum sunt alie queevis quantitates proportionales
expositis.®

the present text into corresponding portions of a still more developed tract ‘ De motu Corporum’
(§2 ff)llovymg) which Humphrey Newton was likewise entrusted to pen out. Though its
principal innovations are already published in more than one place (see next note) and not of
narrow mathematical interest, we have thought fit to outline the broad features of this present
interim .revise because of the unique glimpse it affords of Newton’s rapidly changing and
developing ideas on general celestial and terrestrial motion in the early winter of 1684~5. This
date of composition, while not explicitly supported by contemporary documentation, is
narroyvly delimited on the one hand by the preparation about early November 1684 of ’the
putative fair copy of the original ‘De motu Corporum’ (see §1: note (2)), and on the other by
the'elabora}tion in the first months of 1685 of its several revises, beginning with the remoulding
(()§f§ ;t/sg)prehminaries (§2, Appendix 1) and then continuing with its large-scale recasting
(2) ULC. Add. 3965.7: 40™54", first published in full—but interblended with the analytical
table of contents set by Halley at the head of his transcript of the primary version (see §1: note
(2))—by A. R. and M. B. Hall in their Unpublished Scientific Papers of Isaac Newton (Cambridge
1962): 243~§/247—67( with English translation on 267-70/271-92 following). The principai
Innovations in its text were earlier recorded by W. W. R. Ball in his Essay on Newton’s Principia
(London, 1893): 51-6, and are also given in J. W. Herivel’s Background to Newton’s Principia
(Oxford, 1966): 294-9 (with English renderings on 299-303).

(3) On this change in title see §1: note (3) above.

(4) A somewhat trivial innovation in the primary text. In practice, of course, Newton will
employ an "exponent’ which, by suitably absorbing a constant factor of proportionality, will
result in a simplest possible representing mathematical (fluxional) equation. ’
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®Lex 1. Sola vi insita corpus uniformiter® in linea recta semper pergere sinil
impediat.

Lex 2. Mutationem status movendi vel quiescendi proportionalem esse vi
impresse et fieri secundum lineam rectam qua vis illa imprimitur.

Lex 3. Corporum dato spatio inclusorum eosdem esse motus inter se sive
spatium illud quiescat sive moveat id perpetud et uniformiter in directum absq

motu circulari.
Lex 4. Mutuis corporum actionibus commune centrum gravitatis non mutare

statum suum motus vel quietis. Constat ex Lege 3.
Lex 5. Resistentiam medij esse ut medij illius densitas et corporis moti

spherica superficies & velocitas conjunctim.
®Lemma 1. Corpus viribus conjunctis diagonalem parallelogrammi eodem

tempore describere quo latera separatis.
Si corpus dato tempore vi sola M ferretur ab A ad B et visola N ab 4 ad C,

compleatur parallelogrammum 4BDC et vi utrag fere-
tur id eodem tempore ab 4 ad D. Nam quoniam vis M <
agit secundum lineam AC ipsi BD parallelam, haec vis / N
per Legem 2 nihil mutabit celeritatem accedendi ad b
lineam illam BD vi altera impressam. Accedet igitur \ e

B

corpus eodem tempore ad lineam BD sive vis AC im-
primatur sive non, atg aded in fine illius temporis
reperietur alicubi in linea illa BD. Eodem argumento
in fine temporis ejusdem reperietur alicubi in linea CD, et proinde in utriusg
linez concursu D reperiri necesse est.

Lemma 2. Spatium quod corpus urgente quacung vi centripeta ipso motus
initio describit, esse in duplicata ratione temporis.

Exponantur tempora per lineas 4B, AD datis 4b Ad proportionales, et urgente
vi centripeta ®quali exponentur spatia descripta per areas rectilineas ABF,
ADH perpendiculis BF, DH et recta quavis AFH terminatas ut exposuit
Galilzeus. Urgente autem vi centripeta inequabili® exponantur spatia descripta

(5) In the following recasting, ‘Laws > 1 and 5 replace the earlier equivalent ‘Hypotheses’ 2
and 1 respectively, and Law 2 explicitly justifies the basic Newtonian ‘Axiom 2’ of motion
(as it will be renamed in §2) which is fundamental in the demonstration of Theorems 1-3 but
was carlier merely assumed; Laws 3 and 4 (needed in the newly introduced final paragraph
of the scholium to Theorem 4 below) have, of course, no earlier correlatives.

(6) Initially ‘motu uniformi’ before being changed back by Newton to his original adverb.

(7) Of these four following ‘Lemmas’, 1 and 2 restate—now with full demonstration (and
explicit appeal to Lex 2 preceding)—Newton’s earlier ‘ Hypotheses * 3and 4 (compare §1: notes
(10) and (12)), while 3 and 4 merely reiterate his earlier Lemmas 1 and 2.

(8) Lightly changed by Newton from the initially copied equivalent ‘Sit autem vis centripeta
inzquabilis et perinde’.
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per areas ABC, ADE curva quavis ACE quam recta AFH tangit in 4, compre-
hensas. Age rectam AE parallelis BF, ’
bf, dh occurrentem in G, g, e, et ipsis 4
bf dh occurrat AFH producta in f et £.
Quoniam area ABC major est area
ABF minor area ADEG erit area ABC
ad aream ADEG major quam area
ABF ad aream ADEG minor quam
area ABG ad aream ADH,, hoc est
major quam area 4bf ad aream Ade
minor quam area Abg ad aream Adh.

d

Diminuantur jam linee 4B, AD in b
ratione sua data usqg dum puncta 4BD ™
coeunt et linea 4¢ conveniet cum tan- £

gente Ah; adeoq ultima rationes A5f
ad Ade et Abg ad Adh evadent eedem
cum ratione 4bf ad Adh. Sed hac ratio est dupla rationis A5 ad Ad seu 4B ad
AD,,; ergo ratio ABC ad ADEC ultimis illis intermedia jam fit duplarationis 4B
ad AD‘id est ratio ultima evanescentium spatiorum seu prima nascentium dupla
est rationis temporum.

