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151 THE EIGHTEENTH-CENTURY

Two fundamental physical images governed speculation in optics, and occasion-
ally even mathematization, from the eighteenth through the nineteenth centuries:
namely, the conception of light as a sequence of material particles moving through
a void, on the one hand, and the conception of light as a mechanical disturbance in
an all-encompassing medium, on the other. The latter image, in a myriad of forms,
had by far the greater number of adherents until well into the eighteenth century, and
has its roots in René Descartes’ comprehensive mechanical system. In 1690 the spec-
ulative Cartesian optical medium acquired a novel character when the disturbance
it was supposed to carry was bound to geometry by the Dutch polymath Christiaan
Huygens.! To do so he introduced a physico-mathematical rule, eponymously termed
Huygens’ Principle, that governed the propagation of the optical disturbances, and
according to which each point on the surface of a propagating pulse of light itself
constitutes a secondary source, with the overall pulse being the common tangent
to all of these secondaries. Huygens thought his disturbances to constitute what we
now term longitudinal pulses, which are isolated disturbances that parallel the dir-
ection of their propagation. These pulses had no periodic properties, and indeed
Huygens’ theory was able to deal neither with colours nor with certain curious
phenomena that will shortly be critical for us here and that he had himself dis-
covered on passing light through exotic crystals brought from Iceland. Huygens,
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however, successfully produced a thoroughly geometrical theory, buttressed by care-
ful experiment, for the peculiar double images produced by these Iceland crystals.
It is important to note, though, that the computational tools of the day were inad-
equate to probe the recesses of Huygens’ claims, and his construction for double
refraction remained controversial until the beginning of the nineteenth century,
when, as we shall see, its confirmation in Paris set in motion a significant chain of
events.

During the eighteenth century a considerable amount of speculative natural philo-
sophy was produced, but mathematical optics remained for the most part bound

to the physical concept that Huygens’ system had in fact demoted from physical-

primacy; namely, the ray of light. The ray itself had long been the foundation of
geometrical optics, and in the seventeenth century it had acquired a new physical
reality within the first system mentioned above; namely, as marking the track of the
particles out of which Isaac Newton built light. This conception of light’s structure
was extraordinarily influential, inasmuch as it formed an essential part of Newtonian
natural philosophy, if not of Newton’s mathematical optics. But mathematical optics
of any kind was not extensively pursued in new ways during the eighteenth century,
and certainly no novel experimental or mathematical results were produced dur-
ing the period that attracted widespread attention, though significant instrumental
developments certainly did occur. Moreover, throughout much of the eighteenth cen-
tury, in a number of loci the differences between the Newtonian theory and systems
based on motion through a medium were not altogether clear-cut, not least because
elements of both appear in Newton’s own, widely-read Opticks (the first edition of

which was printed in 1704), in what many readers evidently found to be a confusing

amalgam,?

Despite (or perhaps because) of the concentration on physical principles dur-
ing the period, until the last quarter of the eighteenth century very little work
in any area of natural philosophy associated with the laboratory was quantitative,
and even less attempted to integrate quantitative detail with precise experimental
situations whose accuracy could be specified. This was particularly true for invest-
igations of electricity and heat, and it was also true in comparatively obscure areas
such as the optics of crystals. This began to change radically in France during
the last quarter of the century. Charles Coulomb in electricity and the Lavoisier—
Laplace collaboration in heat exemplify this change: here we find a growing concern
with quantitative structure coupled to careful, and often elaborate, experiments
designed explicitly to concentrate on quantity. Indeed, by the turn of the century
in France, work that was not quantitative, and experiments that were not care-
fully contrived and mathematically analysed, stood little chance of receiving much
attention. This new desideratum was best learned by example, and one place to
learn it was at the Ecole Polytechnique in Paris. All four of the major French
participants in the early years of the optics controversies that reshaped the dis-
cipline in fundamental ways—namely, Jean Baptiste Biot, Etienne Louis Malus,
Frangois Arago, and Augustin Jean Fresnel—attended the Fcole in the 1790s and early
1800s.
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15.2 Ray OpTIiCcs, THE DISCOVERY OF
POLARIZATION, AND THE BIOT-ARAGO
CONTROVERSY

