Even in the direction of p in r and s. The work done in an element
principle of
principle of the composition of forces its proparties are found. if there be no connections is expressible by $p^{2}+q^{2}=$ $p^{2}+r^{2}+s^{2}$. If now r act directly counter to the force p, a diminution of work will be effected and the sum mentioned becomes $(p-r)^{2}+s^{2}$. Even in the principle of the composition of forces, or of the mutual independence of forces, the properties are contained which Gauss's principle makes use of. This will best be perceived by imagining all the accelerations simultaneously performed. If we discard the obscure verbal form in which the principle is clothed, the metaphysical impression which it gives also vanishes. We see the simple fact; we are disillusioned, but also enlightened.

The elucidations of Gauss's principle here presented are in great part derived from the paper of Scheffler cited above. Some of his opinions which I have been unable to share I have modified. We cannot, for example, accept as new the principle which he himself propounds, for both in form and in import it is identical with the D'Alembert-Lagrangian.
viri.

THE PRINCIPLE' OF LEAS'T ACTION.

The original, obscure form of the principle of leastaction.
I. Maupertuis enunciated, in 1747, a principle which he called "le principe de la moindre quantité d"action," the principle of least action. He declared this principle to be one which eminently accorded with the wisdom of the Creator. He took as the measure of the "action" the product of the mass, the velocity, and the space described, or mus. Why, it must be confessed, is not clear. By mass and velocity definite quantities may be understood; not so, however, by
space, when the time is not stated in which the space is described. If, however, unit of time be meant, the distinction of space and velocity in the examples treated by Maupertuis is, to say the least, peculiar. It appears that Maupertuis reached this obscure expression by an unclear mingling of his ideas of vis viva and the principle of virtual velocities. Its indistinctness will be more saliently displayed by the details.
2. Let us see how Maupertuis applies his principle. DeterminaIf M, m be two inelastic masses, C and c their velocities $\begin{gathered}\text { tions of the } \\ \text { law } \\ \text { pat }\end{gathered}$ before impact, and u their common velocity after im- principle. pact, Maupertuis requires, (putting here velocities for spaces,) that the "action" expended in the change of the velocities in impact shall be a minimum. Hence, $M(C-u)^{2}+m(c-u)^{2}$ is a minimum ; that is, $M(C-u)+m(c-u)=0$; or

$$
u=\frac{M C+m c}{M+m} .
$$

For the impact of elastic masses, retaining the same designations, only substituting V and z^{\prime} for the two velocities after impact, the expression $M(C-V)^{2}+$ $m(c-v)^{2}$ is a minimum; that is to say,

$$
\begin{equation*}
M(C-V) d V+m\left(c-z^{\prime}\right) d a=0 \tag{1}
\end{equation*}
$$

In consideration of the fact that the velocity of approach before impact is equal to the velocity of recession after impact, we have

$$
\begin{align*}
& C-c=-(V-v) \text { or } \\
& C+V-(c+z)=0 \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
d V-d q^{\prime}=0 . \tag{3}
\end{equation*}
$$

The combination of equations (1), (2), and (3) readily gives the familiar expressions for V and v. These two cases may, as we see, be viewed as pro-
cesses in which the least change of vis viva by reaction takes place, that is, in which the least counter-work is done. They fall, therefore, under the principle of Gauss.

Maupertuis's deduction of the law of the lever b this principle.
3. Peculiar is Maupertuis's deduction of the law of the lever. Two masses M and m (Fig. 188) rest on a bar a, which the fulcrum divides into the portions x and $a-x$. If the bar be set in rotation, the velocities and the spaces described will be proportional to the lengths of the lever-arms, and $M x^{2}+n(a-x)^{2}$ is the quantity to be made a minimum, that is $M x$ -$m(a-x)=0$; whence $x=m a / \overline{M+m}$, -a condition that in the case of equilib.

Fig. 188. rium is actually fulfilled. In criticism of this, it is to be remarked, first, that masses not subject to gravity or other forces, as Maupertuis here tacitly assumes, are always in equilibrium, and, secondly, that the inference from Maupertuis's deduction is that the principle of least action is fulfilled only in the case of equilibrium, a conclusion which it was certainly not the author's intention to demonstrate.