Lemma 3. Quantitates differentijs suis proportionales sunt continu¢ pro-
portionales. Ponatur 4 ad A— B, ut Bad B—C & C ad C—D &c et dividendo
fiet Aad But Bad Cet Cad D &c.

Lemma 4. Parallelogramma omnia circa datam Ellipsin descripta, esse inter
se e&qualia. Constat ex Conicis.

DE MOTU CORPORUM IN MEDIIS NON RESISTENTIBUS.®

Theorema 1. Gyrantia omnia . . . describere. Dividatur tempus ... ... et constabit
propositio.
Theorem. 2. Corporibusin. . . circulorum. Corpora B, b ... ... constat Propositio.

Cor.1.....Cor. 2. ....Cor.3.....Cor. 4. ....Cor. 5. ....

Schol. Casus Corollarij quinti. . .circa Jovem jam statuunt Astronomi.
Theor. 3. 8% corpus P. . .puncta P et Q. Nameg in figura.... Q.E.D.

Corol. Hinc si. . .in problematis sequentibus.

Prob. 1. Gyrat corpus. . .in circumferentia. Esto circuli ... ... inveniendum
Schol. Caeterum in hoc casu. . . tangit. A '

Prob. 2. Gyrat corpus . . . centrum Ellipseos. Sunto CA4, CB .... Q.E.I.

(92 Th.is inserted subhead counterbalances the parallel one ‘. ..IN MEDIJS RESISTENTI-
BUs’ which fills (compare §1: note (93)) a more necessary role below.
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Prob. 3. Gyrat corpus . . .umbilicum Ellipseos. Esto Ellipsis. . .. Q.E.L

Schol. Gyrant ergo Planete majores. . .sunt quantitates %%? , que ultimo fit

ubi coeunt puncta P et Q.

Theor. 4. Posito quod vis . . .axium. Sunto Ellipseos. . .Ellipsibus. Q.E.D.

Schol. Hinc in Systemate coelesti. . _conveniant. Hac methodo determinare
licet. . .determinabuntur.

Cieterum totum cceli Planetarij spatium vel quiescit (ut vulgd creditur) vel
uniformiter movetur in directum et perinde Planetarum communc centrum
gravitatis (per Legem 4) vel quiescit vel una movetur. Utrog in casu motus
Planetarum inter se (per Legé 3) eodem modo se habent, et eorum commune
centrum gravitatis respectu spatij totius quiescit, atqg adeo pro centro immobili
Systematis totius Planetarij haberi debet. Inde verd Systema Coperniceum
probatur a priori. Nam si in quovis Planetarum situ computetur commune
centrum gravitatis;, hoc vel incidet in corpus Solis vel ei semper proximum erit.
Eo Solis a centro gravitatis errore fit ut vis centripeta non semper tendat ad
centrum illud immobile et inde ut planete nec moveantur in Ellipsibus exacte
neq bis revolvant in eadem orbita. Tot sunt orbitz Planetz cujusgg quot revolu-
tiones, ut fit in motu Lunz, et pendet orbita unaquaq ab omnium Planetarum
motibus conjunctis, ut taceam eorum omnium actiones in se invicem. Tot autem
motuum causas simul considerare et legibus exactis calculum commodum
admittentibus motus ipsos definire superat ni fallor vim omnem humani ingenij.
Omitte minutias illas et orbita simplex et inter omnes €rrores mediocris €rit
Ellipsis de qua jam egi. S1 quis hanc Ellipsin ex tribus observationibus per
computum trigonometricum (ut solet) determinare tentaverit, hic minus caute
rem aggressus fuerit. Participabunt observationes ille de minutijs motuum
irregularium hic negligendis adeoqg Ellipsim de justa sua magnitudine et
positione (que inter omnes errores mediocris esse debet) aliquantulum de-
flectere facient, atqs tot dabunt Ellipses ab invicem discrepantes quot adhibentur
observationes trine. Conjungende sunt igitur et una operatione inter se con-
ferendze observationes quamplurime, qua se mutuo contemperent et Ellipsin
positione et magnitudine mediocrem exhibeant.9

(10) Curtis Wilson has given a lengthy analysis of this paragraph in his ‘From Kepler’s
Laws, So-called, to Universal Gravitation: Empirical Factors’ (Archive for History of Exact
Sciences, 6, 1970: 89-170) : 161-2. We concur in his criticism that the concept of a ‘Planetarum
commune centrum gravitatis’ (instantaneous centre of interacting planetary force) to which
Newton here appeals is ill-defined and too readily supposed to lie within or closely near to the
Sun, and can likewise trace no carlier Newtonian statement regarding ‘eorum omnium
actiones in se invicem’ or dismissal of such mutual planetary interactions as merely yielding
minimal periodic (and non-cumulative) divergences from the ‘true’ mean Keplerian, exactly
elliptical orbits. (Kepler himself had been less sure, in his 1627 Tabule Rudolphine, that such
‘physic[&] minim[z] intensiones et remissiones extra ordinem’ were cffectively negligible
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Prob. 4. Posito quod. . .emissum. Vis centripeta tendens. . . Ellipsis. Q.E.I

Hec ita se habent. . . PS et PH. S

Schol. Jam verd. . .determinare. Sed areas. . . proportionalis.