During the first decade of the nineteenth century, interest in optics, and partic-
ularly in novel optical experiments, became quite strong in France. Stimulated in
part by the English chemist William Hyde Wollaston’s apparent confirmation of
Huygens’ construction for the double refraction of Iceland crystal, Laplace had Malus,
in whom he reposed a considerable amount of confidence for work that Malus had
already done in constructing a mathematics for systems of light rays, to undertake
a thorough experimental investigation of the subject. After producing at Laplace’s
instigation a mathematical tour de force in which he translated Huygens’ construc-
tion into algebra, Malus pressed ahead with a careful experimental investigation
which showed convincingly that the construction is extremely accurate. Here Malus
deployed both the engineering and mathematical training that he had acquired at
the Ecole Polytechnique. His work required an acute combination of analysis with
cleverly designed and deployed apparatus, yielding in the end what was, at the time,
the most accurate optical measurement that had ever been made. Neither he nor
Laplace, however, concluded that Huygens pulse theory of light, which they care-
fully and thoroughly distinguished from the Newtonian alternative, must therefore
be accepted. Instead, both argued, in different but equally peculiar ways, that the res-
ultant formulae are in fact compatible (and perhaps even uniquely compatible, if one
takes Laplace at his word) with the mathematics of particles and forces. This debat-
able claim was quite persuasive among Laplace’s associates and students, as well as in
certain quarters in England, and for more than a decade and a half optics remained
closely bound to the particle theory, as we will see.?

Indeed, the persuasive claims of Newtonian optics were furthered in no small
measure by Malus’ own discovery of an entirely new optical process—the first such
discovery since the seventeenth century. Huygens had already noted that light emer-
ging from doubly-refracting crystals seems to have some sort of asymmetry associated
with it, since on entry into a second crystal it is not equably divided in two again.
In 1809 Malus found, through a series of acute experiments due initially to a serendip-
itous observation, that this property (which in 1811 he named polarization) did not
require a crystal, but that reflection at a particular angle from any transparent body
can also produce it. This discovery stimulated a great deal of experimental and the-
oretical work during the next decade, undertaken especially by Arago and Biot in
France, as well as by David Brewster and, somewhat later, John Herschel in Great
Britain. Indeed, the most heavily pursued area of quantitative experimental research
in optics during the 1810s orbited about the many instrumental novelties and con-
sequent research opportunities opened by Malus™ discovery, particularly when the
new light form was passed through thin crystal slices, producing beautiful and com-
plicated colours. This work was not based on the Newtonian theory per se, nor was
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it in any easy sense simply instrumental, even though strongly connected to the new
device—his polarimeter—that Malus had designed to produce and to measure the
new optical property. It was nevertheless hypothetical.

In this scheme the ray of light (not the Newtonian optical particle) provided the
fundamental theoretical tool. Practitioners of ray optics, for whom we will shortly
introduce a different name appropriated from Thomas Young (the English polymath
who, we shall see below, invented a scheme for waves similar to the first one deployed
by Fresnel) considered the ray to exist as an individual object that could be counted
and that rays collected together in groups, or bundles, to form beams of light. In this).
system the ray itself was the central physical object, and the appropriate mathematics
involved ray-counting, or what amounted to a species of ray statistics. The charac-
ter of the system appears strikingly in Malus’s own conception of polarization. The
intensity of a beam of light is measured numerically by the number of rays that it
‘contains. Unlike the individual ray, which is too weak, a beam can be seen, and its
intensity can be manipulated, if not measured directly, using Malus’ polarimeter to
sort out the rays of different orientations that comprise it, according to the following
way of thinking.

Every ray, Malus insisted, has an inherent asymmetry about its length. Think of

it rather like a stick to which a crosspiece is nailed at right angles. Given the direc-
tion of the ray, the orientation of the crosspiece in a plane at right angles to the ray
determines its asymmetry. As Malus understood the concept, ‘polarization’, properly
speaking, does not apply to the individual rays in a beam but only to the beam as a
collection of rays. A beam may be polarized in a certain way, but the individual rays
that make it up are not themselves said to be polarized, though each has a certain
asymmetry. If the asymmetries of the rays in a given beam point randomly in many
directions then the beam is, in Malus’ understanding, ‘unpolarized’. If, on the other
hand, one can group the rays in a beam into a number of sets, each of whose elements
shares a common asymmetry, or even if this can be done only for a certain portion of
the rays in the beam, then the beam is said to be ‘partially polarized’. If all of the rays
have the same asymmetry then the beam is just ‘polarized’. According to Malus’ way
of thinking, his polarimeter picked out those sets of rays within the beam that had
specific asymmetries.*