If it were sought to bring this treatment into approximate accord with the preceding, we should have to assume that the heavy masses M and m constantly produced in each other during the process the least possible change of vis viva. On that supposition, we should get, designating the arms of the lever briefly by a, b, the velocities acquired in unit of time by u, v, and the acceleration of gravity by g, as our minimum expression, $M(g-u)^{2}+m(g-v)^{2}$; whence $M(g-u)$ $d u+m(g-v) d v=0$. But in view of the connection of the masses as lever,

$$
\begin{aligned}
& \frac{u}{a}=-\frac{v}{b}, \text { and } \\
& d u=-\frac{a}{b} d v
\end{aligned}
$$

whence these equations correctly follow

$$
u=a \frac{M a-m b}{M a^{2}+m b^{2}} g, v=-b \frac{M a-m b}{M a^{2}+m b^{2}} g
$$

and for the case of equilibrium, where $u=v=0$,

$$
M a-m b=0
$$

Thus, this deduction also, when we come to rectify it, leads to Gauss's principle.
4. Following the precedent of Fermat and Leib- Treatment nitz, Maupertuis also treats by his method the motion of thon migh mor of light. Here again, however, he employs the notion "least action" in a totally different sense. The expression which for the case of refraction shall be a minimum, is $m \cdot A R+n \cdot R B$, where $A R$ and $R B$ denote the paths described by the light in the first and second media respectively, and m and n the corresponding velocities. True, we really do obtain here, if R be determined in conformity with the minimum condition, the result $\sin \alpha / \sin \beta=n / m=$ const. But before, the "action" consisted in the change of the expressions mass \times velocity \times distance ; now, however, it is constituted of the sum of these expressions. Before, the spaces described in unit of time were considered; in the present case the total spaces traversed are taken. Should not $m \cdot A R-n \cdot R B$ or $(m-n)(A R-R B)$ be taken as a minimum, and if not, why not? But
even if we accept Maupertuis's conception, the reciprocal values of the velocities of the light are obtained, and not the actual values.

Characterisation of Maupertuis's principle.

It will thus be seen that Maupertuis really had no principle, properly speaking, but only a vague formula, which was forced to do duty as the expression of different familiar phenomena not really brought under one conception. I have found it necessary to enter into some detail in this matter, since Maupertuis's performance, though it has been unfavorably criticised by all mathematicians, is, nevertheless, still invested with a sort of historical halo. It would seem almost as if something of the pious faith of the church had crept into mechanics. However, the mere endeavor to gain a more extensive view, although beyond the powers of the author, was not altogether without results. Euler, at least, if not also Gauss, was stimulated by the attempt of Maupertuis.

Euler's contributions to this subject.
5. Euler's view is, that the purposes of the phenomena of nature- afford as good a basis of explanation as their causes. If this position be taken, it will be presumed a priori that all natural phenomena present a maximum or minimum. Of what character this maximum or minimum is, can hardly be ascertained by metaphysical speculations. But in the solution of mechanical problems by the ordinary methods, it is possible, if the requisite attention be bestowed on the matter, to find the expression which in all cases is made a maximum or a minimum. Euler is thus not led astray by any metaphysical propensities, and proceeds much more scientifically than Maupertuis. He seeks an expression whose variation put $=0$ gives the ordinary equations of mechanics.