Prob. 5. Posito quod vis. . . describit. Si corpus. . . perpendicularis DC. Q .E.F

Schol: Hactenus motum corporum in medijs non resistentibus exposui; id.a(‘ie(.)
ut motus corporum ccelestium in @there determinarem. Aitheris en,im puri
resistentiam quantum sentio vel nulla est vel perquam exigua.. ..M Interfluit
ather hberr.imé nec tamen resistit sensibiliter. Cometas infra orbitam Saturni
desceltldere jam sentiunt Astronomi saniores quotquot distantias eorum ex orbis
magni pargllaxi praterpropter colligere norunt: hi igitur celeritate immensa in
omnes cocli nostri partes indifferenter feruntur, nec tamen vel crinem seu
vaporem capiti circundatum resistentia stheris impeditum et abreptum amit-
tunt. Planete vero jam per annos millenos in motu suo perseverarunt, tantum
abest ut impedimentum sentiant. ,

].)emo.nstr'atis igitur legibus reguntur motus in ceelis. Sed et in aere nostro, si
resistentia ejus non consideratur, innotescunt motus projectilium per Prob ’ 4
et motus gravium perpendiculariter cadentium per Prob. 5, posito nimirl.nr;
quod gravitas sit reciproce proportionalis quadrato distantie a centro terre
N am virium centripetarum species una est gravitas; et computanti mihi prodij‘;
vis centripeta qua luna nostra detinetur in motu suo menstruo circa terram, ad
vim gravitatis hic in superficie terra, reciprocé¢ ut quadrata distantiarur’n a
centro terre quamproxime.“? Ex horologij oscillatorij motu tardiore in cacu-

over a period or the product of inaccurate observations or inadequa
elem?nts,.but such an ‘extreme’ view was later heavily criticisecfl1 %Yt?;:;?;%‘lggrﬁiﬁs jﬂal‘Y
Curtis Wilson, .‘Kepler’s Derivation of the Elliptical Path’ (Isis, 59, 1968: 5-25): 24.) o
(11) ‘We omit several sentences digressing to consider the relative resistance c')f ‘a'.ir’ th
ter(rf;;n'aflhatglosphere), quicksilver (mercury) and water. (the
) e first unimpeachable reference by Newton to a reasonably succe i
;noon s orbit as'travers1blef—sol‘ar and other deviations apart—in an}i’nverseif(;ﬁ;f:ti:rgr:si;&?
orcx?-ﬁeld. NOU_CC that he is still unwilling to identify the lunar vis centripeta with terrestrial
g;?mtas (w‘hlch is but one species of centripetal force) but merely states that their deviatin
z ects are ‘very nearly’ the same. It is well known that Henry Pemberton (in the preface to higs
'Vzew <‘Jf Sir Isaac Newtor’s Philosophy (London, 1728): [al7/alY]), Abraham de Moivre (in a
erate Memorandum’ he gave to John Conduitt in November 1727 [compare ULC. Add
007: 706~-707"]) and William Whiston (in his Memoirs (London, 1749): 36-8) agree in
gssertmg’ that Ne.wifon had much earlier—Pemberton says ‘when he ,retired .from Can?b(reied o
in 1666°, but‘thls is considerably suspect—had such an ‘Inclination...to try, whether tﬁz
i:}lllil:hPowEr déd not keep the Moon in 'her Qrbit, notwithstanding her projectilé Velocity, . . .
et ntla }(lts t}:)nes and all Izeavy Bodies with us fall downward, and which we call Gravity’
o Pa w (;]n e testc.:d this Postula.tum’ he was ‘in some Degree’ disappointed to find tha;
| ov:rier that restramed the Moon in her Orbit, measured by the versed Sines of that Orbit
aﬁ)}:earg no}t_to be quite the same that' was to be expected, had it been the Power of Gravit;;
i , by which the‘Moon was there influenc’d. Upon this Disappointment, which made
im] suspect that this Power was partly that of Gravity, and partly that of C’arteivius’s Vortices
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mine montis prealti quam in valle liquet etiam gravitatem ex aucta nostra a
terra centro distantia diminui, sed qua proportione nondum observatum est.

Creterum projectilium motus in aere nostro referendi sunt ad immensum et
revera immobile coelorum spatium, non ad spatium mobile quod una cum terra
et aere nostro convolvitur, et a rusticis ut immobile spectatur. Invenienda est
Ellipsis quam projectile describit in spatio illo veré immobili et inde motus ejus
in spatio mobili determinandus. Hoc pacto colligitur grave, quod de adeficij
sublimis vertice demittitur, inter cadendum deflectere aliquantulum a perpen-
diculo, ut et quantasitilla deflexio et quam in partem. Et vicissim ex deflexione
experimentis comprobata colligitur motus terre. Cum ipse olim hanc
deflexionem Clarissimo Hookio significarem, is experimento ter facto rem
ita se habere confirmavit, deflectente semper gravi a perpendiculo versus
orientem et austrum ut in latitudine nostra boreali oportuit.t?

he threw aside the Paper of his Calculation, and went to other Studies’ (Whiston, Memotrs:
36-7). (Newton’s early belief in the physical existence of solar, lunar and terrestrial Cartesian
vortices is otherwise documented ; see D. T. Whiteside, ‘Before the Principia: the Maturing of
Newton’s Thoughts on Dynamical Astronomy, 16641684 (Journal of the History of Astronomy,
1,1970: 5-19): 11-12.) No such ¢ old imperfect Calculation’ can now be traced, but its present
successful reworking in late 1684 was doubtless along the lines of that afterwards set down by
him in Proposition IV, ‘Lunam gravitare in terram, & vi gravitatis retrahi semper a motu
rectilineo, & in orbe suo retineri’, of Book 3 of his published Principia (;1687: 406-7), founded
on the Copernican estimate of the semi-diameter of lunar orbit being approximately sixty
times the Earth’s radius.