We shall hereafter refer to Malus, and to those who thought like him, as ‘selection-
ists’, since they conceived of polarization as a process in which the rays in a beam
are selected and have their asymmetries altered in direction. Selectionism was, on
the one hand, not at all coincident with the Newtonian theory, since selectior)lists
could and did draw the distinction in controversy with their wave opponents, but
on the other hand, it was nevertheless thoroughly hypothetical, which is easy t;) see:
because on wave principles it is in fact unsustainable—in wave optics light beams
cannot be thought of as collections of discrete rays. More to the point, selectionist
principles could be, and indeed certainly were, used to develop mathematical laws
that had direct applicgtion in complex experiments. These laws were neither mere
summaries of experimental results, though they were certainly tied directly to par-
ticular kinds of instruments, nor were they simply pulled out of the air. On the
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contrary, they were deduced directly from the fundamental principles of selection-
ism, and they are incompatible with laws for the same kinds of phenomena that are
implied by the principles of wave optics. However, the two devices (the crystal and
the polarimeter) that could be used to examine polarization at the time depended
critically upon the eye to judge the presence, absence, or even intensity of light, and
in these kinds of experiment the unaided eye has limitations. The limitations were
sufficient to preclude any experiment until well into the 1840s that could tell the dif-
ference between the selectionist and wave formulae for the most widely influential
phenomenon; namely, the partial reflection and refraction of light at the surfaces of
transparent media. Indeed, the relationships that Fresnel obtained for calculating the
quantities of polarized light reflected and refracted remained without experimental
support for decades, thereby generating a pointed controversy concerning them, so
long as only the eye could be used to compare optical intensitites.” Nor was this the
only area in which the difference could not be told.

Malus did not live long enough to develop his own system completely, though its
outlines were quite apparent to many people at the time. Arago, for one, saw clearly
that Malus’ work depended on the division and grouping of light-rays into related
sets, and this aided him in explaining a phenomenon involving Newton’s rings that
he himself discovered shortly before Malus’ death. Arago was aged just 23 at the time
of his election to the astronomy section of the Institut de France in 1809, and his work
on Newton’s rings two years later, at the age of 25, represented the only research for
which he could claim sole responsibility. He had reason to be jealous and intensely

~ proud of his results. From the outset, Arago fully adopted Malus’ terminology and

understanding of polarization, and with these ideas in mind he decided to make his
mark by examining the polarization of Newton’s rings. These coloured bands occur
when light passes through the narrow gap between, for example, two lenses pressed
hard together, and had been extensively investigated by Newton. Working with lenses
at the observatory, Arago thought to examine the polarizations associated with the
rings. When he did so he rapidly discovered an apparent exception to the rules that
Malus had offered for the polarization of reflected light—an exception that Malus
himself found to be quite troubling when Arago told him about it. However, as Arago
pursued his discovery he did not abandon Malus’ understanding, but instead sup-
plemented it by drawing a new distinction between the formation of rings and the
generation of their polarization. This, as we shall see in a moment, captured him
in a very important way. However, on 11 August he described another, eventually
highly influential, discovery he had made that was later termed ‘chromatic polariz-
atior’, involving the generation of coloured patterns by the passage of polarized light
through crystal sections.®

What happened next proved to be critically important. Between 11 August and the
following spring Arago continued to pursue his exciting new discoveries, though
we do not know precisely what he was doing during this period. Burdened with
heavy teaching and administrative duties he did not, he wrote later, have the time
to gather his new work together for a public reading before a disaster occurred. All
of a sudden, seemingly out of nowhere, Biot intruded on Arago’s field of research
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and read a note on chromatic polarization that at once thoroughly stripped Arago
of his leadership in the new field. Arago demanded that notes he had earlier depos-
ited be examined to show that he had already done what Biot claimed. The Institute
appointed Burckhardt and Bouvard to look into this contentious issue, and in April
the investigators announced that ‘the declaration made by M. Arago [is] most exactly
true’. But these notes were actually published only years later, and Arago did not
read anything else to the Institute until the following December, eight months after
the debacle with Biot over priority. In the meantime the active Biot himself read an
extraordinarily long memoir on chromatic polarization to the Institute, followed six
months later by an even lengthier discussion that had a major impact on most of his
French, and eventually his British, contemporaries.

Arago had lost control of the field he himself had founded. Yet the notes that he
had deposited, and which he forced the Institute to examine, scarcely mention the
subject of chromatic polarization, which is what concerned Biot. Moreover, Arago’s
two subsequent memoirs in the general area, as well as his contemporary unpub-
lished notes, are very different in character from Biot’s memoirs. Unlike Biot’s work,
this material is entirely qualitative and yet nearly devoid of any concern with the prin-
ciples of Newtonian optics. It is almost entirely involved with the overall features of
what happens to rays, rather than with why it happens to them or with representing
mathematically, in the fashion of Malus, precisely how it happens. But what the notes
do contain, though only in a highly undeveloped form, is a general theory that tries
to unite the polarization effects of double refraction and thin crystals with those of
reflection.

The theory is rather vague and completely non-quantitative, but it does try to unify
very different phenomena. Unlike Biot’s pre-emptive work in the area, Arago’s was
very broad in scope. He never attempted to generate formulas from it, and his work
does not contain numerical, much less tabular, data of any kind. Biot, by contrast,
produced formulas very early on in his work on chromatic effects (though he had
nothing like Arago’s unifying theory), and his lengthy papers are filled with extensive
tables. Of the two, Arago was working in the more traditional, qualitative manner;
he was seeking broad principles to encompass several classes of phenomena. Tabular
data and formulas do not fit well that kind of endeavour. Biot turned instead to very
sharply limited assumptions and pointedly sought to generate formulas from them
for specific cases, while attempting to marry his mathematics to quantitative exper-
iment. He made no effort in his early work to link these results to wider classes of
phenomena in any firm way.