For a single body moving under the action of forces

Euler finds the requisite expression in the formula The form $\int v d s$, where $d s$ denotes the element of the path and which the π^{\prime} the corresponding velocity. This expression is smaller $\begin{aligned} & \text { assume } \\ & \text { Euler's } \\ & \text { hands. }\end{aligned}$ for the path actually taken than for any other infinitely adjacent neighboring path between the same initial and terminal points, which the body may be constrained to take. Conversely, therefore, by seeking the path that makes $\int z d s$ a minimum, we can also determine the path. The problem of minimising $\int v d s$ is, of course, as Euler assumed, a permissible one, only when v depends on the position of the elements $d s$, that is to say, when the principle of vis viza holds for the forces, or a force-function exists, or what is the same thing, when v is a simple function of coördinates. For a motion in a plane the expression would accordingly assume the form

$$
\int \varphi(x, y) \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} \cdot d x
$$

In the simplest cases Euler's principle is easily verified. If no forces act, v is constant, and the curve of motion becomes a straight line, for which $\int v d s=$ $v \int d s$ is unquestionably shorter than for any other curve between the same terminal points. Also, a body moving on a curved surface without the action of forces or friction, preserves its velocity, and describes on the surface a shortest line.

The consideration of the motion of a projectile in a parabola $A B C$ (Fig. 19o) will also show that the quantity $\int v d s$ is smaller for the parabola than for any

Fig. 190 other neighboring curve; smaller, even, than for the straight line $A B C$ between the same terminal points. The velocity, here, depends solely on the

Mathemat ical development of this case.
vertical space described by the body, and is therefore the same for all curves whose altitude above $O C$ is the same. If we divide the curves by a system of horizontal straight lines into elements which severally correspond, the elements to be multiplied by the same v 's, though in the upper portions smaller for the straight line $A D$ than for $A B$, are in the lower portions just the reverse; and as it is here that the larger v 's come into play, the sum upon the whole is smaller for $A B C$ than for the straight line.

Putting the origin of the coordinates at A, reckoning the abscissas x vertically downwards as positive, and calling the ordinates perpendicular thereto y, we obtain for the expression to be minimised

$$
\int_{0}^{x} \sqrt{2 g(a+x)} \sqrt{1+\binom{d y}{d x}^{2}} \cdot d x
$$

where g denotes the acceleration of gravity and a the distance of descent corresponding to the initial velocity. As the condition of minimum the calculus of variations gives

$$
\begin{gathered}
\frac{\sqrt{2 g(a+x) \frac{d y}{d x}}}{\sqrt{1+\left(\frac{d y^{2}}{d x}\right)}}=C \text { or } \\
\frac{d y}{d x}=\frac{C}{\sqrt{2 g(a+x)-C^{2}}} \text { or } \\
y=\int \frac{C d x}{\sqrt{2 g(a+x)-C^{2}}}
\end{gathered}
$$

and, ultimately,

$$
y=\frac{C}{g} \sqrt{2 g(a+x)}-C^{2}+C^{\prime}
$$

where C and C^{\prime} denote constants of integration that pass into $C=\sqrt{2 g a}$ and $C^{\prime}=0$, if for $x=0, d x / d y=0$ and $y=0$ be taken. Therefore, $y=2 \sqrt{a x}$. By this method, accordingly, the path of a projectile is shown to be of parabolic form.
6. Subsequently, Lagrange drew express attention The addito the fact that Euler's principle is applicable only in grange and cases in which the principle of vis viva holds. Jacobi pointed out that we cannot assert that $\int v d s$ for the actual motion is a minimum, but simply that the z'ariation of this expression, in its passage to an infinitely adjacent neighboring path, is $=0$. Generally, indeed, this condition coincides with a maximum or minimum, but it is possible that it should occur without such; and the minimum property in particular is subject to certain limitations. For example, if a body, constrained to move on a spherical surface, is set in motion by some impulse, it will describe a great circle, generally a shortest line. But if the length of the arc described exceeds 180°, it is easily demonstrated that there exist shorter infinitely adjacent neighboring paths between the terminal points.
7. So far, then, this fact only has been pointed out, that the ordinary equations of motion are obtained by but ouse of of equating the variation of $\int v d s$ to zero. But since the give the $\begin{gathered}\text { give } \\ \text { equations }\end{gathered}$ properties of the motion of bodies or of their paths may of motion. always be defined by differential expressions equated to zero, and since furthermore the condition that the variation of an integral expression shall be equal to zero is likewise given by differential expressions equated to zero, unquestionably various other integral expressions may be devised that give by variation the ordinary equations of motion, without its following that the