(13) On the letters relating to this topic (printed in The Correspondence of Isaac Newton, 2,1960:
297-313) which passed between Hooke and Newton during the six weeks from late November
1679 see A. Koyré, ¢ An Unpublished Letter of Robert Hooke to Isaac Newton® (Isis, 43, 1952:
312-37, reprinted with slight emendations in his Newtonian Essays (London, 1965): 221-60)
and especially J. A. Lohne, ‘Hooke versus Newton. An Analysis of the Documents in the Case
on Free Fall and Planetary Motion’ (Centaurus, 7, 1960: 6-52). Newton had originally com-
municated his ‘fansy’ that a falling body ° outrunning y® parts of y® earth will shoot forward to
ye east side of the perpendicular describing in it’s fall a spiral line’ (Correspondence, 2: 301) on.
98 November, but, after Hooke pointed out in reply on 9 December that (because its plane of
motion must pass through the Earth’s centre) ‘the fall. . . will not be exactly east of the per-
pendicular but South East and indeed more to the south then the east’ (ibid.: 306) he came
quickly to agree four days later that ‘y® body in of latitude will fall more to y® south then
east if y° height it falls from be any thing great’ (ibid.: 307 ). Hooke reported on 6 January
1679/80 that he had by then ‘made three tryalls of the Experiment of the falling body in
Every of which the Ball fell towards the south east of the perpendicular. . .the Least being
about a quarter of an inch’ (ibid.: 310), adding on 17 January that “by two tryalls since made
in two several places wihin doors it succeeded also. Soe that I am now perswaded the Experi-~
ment is very certaine’ (bid.: 312-13). According to Lohne’s computations (‘Hooke versus
Newton’: 31-3), however, the deflection to the east which Hooke measured is several tens of
times too much, while he queries whether—since an equal Coriolis force acts on the plumb-line
which fixes the vertical—any deviation at all to the south could possibly have been observed.
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De MmoTtu CORPORUM IN MEDIJS RESISTENTIBUS
Pr?b. 6. Cjorp-orzssolcz vi. . . definire. Asymtotisrectangulis. . .exponitur. Q.E.D
Porrd celeritati. . .exponitur. Q.E.D. o

Prob. 7 . Posz:ta uniformi vi. . . definire. Corpore ascendente. . .erit BC. Resol-
vatur enim. . .in ascensu. Q.E.D. .

Schol. Beneficio. . .di . )
e TBC(I;C cio...diagrammate. Ex loco quovis. . .tangens rL. Si proportio

Eadem ratione. . .moventium in aqua.

APPENDIX 2. COMPUTATION OF AN APPROXIMATION
TO THE CURVED PATH OF THE COMET OF 1680-1

BY A MODIFIED RECTILINEAR TECHNIQUE.®
[¢. October 16857]

From the original worksheet® in the University Library, Cambridge

[1] Dec 21. [6M. 36", 59”. a.]
[Dec] 26. [5. 20", 44”. 5.]
[Dec] 30. [8™. 10'. 26". C.]
Jan 5. [6b. 1. 38", d.]
[Jan] 18. [72. 8'. 55", E.]
[Jan] 0. [8". 21". 53", £]
Feb 25 [8b. 417, 97, g]®

(1) As we have alread
ROl / y remarked (see §1: note (79) above) thi i
simplification of the method loosely outlined in the pre)ceding 2Del;2iir‘és§?;f)fu§2 ?S(lci)eésgg

paragraph of the scholium to P i i
) m to Problem 4) for approximately tracing the projection upon the

WNM
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DB 240 68166.
DE 19312138.
DG 1226 6586.

DTa 635 6922.
DTC 21201888,
DTS 34 507217.

DA 359" 410833. D Th 4041777.
DC 14185333,  DTE 17,17333.
DF 602" 3375.  DTg 4750333,

5.0 38,37472. [Fjus Log.]  9.79295306.

TD 10000000 10.

s. TDQ 2120139 9. 55828509

TQ 9. 76533203.

s. DTQ 1717333 9. 47020925

DQ 9. 67725619.

CD) CE® 0. 3731724

DE) CE® 0. 2391815

TE 13756391. 10. 1385044

TC 8249606. 9. 9164377.

TC+TD 18249606. 4.2612534. TE--TD  23756391. 4. 3757804.
TC—TD 1750394. 3.2431358. TE—TD  3756391. 3.5747707.

[coltang3CTD 793993. 10.7277928 cotang :DTE 8141333.10. 8210296
Tang® 27,13414. 9.7096752. Tang®  4632132.10. 0200199.

ecliptic of the curving orbit of a comet—here, in exemplification, that of 1680—1. In line with
that earlier imposed on Newton’s parallel calculations at this period using the unmodified
Wrennian rectilinear technique (v: 524-9), we hazard the following date of composition on
the basis of his observation to Flamsteed on 19 September 1685 that ‘I have not yet computed
y¢ orbit of a comet but am now going about it. . . taking that of 1680 into fresh consideration’
(Correspondence of Isaac Newton, 2, 1960: 419), and our coupled surmise (see note (3) following)
that the timed sightings from which he here works are those, corrected for atmospheric
refraction, which were sent by Flamsteed with his reply to Newton’s letter a week later.

(2) ULC. Add. 3965.11: 163. For brevity and clarity we have slightly compressed and
trivially reordered Newton’s rough calculations.

(8) Asinv: 525, note (3) we follow J. A. Ruffner’s eminently plausible conjecture that the
cometary sightings made on these dates (from which the following differences in cometary
longitude, as viewed from the earth, and in corrected ‘ true’ times of observation are straight-
forwardly computed) were—except for that on 25 February, made by Newton himself at
Cambridge—among those listed in a (now lost) ‘tablet’ included by Flamsteed with his letter
to Newton of 26 September 1685, ‘in which you will not wonder. . .to find a difference of
some few minutes from y°® former I sent you [on 7 March 1680/1]° (Correspondence of Isaac
Newton, 2: 422; compare bid. : 354) and which Newton afterwards published in Book 3 of his
Principia (;1687: 490) along with his own sighting on February 25 at an unadjusted tempus
apparens of 88.30"° (ibid.: 491).

(4) Understand ‘ratio CE ad CD’ and ‘ratio CD ad DE’ respectively. Since Newton’s
computation of TE (from TQ) and of TC (from DQ) requires him to find only the logarithms
of the analogous ratios TE/TQ and TC/QD, he does not bother to list their explicit numerical
values alongside.

(5) Read ‘Tang $TCD—4TDC’, corresponding (in this application of the familiar trigono-
metricaliangent-rule to resolving the triang/lg CTD, given its sides 7C, TD and their included

angle CTD) to ‘cotang $CTD’ [= tan $(TCD + Tf)\C)] in the previous line.
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TCD = 106 53344.