Biot’s first work in this area therefore follows the new pattern of the late 1700s,
a pattern that was firmly established in optics by Malus. This pattern was rapidly
becoming a standard one. It insisted upon the careful tabular presentation of numer-
ical data and the generation of formulas that are capable of encompassing the material
at hand, with little immediate concern to reach out to other, even closely related,
phenomena. The differences between Biot’s and Arago’s work therefore hinged upon
changing canons of experimental reporting and investigation, canons that had first
appeared in optics in sharpest relief in Malus’ work.
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During the next several years Biot not only gained fuller control over the subject
that Arago had created, but also published long and intricate memoirs that linked
it to Newtonian optics. Biot’s rapid progress in chromatic polarization culminated
in an immensely detailed book, a text that symbolized in concrete form the aston-
ishing success of his endeavour.” To many people Biot became that theory’s primary
exponent. Arago could not have been overjoyed. Even before these events Arago had
expressed some doubts about the Newtonian system, or at least about several aspects
of it. Little wonder that he came to dislike it violently. Arago was accordingly well pre-
pared to react when in September 1815 he received a long letter from Augustin Fresnel,
the nephew of Léonor Merimée (once teacher of design at the Ecole Polytechnique,
and by then permanent secretary of the Ecole des Beaux Arts). Fresnel approached
Arago with just the kind of quantitative work that Biot could produce and that he,
Arago, could not.

Fresnel, himself a graduate of the Ecole Polytechnique a decade before, had briefly
visited Arago in Paris in the previous July while on his way to internal exile at his
mother’s home for having greeted Napoleon’s return from exile by joining the Duc
d’Angouléme’s resistance. Fresnel was already pondering optics by then, and asked
about diffraction. Arago gave him a list of English authors, including Thomas Young,
which Fresnel could not read, though his brother Leonor could. Fresnel’s fall letter to
Arago advanced an optical theory similar to the one that had already been discussed
by Young, and it contained precise experiments, numerical detail, and beautiful
formulas.® Most importantly, it seemed to Arago to show something that neither Biot
(nor Arago himself) could have predicted: namely, that the coloured fringes produced

' by light that passes the edge of a narrow object the diffraction fringes move away from

the diffractor along hyperbolic paths. Though Fresnel himself did not emphasize this
discovery in his first letter to Arago, Arago seized on it and at once pressed Fresnel to
improve his observations, to make the discovery indubitable. In passing, he remarked
that Fresnel’s theory was essentially the same as the Englishman Thomas Young’s,
though Arago did not at the time also realize that Young had already pointed out the
hyperbolic law (which had in any case been remarked for a different configuration
than Fresnel’s as an empirical generality by Newton in his Opticks). What gripped
Arago was not so much the excitement of a new discovery as the opportunity to make
use of it to redress the recent wrongs he had suffered at the hands of Biot, whereas
Fresnel was deeply perturbed by Young’s priority, and this in the end stimulated him
to even greater exertions. Their two worries nicely intersected for a time.

In 1799 Thomas Young in England had begun a series of publications that sub-
stantially extended the quantitative power of medium theories of light. Young, like
Leonhard Buler b}efore him, associated colour with wave frequency, but he went far
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beyond Euler in his use of the assumption (not least because Euler’s “frequencies”
referred to arithmetically-separated pulses of light).® Trained as a medical doctor,
Young had during his studies become deeply interested in acoustics, and especially
in phenomena of superposition. This eventually led him to the principle of inter-
ference, according to which continuous waves of the same frequency and from the
same source will, when brought together, produce regular spatial patterns of vary-
ing intensity. That principle had not been well understood for waves of any kind
until Young began his investigations, and it can indeed be said that the study of wave
interference in general began with Young himself, though he did not pursue it extens-
ively outside optics. Many difficult problems had to be solved by Young, including
the conditions of coherence that make detectable spatial interference possible at all.
Furthermore, the principle of superposition, according to which waves combine lin-
early and which is a necessary presupposition for the principle of interference, was
itself quite problematic at the time and also had to be developed and argued for by
Young.

Young applied his principle of interference to the diffraction of light by a narrow
body, as well as to the case of light passing through two slits, though in the latter case
it seems that he did not carry out careful measurements. In all cases he explained the
fringe patterns that he observed by calculating the path difference between a pair of
rays that originated from a common source. He did not calculate with waves them-
selves, but rather assigned periodicity to the optical ray, which accordingly retained
a signal place in Young’s optics. Although Young was certainly quite familiar with
Huygens’ work, he did not utilize the latter’s reduction of rays to purely mathemat-
ical artifacts, for that was bound to Huygens’ principle, which Young found difficult
to accept.

