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SUMMARY

In view of the current interest in the theory of gases proposed by
Bernoulli (Selection 3), Joule, Krénig, Clausius (Selections 8 and 9) and
others, a mathematical investigation of the laws of motion of a large
number of small, hard, and perfectly elastic spheres acting on one another
only during impact seems desirable.

It is shown that the number of spheres whose velocity lies between

vand v + dv is
4

o3/

where N is the total number of spheres, and « is a constant related to the
average velocity:

N v2e~v'le'dy,

mean value of v? = 3 o2

If two systems of particles move in the same vessel, it is proved that the
mean kinetic energy of each particle will be the same in the two systems.

Known results pertaining to the mean free path and pressure on the
surface of the container are rederived, taking account of the fact that the
velocities are distributed according to the above law.

The internal friction (viscosity) of a system of particles is predicted to be
independent of density, and proportional to the square root of the

* Originally published in Phil. Mag., Vol. 19, pp. 19-32; Vol. 20, pp. 21-
37 (1860); reprinted in The Scientific Papers of James Clerk Maxwell (ed.
W. D. NIveN), Cambridge University Press, 1890 Vol. 1, pp. 377-409.
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absolute temperature; there is apparently no experimental evidence to
confirm this prediction for real gases.

A discussion of collisions between perfectly elastic bodies of any form
leads to the conclusion that the final equlllbnum state of any number of
systems of moving particles of any form is that in which the average
kinetic energy of translation along each of the three axes is the same in all
the systems, and equal to the average kinetic energy of rotation about each
of the three principal axes of each partlcle (equipartition theorem). This
mathematical result appears to be in conflict with known expenmental
values for the specific heats of gases.

PART 1

On the Motions and Collisions of Perfectly Elastic Spheres.

So many of the properties of matter, especially when in the gaseous
form, can be deduced from the hypothesis that their minute parts are
in rapid motion, the velocity increasing with the temperature, that
the precise nature of this motion becomes a subject of rational
curiosity. Daniel Bernoulli, Herapath, Joule, Krénig, Clausius,
etc.t have shewn that the relations between pressure, temperature,
and density in a perfect gas can be explained by supposing the
particles to move with uniform velocity in straight lines, striking
against the sides of the containing vessel and thus producing pres-
sure. It is not necessary to suppose each particle to travel to any
great distance in the same straight line; for the effect in producing
pressure will be the same if the particles strike against each other;
so that the straight line described may be very short. M. Clausius}
has determined the mean length of path in terms of the average dis-
tance of the particles, and the distance between the centres of two
particles when collision takes place. We have at present no means of
ascertaining either of these distances; but certain phenomena, such
as the internal friction of gases, the conduction of heat through a gas,
and the diffusion of one gas through another, seem to indicate the
possibility of determining accurately the mean length of path which
a particle describes between two successive collisions. In order to

1 See the Bibliography and Selections 3, 8 and 9 in this volume.

1 See Selection 9.
F*
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lay the foundation of such investigations on strict mechanical
principles, 1 shall demonstrate the laws of motion of an indefinite
aumber of small, hard, and perfectly elastic spheres acting on one
another only during impact.

If the properties of such a system of bodies are found to correspond
to those of gases, an important physical analogy will be established,
which may lead to more accurate knowledge of the properties of
matter. If experiments on gases are inconsistent with the hypothesis
of these propositions, then our theory, though consistent with itself,
is proved to be incapable of explaining the phenomena of gases. In
cither case it is mecessary to follow out the consequences of the
hypothesis.

Instead of saying that the particles are hard, spherical, and elastic,
we may if we please say that the particles are centres of force, of
which the action is insensible except at a certain small distance, when
it suddenly appears as a repulsive force of very great intensity. It is
evident that either assumption will lead to the same results. For the
sake of avoiding the repetition of a long phrase about these repulsive
forces, I shall proceed upon the assumption of perfectly elastic
spherical bodies. If we suppose those aggregate molecules which
move together to have a bounding surface which is not spherical, then
the rotatory motion of the system will store up a certain proportion
of the whole vis viva, as has been shewn by Clausius, and in this way

we may account for the value of the specific heat being greater than
on the more simple hypothesis.

On the Motion and Collision of Perfectly Elastic Spheres.

"Prop. I. Two spheres moving in opposite directions with velocities
inversely as their masses strike one another; 1o determine their

motions after impact.

Let P and Q be the position of the centres at impact; AP, BQ the
directions and magnitudes of the velocities before impact; Pa, Qb
the same after impact; then, resolving the velocities parallel and
perpendicular to PQ the line of centres, we find that the velocities
parallel to the line of centres are exactly reversed, while those
perpendicular to that line are unchanged. Compounding these
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velocities again, we find that the velocity of each ball is the same
before and after impact, and that the directions before and after
impact lie in the same plane with the line of centres, and make equal

angles with it.
Q
N
g
! S

b

Prop. II. To find the probability of the direction of the velocity
after impact lying between given limits.