TED = 35,092
TDC = 5226516, x

TDE =127, 73465.
.[sive] TDC = 5226535 ut supra.®
[Ejus Log.] 9. 55828509

sinDTC
sin DCT

9. 98166183
DC = 141 1853333 2. 1518395
TD = 376h 02464, 2. 57521624

calTD 63 16922, 9. 9525145 s:6TD 40,41777. 9. 8118136
: TaR 6404245, 9. 9538177 s:75hS 8731688. 9. 9995236
AD 359 (41083. 2. 5555911 BD 240 [ 68166. 2. 3814430

TR = 360,49041. 2. 5568937.

TS = 370,81138. 2.5691530
Aa=RD = 15h,_5_3423.DeC 21. -

Bb[ = SD] = 521326. Dec. 26.

si/TD  34507217.  9.7532088 s:gTD 47,50333. 9. 86765406
sTfV. 17758133 94842001  s:TfW  476202. 8. 91916831
DF 6023375 2.7798399 DG 12266586. 3. 08872366
TV = 324 2875. 2.5109302.  TW 138,1141. 2. 14023791
Ef[=VD]=511371. Jan 30. 1 '

Gg[=WD]=137,91054. Feb. 25.®

(6) Here, similarly, read

‘Tang $TDE -1 TDE’

in ga).ra%l}t:l to ‘cotang }DTE’ [ = tan 4( TDE + TE\'D)] above
e slight divergence in the last two fi i : iti

' 't di . gures is of course the additiv i

;mall inaccuracies in the seventh decimal places of the logarithmic and triggna;)(i;:llélt?ilf:itiorgl()f
ere er?ployed. Tt will ‘be clear that, given timed sightings Ta, Tb, TC, Td, TE 71, oj“ the .

(ciomet from the feart}} ( T[crra]' ’, here assumed to be fixed in position), N evi/ton”s ﬁrs’t .s't.e i te
;termme the direction of motion of the comet at some mean point d: this he a.pproximaft)elsS acs)
‘Eb:t of the chord Cl:] of the small su'rrounding (near-parabolic) arc C@, further supposing that
5 cause the comet’s speed over this arc is effectively uniform ?) the base-line 74 will intgrsect
o z;itnle) zuGch thatHC’D: DE = time,, p: ti{n(?IH n The construction of the angle T/BC at which
107 i) i,Spta}:"at el to thel?a}rllgcclenl’; at(d, Is inclined to T'D (assigned a conventional length of

: en accomplished by (geometrical) Problem 16 of Newton’s ¢

t

Lucasian lectures on algebra (see v: 210-12): namely, on drawing D@ parallel to COIYI" egll(l: ?;?i?;

TD:TQ: QD (=sin TZZ\D: sin Ti)\Q: sinQ?D), TE: TQ(=CE: CD)
TC: @D (=CE: DE)

ate of . .
te given, and hence the figure TCDE is given in species and its elements straightforwardly

calculable. As a gloss, Newton in immedi
. 3 t
units in which CD and DB s expresszdfa e sequel converts the length of 7D to the horary

(8) Making the final blanket assumpti i

( ption (which we have sought tentati justify i

%10 'n?ojt"e]) &7 9) abow;) that the oblique distances aR (= AD), b8 (= BgD) fC Tl/'l(ai—t-l;‘%}), tomj/'lzsil%ll)n
in the direction of ACEG—taken (see note (7)) to be that of the tangeixét) at d—_or S())

6-2

and
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[2] Jan 25.[7h. 58'. 42". f]
Feb 5. [7h. 4/, 41", g.]®
DTf 30,77722.® DF 481 95111. D7Tg 3817833. DG 745 050833.

s.fTD 30,77722.  9.7090164  s:gTD  38168333. 9.7909708
s.TfV 2148813, 9.5638454  s.TfW  14]09702. 9.3861968
DF 48195111. 2. 6830029 DG 745|050833. 2. 8721859
TV—345010238. 2. 5378319 TW 2933675 2.4674119.
Ff=3101440. Jan 25. Gg—8265714. Feb 5.

[3] Dec 29. [8h. 3. 2". b.]
Jan 9. [78 0. 53", £]®
[DTb 25 L§2361. DB 165]_9_7666.] DTf9, 90222. DF 96 |_9_875.

Dec 29. Jan 9.
s:bTD 2562361, 9. 6359432 sfTD  9,90222. 9. 2354458
s:THhG  102(11104.  9.9902257 STfV 4236313, 9. 8285484
DB 165/97666. 2. 2200469 DF  969875.  1.9867157
ST 37525756,  2.5743204. TV 380030434, 2.5798183.
Bb 076708, [Ff]  4]005794.09

[4] Jan10.[6h. 6. 10" f.]®

DTf 11,863055. DF 12007555,
s:fTD  11863055. 9. 3129664
sTfV ~ 40(40230. 9. 8116759

we surmise—are proportional to the corresponding differences in time between the sighting
Td and those along Ta, Tb, Tf, Tg and hence given in ratio to CD, DE anc@ so to TD, Newton
by single applications of the sine-rule straightforwardly computes the ratios of the subtenses
TR, TS, TV, TW and therefrom those of the cometary ‘deviations’ a4 (.= RD.)', B (= 8D),
fF (= VD) and gG (= WD) to T'D which fix the ‘orbital’ points 4, 4, f, £ in position. Though
the ‘vertex’ d is manifestly not constructable in a like manner, in I”I:IS manuscript ﬁgt‘lre (here’:
accurately reproduced) Newton roughly locates it by eye at the intersection of a ‘smooth
parabolic curve drawn freehand through ¢, b, C, E, fand g. . _ .

(9) This should be (30° 6’ 38" =) “ 308711055, The effect of the correction will be slightly

to decrease Newton’s ensuing value for Ff. ' .

(10) Strictly © —4,005794’ since TV is greater than T'D; whence (as it should) the point f
will lie to the right ‘of ADG in the arc dE. In this position f the ‘comet’ will,.in Newtqn’s
scheme of its orbit, attain its rightmost point d very nearly. The final computation following
reveals that a day later the ‘comet’ is only a little more than 2% horary units to the right of
ADG.
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DF 12007555. 2. 0794545
[TV] 378611755. 2. 5781940.