In any event, Young’s optics did not generate extensive immediate reaction. Indeed,
his principle of interference was sufficiently difficult to assimilate that no other
applications to new phenomena were forthcoming. The most famous, or (in ret-
rospect) infamous, reaction, was that of Henry Brougham. Brougham vehemently
objected to Young’s wave system as an alternative to the Newtonian scheme of optical
particles, and he also objected to the principle of interference itself even as a mathem-
atical law applied to rays. Most contemporary optical scientists were more interested
in the physics than in the mathematics of light, and in this area Young’s ether posed as
many qualitative problems as did the alternative system of light-particles. Although
Young’s work did not stimulate extensive discussion in France, it was nevertheless
known there.

15.4 FRESNEL, INTERFERENCE, DirrrACTION,
AND ARAGO

Arago soon brought Fresnel to Paris and participated in new experiments with him,
particularly in ones that seemed to hold out the possibility of casting doubt on some
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aspect of the Newtonian theory, and so ultimately on ’.che Worth of Biot’s work.'0 This
was the origin of a famous mirror experiment, in which interference occurs between
rays that do not pass near material edges and so cannot pltesumab.ly be affected )by the
forces that might otherwise be used to explain the formation of fringes. Fresnel’s own
views underwent considerable development during the next three years, and Arago
evidently made certain that he had control over when and where the W'OI'k was 1epor-
ted. Then, on 17 March 1817, the Academy publicly announcgd that it had de.ade'd
to offer a prize on diffraction. By this time Fresnel had extensively Fhanged his ori-
ginal theory, having evolved it from one that was based on comparing rays tlwo ata
time to one that was based on wave fronts, Huygens’ principle and elabore.tte integral
methods. These developments were stimulated by a succession of increasingly exa.ct
experiments in which Fresnel modified his early thegry i'n th'e face of countervail-
ing observations. His final results reached an extraordlnarlly high degree of accuracy
in placing the loci of diffraction fringes. To do that requlred. Fre'snel to d.evelop a
series of observational techniques that were designed to provide just t'he right s.ort
of data for him to deploy numerical methods for approximating his theoretical
formulas. . .

Figure 15.1 is adapted from a diagram drawn by Fresnel h%mself. In it, C repres-
ents the source of a spherically symmetric front AMm' that is 1nterc§pted by a screen
AG. Adapting Huygens’ principle, Fresnel conceived that each point on the: frc.)nt
itself emits a spherical wave, albeit with an amplitude that dfecreases with '1nchn-
ation to the line joining that point to the source C. Introducing z as the distance
along AM from the edge A of the diffractor, Fresnel could then represent the amp-

 litude  of a disturbance with wavelength ) sent to an arbitrary screen point P in the

following way:

P B

Fig. 15.1. Fresnel's structure for calculating diffraction.



454  JED Z. BUCHWALD

/]
¥ = sin [27‘[ <t— C]W_—)I\—nis_>]

o Pt b)
2ab
whence

\stin[ZJT <t—C—M)—~nzza+b
A ab

which decomposes into

¥ = cos [nzz at b] sin [Zyr (t — —C—Ai[>j|
abh A
+ sin ’:n'zz a+t b] sin {Zn (t — C—M> — z]
ab A 2

Fresnel could conclude from this that the square of the resultant from all of the sec-
ondaries on the front, pairing up all terms with cosine amplitudes and all terms with
sine amplitudes, can be computed from the following sum:

a4 b 2 2
(/ cos ':nzz pra) ] dz) 4 (/ sin {n’z2 aaz_kb:l dz)

or, using a change of variables, to find

1
/cos <E nzz> dz and fsin (% nzz) dz

There were two major difficulties with this result with which Fresnel grappled. One
was how to establish an appropriately general coordinate system for calculation. This
arises in the simplest case when the diffracting object, or aperture, has two edges, for
then two limits are involved, and this in effect requires computing values for all points
of a surface. The other, which arises in all cases, including that of the semi-infinite
plane, where only one boundary occurs (and where, accordingly, the surface just
mentioned reduces to a line), is simply how best to calculate useful values for these
integrals. Fresnel sought the quickest route to application, and that was by numerical
integration (instead, for example, through a series expansion, though Cauchy later
developed divergent ones for these integrals). In an astounding computational four
de force, Fresnel tabulated the integrals in steps of 0.1 from o to 5. His computational
errors in doing so amounted to a mean of only 0.0003, and the differences between his
values and more accurate ones computed using the series later produced by Augustin
Cauchy still amounted to only 0.0006.