In order that a collision may take place, the line of motion of one
of the balls must pass the centre of the other at a distance less than
the sum of their radii; that is, it must pass through a circle whose
centre is that of the other ball, and radius (s) the sum of the radii of
the balls. Within this circle every position is equally probable, and
therefore the probability of the distance from the centre being
between r and r + dr is

2rdr

32

Now let ¢ be the angle APa between the original direction and the
direction after impact, than APN = }¢, and r = ssin }¢, and the
probability becomes

4 sin ¢d¢.
The area of a spherical zone between the angles of polar distance ¢
and ¢ + do is
_\ 27 sin ¢dep ; |
therefore if @ be any small area on the surface of a sphere, radius

unity, the probability of the direction of rebound passing through
this area is

a) L
% >
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so that the probability is independent of ¢, that is, all directions of
rebound are equally likely.

Prop. III. Given the direction and magnitude of the velocities of
two spheres before impact, and the line of centres at impact; to find
the velocities after impact.

Let OA, OB represent the velocities before impact, so that if there
had been no action between the bodies they would have been at 4
and B at the end of a second. Join 4B, and let G be their centre of

gravity, the position of which is not affected by their mutual action.
Draw GN parallel to the line of centres at impact (not necessarily in
the plane A0B). Draw aGb in the plane AGN, making NGa = NGA,
and Ga = GA and Gb = GB; then by Prop. I. Ga and Gb will be
the velocities relative to G; and compounding these with OG, we
have Oa and Ob for the true velocities after impact.

By Prop. II. all directions of the line aGb are equally probable.
It appears therefore that the velocity after impact is compounded of
the velocity of the centre of gravity, and of a velocity equal to the
velocity of the sphere relative to the centre of gravity, which may with
equal probability be in any direction whatever.

If a great many equal spherical particles were in motion in a
perfectly elastic vessel, collisions would take place among the
particles, and their velocities would be altered at every collision; so
that after a certain time the vis viva will be divided among the
particles according to some regular law, the average number of
particles whose velocity lies between certain limits being ascertain-
able, though the velocity of each particle changes at every collision.

Prop. IV. To find the average number of particles whose velocities
lie between given limits, after a great number of collisions among a
great number of equal particles.
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Let N be the whole number of particles. Let x, y, z be the com-
ponents of the velocity of each particle in three rectangular direc-
tions, and let the number of particles for which x lies between x and
X + dx, be Nf(x)dx, where f(x) is a function of x to be determined.

The number of particles for which p lies between y and y + dy
will be Nf(y)dy; and the number for which z lies between z and
z + dz will be Nf(z)dz, where f always stands for the same function.

Now the existence of the velocity x does not in any way affect that
of the velocities y or z, since these are all at right angles to each other
and independent, so that the number of particles whose velocity lies
between x and x + dx, and also between y and y + dy, and also
between z and z + dz, is

Nf)f)f(z)dx dy dz.

If we suppose the N particles to start from the origin at the same
instant, then this will be the number in the element of volume
(dx dy dz) after unit of time, and the number referred to unit of
volume will be

Nf(x)f ) (2).

But the directions of the coordinates are perfectly arbitrary, and
therefore this number must depend on the distance from the origin
alone, that is

JUOM) = ¢(x* + y* + 2.
Solving this functional equation, we find
Ax) = Ce'™, ¢(r?) = C3e,

If we make A positive, the number of particles will increase with
the velocity, and we should find the whole number of particles
infinite, We therefore make A negative and equal to — 1/a2, so that
the number between x and x + dx is

NCe~™"a) gy,

Integrating from x = — o0 to x = + oo, we find the whole number
of particles,

1

NC = N, . C=— ’
A/ T oy
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. 1 LI
f(x) is therefore — (e
oy/n
Whence we may draw the following conclusions:—
1st. The number of particles whose velocity, resolved in a certain

direction, lies between x and x + dx is

1
—(*1a%) dx, 1
Noc\/'n: ¢ -
2nd. The number whose actual velocity lies between v and v + dv
is
N 4 p2e— @y, 2
ad+/m

3rd. To find the mean value of », add the velocities of all the
particles together and divide by the number of particles; the result is
20
mean velocity = -\_/1—r . 3)
4th. To find the mean value of v2, add all the values together and
divide by N,
mean value of v? = 2. C))

This is greater than the square of the mean velocity, as it ought
to be. |

It appears from this proposition that the velocities are distributed
among the particles according to the same law as the errors are
distributed among the observations in the theory of the * method of
least squares.” The velocities range from 0 to oo, but the number of
those having great velocities is comparatively small. In addition to
these velocities, which are in all directions equally, there may be a
general motion of translation of the entire system of particles which
must be compounded with the motion of the particles relatively to
one another. We may call the one the motion of translation, and
the other the motion of agitation.

Prop. V. Two systems of particles move each according to the
law stated in Prop. IV.; to find the number of pairs of particles, one
of each system, whose relative velocity lies between given limits,