[Ff]  2587115.0

APPENDIX 3. THE BALLISTIC CURVE (RESISTANCE
PROPORTIONAL TO VELOCGITY) REWORKED.®
[spring 1685/c. mid-1692]

Extracts from the first and second editions of Newton’s Principia

[1]® Pror.IV. Pros. II.

Posito quod vis gravitatis in Medio aliquo similari uniformis sit, ac tendat perpendi-
culariter ad planum Horizontis; definire motum Projectilis, in eodem resistentiam velocitati
proportionalem patientis.

E loco quovis D egrediatur Projectile secundum lineam quamvis rectam DP,
& per longitudinem DP exponatur ejusdem velocitas sub initio motus. A puncto
P ad lineam Horizontalem DC demittatur perpendiculum PC, & secetur DC in

(11) With TV again greater than 7D, this should read ‘ —2,587115°, whence f'is (as it

should be, once more) in dE to the right of ADG. Newton’s computations terminate abruptly
at this point, and we have no reason to think that he ever again was tempted to apply this
badly deficient method to the computation of any real cometary orbit. The would-be ‘simpli-
fying’ assumption (compare §1: note (79)) that the earth be supposed to be at rest in the
immediate vicinity of the sun is, even over a very short interval of time, here a crucial defect.
As the rapidly varying cometary longitudes at this period indicate (see Flamsteed’s tabulation
in Principia, 11687: 490), the earth in late December 1680/January 1681 was moving almost
directly away from the very nearly rectilinear path of the 16801 comet, travelling at a little
more than halfits mean speed. Newton’s present calculation yields a ‘ cometary’ path which, in
wide divergence from physical reality, closely approximates a parabola with its vertex near
to the point d.

(1) The classically composed demonstration here reproduced (in [1]) from Book 2 of
Newton’s published Principia (,1687) essentially mirrors our analytical justification (§1: note
(113)) of his unproved equivalent construction of the present projectile orbit in his preceding
‘De motu Corporum’, and may straightforwardly be recast in its terms. To itwe append from
the Principia’s second edition (;1713) two opening corollaries which reduce the geometrical
definition of this logarithmica to standard form. In [3] we reproduce the five corollaries originally
added in 1687 (but here renumbered 3-7 as in the second edition) which minimally elaborate
the basic construction and, in the case of the last, somewhat forlornly attempt to determine the

- ballistic orbit empirically by points ‘ex Phanomenis quamproxime”’.

(2) Philosophie Naturalis Principia Mathematica (London, ;1687): 241-2. The main emenda-
tions made in revise in 1713 are noticed in following footnotes.
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A utsit DA ad AC ut resistentia Medii ex motu in altitudinem sub initio orta,®
ad vim gravitatis; vel (quod perinde
est) utsitrectangulumsub D4 & DPad
rectangulumsub 4AC & CPutresistentia
tota sub initio motus ad vim Gravitatis.
[Asymptotis DC, CP]® [d]escribatur
Hyperbola quavis G TBS secans erecta
perpendicula DG, ABin G & B; & com-
pleatur parallelogrammum DGKC,
cujus latus GK secet AB in Q. Capiatur
linea N in ratione ad @B qua DCsitad
CP; & ad recte DC punctum quodvis
R erecto perpendiculo RT, quod Hy-
perbole in T, & rectis GK, DPin t &
V® occurrat; in eo cape Vr ®qualem

gG_A;Z" ® & Projectile tempore DRTG

S P

perveniet ad punctum 7, describens curvam lineam DraF, quam punctum
r semper tangit; perveniens autem ad maximam altitudinem @ in perpen-
diculo 4B, & postea semper appropinquans ad Asymptoton PLC. Estg velo-
citas ejus in puncto quovis r ut Curvae TangensrL. Q .E.[I].

. B
Est enim N ad QB ut DC ad CP seu DR ad RV, adeog RV aqualis M ,

N
DR X QB—tGT . DRx AB—RDGT Ex
N ) equalis i . Lxponatur

jam tempus per aream RDGT, & (per Legum Corol. 2)® distinguatur motus

ual

& Rr (id est RV —TVrseu

(8) That is, the vertical component of the initial ‘resistentia medij’ (¥, in the notation of
§1: notes (108) and (113)). Observe that Newton now implicitly corrects his earlier slip (see
§1: note (110)) in assigning the ratio of V' = (DP/CP).V, to g.

(4) This very necessary phrase was later inserted by Newton himself in the second edition.

(5) In preparation for his addition in the next line, Newton in his 1713 edition expanded
this to read © . . .rectis EH, GK, DP in I, t & V. The intersection of EH and RV in the accom-
panying figure was correspondingly marked ‘I’ as shown.

(6) In 1713 (compare previous note) Newton added in sequel the minimal clarification

GTIE’

‘vel quod perinde est, cape Rr zqualem

v

(7) See §2: note (20) following. This corollary formally (in a Cartesian coordinate system,
as here, where the acceleration in the tangential direction is zero) justifies Newton’s splitting
of the orbital acceleration dv/dt = —v—g.dy/ds into horizontal and vertical components
(constant in direction), but his further assumption in sequel that these are (dv,/dt =) —v, and
(dv,/dt =) —v,—g respectively is not as immediately obvious, perhaps, as he would have it
(compare §1: note (109)).
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corporis in duos, unum. ascensus, alterum ad latus. Et cum resistentia sit ut
motus,® distinguetur etiam heec in partes duas partibus motus proportionales &
contrarias: ideog longitudo a motu ad
latus descripta erit (per Prop. IIL
hujus)® ut linea DR, altitudo vero
(per Prop. III. hujus)® ut area

DRx AB—RDGT,

hoc est ut linea Rr. Ipso autem motus
initio area RDGT =mqualis est rect-
angulo DR x AQ, ideogg linea illa Rr