The appearance in physical equations of solutions that could only be evaluated
by series expansions or by numerical integrations was by this time not altogether
unusual. They had emerged quite directly in astronomical problems, and they were
soon also to appear in problems involving elasticity and heat flow. Nevertheless,
what was unusual was the presence of such things as a fundamental expression of
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the underlying physics. For Fresnel’s integrals, unlike, say, Legendre polynomials in
astronomy, or, later, Fourier series in thermal processes, were not produced as solu-
tions to given differential equations. On the contrary, they were asserted by Fresnel
without his having had in hand the partial-differential equation of which they were
meant to be the solutions, much less the methods and techniques necessary to solve
such a thing under appropriate sets of boundary conditions. Fresnel, one might say,
had discovered the solution to what would later be termed the ‘reduced wave equa-
tion’, or after 1860 as the ‘Helmholtz equation’, without having any idea at all what
that equation was. This character of Fresnel’s wave optics contrasted strikingly with
that of an optics whose physical imagery at least was grounded on particles and
forces, for there the fundamental differential equations were well-known and were,
in addition, ordinary.

Of course, there was no way at all to treat what amounted to an n-body prob-
lem in Newtonian optics. Consequently, one has the seeming paradox that the only
way mathematically to deal with diffraction required a method whose underlying
physics and associated fundamental mathematics remained altogether unknown,
whereas the alternative physical scheme, in which the physics was very well under-
stood indeed, yielded no effective mathematics at all. Yet this very difference was
precisely what aided the assimilation of Fresnel’s mathematical methods, and even-
tually of the physical conceptions that they brought along with them. For no-one
on the prize commission, which included Laplace and Siméon Denis Poisson, who
were arch-proponents of particle physics, objected that Fresnel’s integrals should not

~ be exploited as, in effect, phenomenological expressions of the empirical facts of the

matter. During the remainder of the century, Cauchy, George Green, George Stokes,
Hermann Helmholtz, Lord Rayleigh, Gustav Kirchhoff, and Arnold Sommerfeld, to
mention only a few, grappled with the creation of physics for both sound and light
based on the partial-differential wave equation in three-space and its useful solutions.
It may with only slight exaggeration be said that all of them were attempting to dis-
cover just what these original solutions of Fresnel’s were solutions to, and how they
could in retrospect be justified or amended.

Laplace, Poisson, and even Biot were not overly disturbed by Fresnel’s success in
developing formulas for diffraction, not least because they did not think that diffrac-
tion was a major topic in optics. Certainly it was an important topic, but in their eyes
its application was limited to what happens near edges or when light rays are made to
interact with one another in certain kinds of situations. They certainly did not believe
that all of optics had to be reconstructed on a new foundation, for they continued to
think of the optical ray as a fundamental, irreducible element. They rejected waves.
Indeed, acceptance of Fresnel’s diffraction formulae without a simultaneous accept-
ance of Fresnel’s wave theory remained quite common until the late 1830s. This does
not, however, mean that the Newtonian theory per se retained its power. It means
rather that a distinction was drawn between that theory and the assumption that
rays are individual, countable objects, which remained tacitly unquestioned. Fresnel’s
work certainly raised many doubts about light-particles, but for quite some time it did
not raise corresponding doubts about the physical identity of the light-ray.
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15.5 A NEw MATHEMATICAL OPTICS
AND THE WAVE-PARTICLE DEBATES

Diffraction had not been the exciting topic in optical research throughout most of the
1810s. Polarization, and chromatic polarization in particular, had captured the centre
of attention and had made Biot’s reputation. This was the subject that Biot had ripped
out of Arago’s hands in 1811. In mid-July 1816 Arago apparently suggested to Fresnel
that he should examine the fringes produced by the interference of the two polarized
beams that emerge from a crystal. Fresnel’s first discussion of chromatic polarization,
which was based on the principle of interference, was not an improvement over Biot’s,
primarily because at that time Fresnel did not know how to compute the resultant of
more than two interfering rays. And though Fresnel submitted this work, which was
handed to Arago and Ampere to report on, no report appeared for five years.
Arago’s ‘report’, when it finally did appear, was a polemic directed at Biot. He had
delayed five years in writing it probably because it took him that long to understand
fully how Fresnel’s work might be used to defeat Biot. Biot was given the papers on
which Arago was ostensibly reporting, and he saw at once what Arago had done.
Remarking that Fresnel himself ‘had not proposed as the basic purpose of his work
to show that what he calls my theory of mobile polarization is, in many points,
insufficient and inexact’, Biot concluded by complaining that the report ‘deviates
from the rules generally established in scientific societies for assuring the equity of
their decisions’. The controversy that ensued was nasty, and at times vicious, though
Fresnel was himself somewhat on its outskirts. He had written his original memoirs
not to attack Biot directly but rather to present his own theory. Arago turned that
around, and Biot knew it. However, in the heat of his reply, Biot challenged aspects of
Fresnel’s work, thereby opening himself to a powerful attack from Fresnel. This con-
frontation between Biot and Arago, and Biot’s subsequent failure to clarify the nature
of his theory in exchanges with Fresnel, marks an epoch in the history of optics.
Scarcely two years after Fresnel had won the prize for his diffraction memoir, the
Institut, now returned in the aftermath of the monarchy’s Restoration to its original
name as the Royal Academy, ordered printed, over Biot’s explicit and public objec-
tions, Fresnel’s account of chromatic polarization. The members of the Academy did
not accept Arago’s report, but apparently only because Arago had not insisted that
they do so {(and he in any case published it almost immediately in his own journal).
Fresnel’s final theory of polarization, more than his account of diffraction, broke
fundamentally with selectionist optics. As we saw above, contemporary French
understanding of polarization considered it to be an essentially static, spatial process
in which the rays in a given group have their asymmetries aligned in certain ways.
Time does not enter into this scheme, and, according to it, a beam of observably
unpolarized light is always just unpolarized, no matter how small a time interval
one might consider. For several years Fresnel had found it extremely difficult to
discard this notion that common light must not show any signs of asymmetry at all,
though he could not use ray-counting procedures to explain why not. He accordingly
tried hard to build a scheme in which polarization consists of a temporally fixed
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combination of directed oscillations: one along the normal to the front, and the
other at right angles to it. In common light the transverse component vanishes
altogether; in completely polarized light the longitudinal component disappears.
This, like its ray-based counterpart, is an inherently static, spatial image. Fresnel was
not successful in building a quantitative structure on this basis. Then, in 1821, he set
his static image into motion.

The core of Fresnel’s new understanding of polarization referred the phenomenon
to the change (or lack of change) over time of a directed quantity whose square
determines optical intensity. This quantity must always lie in the wave front (and
is therefore ‘transverse’ to the ray in optically isotropic media), and in reflection and
refraction it can be decomposed, with the components in and perpendicular to the
plane of reflection being affected in different ways. Common light consists of a more
or less random rotation and amplitude change over time of this directed oscillation,
and not, as Fresnel originally understood it, of a spatially fixed (longitudinal) dis-
turbance. Rays of light are mathematical abstractions: they are merely the directions
joining the centre of the wave to the front itself. In a purely analytical sense one can
link a ray to the asymmetry in the front at the point of the front which the ray con-
tains. Accordingly, in Presnel’s wave theory one can say that a ray is polarized, if one
wishes, because polarization refers to the asymmetry at a point in the front, and to
each such point there corresponds only one ray. But, and this is a signal characteristic
of the scheme, the rays, being mere lines, cannot be counted. A beam of light is not a
collection of discrete rays, which means that it cannot be dissected in Malus’s fashion.
The vast gulf between the two conceptions made it extraordinarily difficult for people

" who did not think about polarization in the same way to communicate their exper-

imental results to one another without leaving an inevitable residuum of ambiguity
that could, and often did, lead to controversies.

Fresnel soon drew startling implications from his new theory of polarization. He
produced novel surfaces for doubly refracting crystals that linked polarization to wave
speeds and thence to the directions of rays. These surfaces, which Fresnel obtained
only after several false starts and much experimental work, opened a new, and unex-
plored, realm for mathematical and physical analysis, which was soon avidly pursued
in England, Ireland, and France by an emerging cadre of wave analysts. Much of this
work concentrated on drawing implications from Fresnel’s surfaces and associated
mathematics. For example, Humphrey Lloyd in Ireland confirmed the existence of
a striking phenomenon known as conical refraction that William Rowan Hamilton
had deduced; in England, George Airy examined mathematically the special type
of double refraction that occurs when light passes through quartz oblique to its
optic axis, again deploying with finesse Fresnel’s new mathematics for polarization.
The late 1830s and the 1840s were also the period during which vigorous debates
occurred between partisans of the old and new optics, debates that often raised issues
concerning the respective physical foundations of the two theories.