( DRXAB—DRXAQ)
seu 7

tunc est ad DR ut AB—AQ (seu
QB) ad N, id est ut CP ad DC; ates Y P
adeo ut motus in altitudinem ad mo-

tum in longitudinem sub initio. Cum

igitur Rr semper sit ut altitudo, ac X
DR semper ut longitudo, atg Rr
ad DR sub initio ut altitudo ad longi-
tudinem: necesse est ut Rr semper sit
ad DR ut altitudo ad longitudinem,
& propterea ut corpus moveatur in / I
linea DraF, quam punctum r perpetuo -~
tangit. Q.E.D. G

E

Z

[2]29  Corol. 1. Est igitur Rr ®qualis ¢ Zﬂ

DRxAB RDGT d .
N ideoque si produ- R A F ¢

catur RT ad X ut sit RX equalis

DRxAB . .
% (id est, si compleatur paral-

lelogrammum ACPY, jungatur DY

(8) Inhisworking, of course, Newton suitably absorbs the constant factor of proportionality,
thereby (for simplicity) equating the instantaneous resistance upon the body to its motus
(orbital speed). ;

: (9) These are essentially identical with Problems 6 and 7 respectively of the preceding
De motu Corporum’; for their analytical equivalents see §1: notes (98) and (108).

( 1(;&2 'If‘zlie;)e two opening corollaries are additions in the revised edition of the Principia
2 : .
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secans CP in Z, & producatur RT donec occurrat DY in X;) erit Xr
. RDGT . D
@qualis — & propterea tempori proportionalis.®

Corol. 2. Unde si capiantur innumera CR vel, quod perinde est, innumera
ZX, in progressione Geometrica; erunt totidem Xr in progressione Arith-
metica.®® Et hinc Curva DraF per tabulam Logarithmorum facile delineatur.

[3]%®  Corol. [3]. Hinc si Vertice D, Diametro DE deorsum producta, & latere
recto quod sit ad 2DP ut resistentia tota, ipso motus initio, ad vim gravitatis,
Parabola construatur: velocitas quacum corpus exire debet de loco D secundum
rectam DP, ut in Medio uniformi resistente describat Curvam DraF, ea ipsa erit
quacum exire debet de eodem loco D, secundum eandem rectam D[P], utin

spatio non resistente describat Parabolam.® Nam Latus rectum Parabole

. s Jauad. tGT  DRxTt
hujus, ipso motus initio, est T & Vr est 7 Seu TSy Recta autem

qua, si duceretur, Hyperbolam GTB tangeret in G, parallela est ipsi DK%

. CK x DR QBxDC DR:x CK x CP
ideoqg Tt est T & N erat=—mp— . Et propterea Vrest —~p— O8]’

DVix CK x CP
2DP1x QB

. & Latus rectum

id est (ob proportionales DR & DC, DV & DP)

(11) In the terms of §1: note (113), since N = AB x AC]g, therefore
rX = (RDGT)|N = g.log (DC|RC) = gt c t.

(12) For in analytical equivalent (see §1: note (113)) the defining ‘symptom’ of the
logarithmica DraF is, in standard form, Xr = —g.log(ZX/ZD).

(13) These five final corollaries (here renumbered as in the second edition) are lightly
corrected reproductions of the equivalent Corollaries 1-5 in Principia (,1687): 242-5.

(14) When, in the equivalent analytical terms of §1: note (113), the resistance is zero, the
component equations of motion of the orbiting body r(x, y) defined by DR = x, Rr = y are
dvJdt = 0 and dv,[dt = —g, yielding respectively v,—V, = 0 and »,— V, = —gt, whence
x = Vitandsoy = V,t—3}g® = (V,[V.)x—4(g/V3)#® On setting

DV =(V|V)y.x =X and Vr=(V,/[V)x—y =71,

the Cartesian defining equation of 7(X, ¥) proves to be ¥ = 1(g/V?) X2 a‘Galileian’ parabola
of diameter Aa(X = VV,/g) parallel to DE (X = 0) and of latus rectum 2V?[g = 2DP.(V]g).
Newton’s following derivation of this last result ingeniously proceeds from the assumption that
the resisted logarithmica of the main proposition coincides with this parabola in the immediate
vicinity of the firing point D (before the resistance has had opportunity to decelerate the
projectile’s orbital speed), but has somewhat unsatisfactorily to assume the verticality of the
parabola’s diameter as its initial step.

(15) For, since CD x DG = CA x 4B, constant, at once —d(DG)[d(CD) = DG (or CK)|CD.
Newton assumes, of course, that in the limit as  comes to coincide with D the vanishingly
small hyperbolic segment (GTt) approaches a right triangle whose hypotenuse is tangent to

the arc GBS at G.
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D Vavad. . 2DPix QB . .
7 prodit CKXCP id est (ob proportionales @B & CK, DA & AC)

q
———ing XX02A> adeoqs ad 2DP ut DP x P4 ad PC x AC; hoc est ut resistentia ad
gravitatem. Q.E.D.

Corol. [4]. Unde si corpus de loco quovis D, data cum velocitate, secundum
rectam quamvis positione datam DP projiciatur, & resistentia Medii ipso motus
initio detur, inveniri potest Curva DraF, quam corpus idem describet. Nam ex
data velocitate datur latus rectum Parabola, ut notum est. Et sumendo 2DP ad
latus illud rectum ut est vis Gravitatis ad vim resistentiz, datur DP. Dein
secando DCin A4, ut sit CP x AC ad DP x DA in eadem illa ratione Gravitatis ad
resistentiam, dabitur punctum 4. Et inde datur Curva DraF.

Corol. [5]. Et contra, si datur curva DraF, dabitur & velocitas corporis &
resistentia Medii in locis singulis 7. Nam ex data ratione CP x AC ad DP x DA,
datur tum resistentia Medii sub initio motus, tum latus rectum Parabole: &
inde datur etiam velocitas sub initio motus. Deinde ex longitudine tangentis 7L
datur & huic proportionalis velocitas, & velocitati proportionalis resistentia i1;
loco quovis 7.

Corol. [6]. Cum autem longitudo 2DPsit ad latus rectum Parabole ut gravitas
ad resistentiam in D; & ex aucta Velocitate augeatur resistentia in eadem
ratione, at latus rectum Parabole augeatur in ratione illa duplicata: patet
longitudinem 2DP augeri in ratione illa simplici, adeogs velocitati semper
proportionalem esse, neg ex angulo CDP mutato augeri vel minui, nisi mutetur
quog velocitas.

Corol. [7]. Unde liquet methodus determinandi Curvam DraF ex
Phznom[e]nis quamproxime, & inde colligendi resistentiam & velocitatem
quacum corpus projicitur. Projiciantur corpora duo similia & ®qualia eadem
cum velocitate, deloco D, secundum angulos diversos CDP, [C]Dp (minuscul[z]
liter[] loc[o] subintellect[o]) & cognoscantur loca F, f ubi incidunt in hori-
zontale planum DC. Tum assumpta quacung longitudine pro DP vel Dp,
fingatur quod resistentia in D sit ad gravitatem in ratione qualibet, & exponatur
ratio illa per longitudinem quamvis SM. Deinde per computationem, ex longi-

tudine illa assumpta DP, inveniantur longitudines DF, Df, ac de ratione g—J;,

per calculum inventa, auferatur ratio eadem per
experimentum inventa, & exponatur differentia ¥ N
. . ° l
per perpendiculum MN. Idem fac iterum ac tertio, L NXY M

assumendo semper novam resistentie ad gravi- ¢ MM E
N

tatem rationem SM, & colligendo novam differen-
tiam MN. Ducantur autem differentiec affirm-
ative ad unam partem recte SM, & negative ad alteram; & per puncta
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N, N, N agatur curva regularis NNN secans rectam SMMM in X149 &
erit SX vera ratio resistentiz ad gravitatem, quam invenire oportuit. Ex hac
ratione colligenda est longitudo DF per calculum; & longitudo que sit ad as-
sumptam longitudinem DP ut modo inventa longitudo DF ad longitudinem
eandem per experimentum cognitam, erit vera longitudo DP. Qua inventa,
habetur tum Curva Linea DraF quam corpus describit, tum corporis velocitas
& resistentia in locis singulis.d?

(16) A familiar Newtonian technique of attaining a rough approximation; compare Iv: 560,
note (113).

(17) As Newton well knew, the hypothesis that (in the earth’s atmosphere) a projectile is
instantaneously decelerated by resistance in proportion to its speed is exceedingly unrealistic,
even for the low muzzle velocities obtaining in his day. It is difficult to believe that in outlining
this present elaborate method for determining the elements of his ensuing logarithmica DraF
‘ex Phznomenis quamproximé’ he did not have his tongue stuck firmly—if still a little
hopefully ?—in this cheek. More than eighteenyears before the Principiawas published Christiaan
Huygens had modestly declined to foist so mathematically elegant but physically useless a
“Theorie’ upon the learned world, preferring to devote his effort to exploring the experi-
mentally truer supposition that ‘la resist[a]nce de Pair, & de I’eau, estoit comme les quarrez
des vitesses’, accurately divining that in ‘ce veritable fondement des Resistances. . .la chose
estoit beaucoup plus difficile, & sur tout en ce qui regarde la ligne courbe que parcourent les
corps jettez obliquement’ (Discours de la Cause de la Pesanteur (Leyden, 1690): 169; compare §1:
note (113) above). Much like Huygens before him in 1669 (see his Buvres complétes, 19,
1937: 144-57; and compare A. R. Hall, Ballistics in the Seventeenth Century (Cambridge, 1952):
111-17, especially 116), Newton was able in the following Propositions V-IX of his Principia
(,1687: 246-60) correctly to resolve the problem of motion under a decelerating force varying
instantaneously as the square of the speed in cases where the motion is confined to be in a
straight line: namely, if [Propositions V-VII] d%/di* = dv [dt = —v}, then, on assuming the
initial conditions # = ¢ = 0 and v, = V,, from di/dv, = —1/v2 there follows ¢ = 1fo,—1/V,
whence dx/dt = v, = 1/(t+1]V,) and so x = log (V,t+1); while if more generally [Propo-
sitions VIII/IX] d%y/dt? = dv,[di = —12+g, g constant, then with similar initial conditions
y =t=0andv, =V, from dtjdv, = 2dyld(v;) = — (v Fg) there ensues

t = log (7, +&h/(V,—gh) —log (v, +¢}) (v, ~ 1))

or -alternatively ¢ = tan—l(Vy/g?lz) —tan—t (vy/g%) according as —g or +g is taken, while in
either case y = 4log (V2T ¢)/(v5F g)). His following Propositions XI-XIV (Princifia, ,1687:
974-84) comparably—but to no real purpose other than to reveal his mastery of the geometrical
quadratures (in terms of logarithmic/inverse-tangent functions) involved—depart from the
compounded equations of motion

dv Jdt = —vi—2kv, (or dv[dx = —v,—2k) and dvfdt = v,.dv,[dy = —v2—2kv, *g.

Wise, however, to the fallacy of seeking vectorially to combine these resultant ‘component’
motions—unlike Leibniz when he four years later vainly proffered this ‘solution’ (see §1: note
(109))—Newton was unable to approach the problem of defining the general orbit traversed,
under constant ‘ gravity’ directed vertically downwards, in a medium resisting (in the instan-
tancous direction of motion) as the square of the orbital speed other than by implicitly sub-
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suming it, as a particular case not there further explored but which (h i i
May 1694) was i.n his ‘power’, in the intervening PII?OPOSitiOH X (Pfin(c@3;01?62;712%315%@%’;“
an arbiltrary resistance to motion is assumed and then related to the gra\’filty by ‘the equival i
of a third-order differential equation whose solution—here readily effectable paramefclricall Ci
resolves the Prgb}em. (Compare D. T. Whiteside, ‘The Mathematical Principles underl !
Newton’s Principia Mathematica’ (§1: note (30)): 126-30 and 137, note 5.) e