Most wave partisan attacks against the alternative optics looked directly to the
latter’s putative foundation in particles and forces. Humphrey Lloyd, for example,
remarked that the ‘emission [Newtonian] theory of light is essentially useless
because ‘it is an aggregate of separate principles’ concerning the behaviour of optical
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particles.!! According to Lloyd, wave optics is nothing like the unamalgamated
aggregate of emission (particle) optics, and this is why it can generate new physics
Among the new physics that Lloyd had in mind was partial reflection and refraction'
Here, he explained, Biot’s physics for optical particles, which Lloyd developed in.
some detail, simply could not yield formulae—nothing useful emerged from it at
all. Fresnel was much better. Unlike emission theorists, who could not generate
formulae from their forces and particles, Fresnel could, Lloyd asserted, from the
properties of the medium, or ether, in which optical waves were supposed’to subsist
Ironically, Fresnel’s mathematics for partial reflection and refraction was the oné
aspect of his new wave theory that escaped experiment for many decades, primaril
because the photometric measurements required could be done only by> usin th}e’
eye to judge degrees of illumination, which left considerable scope for ar :
et gument over
Ll‘oyd’s brief for the power of the wave theory, and for the intuitive sagacity of its
partisans, could not convince anyone on the other side who had spent mucﬁ time
engaged in research, and in fact it did not do so. Neither did William Whewell’s
remarks in a similar vein produce any conversions, for the fact was that in the earl
years of wave optics it remained possible still to think in old ways, based on rays o};
hght., because the new system had yet to flower on paper and in the laborato}r’ 13
During the 1830s, however, wave partisans produced practical analytical tools e};ld
some laboratory tools as well, that enabled them to establish a dynamic res;arch
tradition, within which ether physics took its place as one element. Wave partisans
for reasons that did not have much to do with the comparative abstract superior-)
1'ty of t_heir system, also controlled important journals and built a close network of
hke—.mmded people through university and (especially) professional associations. Ra
partlsa'ns did not achieve anything like this; they did not even try to do so. By the 1'840}57
an entire universe of wave devices was being generated—one in which the instru-
ments themselves were increasingly built around the behaviour of wave front and
ph?se, the principal concepts of the new theory. This universe of devices offered no
p.om.t of entry to the ray physicist, for whom front and phase had no fundamental
significance. By then, which was quite some time after the large majority of work in

'optics had'shifted to wave methods, ray physics might be said to be objectively weak
in comparison to wave physics.

15.6 THE PHYSICAL STRUCTURE OF WAVE

?n ray optics t.he concepts of particle and force served less to generate new mathemat-
ics and experiments than to provide a physical foundation. Similarly, in wave optics
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the ether served for the most part rather to suggest and to justify than to produce new
physics. For example, Fresnel’s route to a mathematics for diffraction hardly used the
ether at all, except for the signal purpose of convincing him in the first place that
light did not have to be thought of as a collection of physically distinct rays. In fact,
the minor use that Fresnel did there make of the ether prevented him, for nearly five
years, from accepting that Huygens’ principle had anything useful to say about dif-
fraction. And when he did develop his final theory the ether served him primarily as
a strong physical foil with which to counter the physical absurdities (as he saw it) of
the optical particle. What it most certainly did not serve him as was a generator of
mathematical theory, which in this area at least emerged despite the physical image
that Fresnel held of the ether, not because of it.

The same can be said, only even more strongly, of Fresnel’s work on polarization.
Here he was stymied by his inability to disentangle different types of wave propaga-
tion from one another, and to associate only one of these types with polarization.
The old way of thinking about polarization—one that Fresnel had much trouble
abandoning—linked nicely to the natural image of an optical disturbance as a pres-
sure wave in the ether. The asymmetries that are the core of polarization phenomena
required something very different, and the only possibility, Fresnel saw very early on
(at Ampere’s suggestion), was a transverse wave. This raised problems (such as how
the planets could move through such a comparatively rigid thing), but these issues
had little effect upon Fresnel in the early years, because even given transverse waves
he still did not see how to produce a unified account for polarization. Only after he
conceived the entirely novel idea that the asymmetry in the wave front can vary in dir-

" ection with time as the front propagates did he discover how to construct an entirely

new account. And in this development the ether was again more of a stumbling block
(as it had been in diffraction) than it was an aid to creation.

But, one might object, there was certainly at least one area where Fresnel did use the
ether in much the fashion that the common image of the period suggests—as, that is,
a model for producing new mathematical theory: namely, in his creation of the wave
surface for biaxial crystals, those which have two optical axes, whereas Iceland spar
has only one. His final account, written in 1824, presents an elaborate structure for
the ether—one that can, it seems, be used to generate the very difficult series of sur-
faces that lead to Fresnel’s biaxial generalization of Huygens’ construction for Iceland
crystal. And it was after all this generalization that led, in the hands of Hamilton and
Lloyd, to the discovery of conical refraction, which the philosopher William Whewell
and others crowed over as concrete evidence of the wave theory’s power.

One would nevertheless be wrong to see creative ether dynamics even here, because
Fresnel used the image of an elastic ether for precisely one purpose only: to jus-
tify physically the assertion that the wave speeds that correspond to an oscillation
in a given direction can depend upon that direction. Upon this assertion, and this
alone, he built his theory. It led, after several false steps and much hard experimental
work, to Fresnel’s creation of the surface of elasticity (which is substantially what we
now term the optical indicatrix), from which followed the so-called normal surface
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for front speeds, and thence (through some inspired guessing rather than through
rigorous deduction) the wave surface. The ether appears nowhere in this sequence.

However, in his final, published version Fresnel did devote a few pages to suggest-

ing a foundation for ether dynamics—a foundation that he certainly knew to have
been flawed, but one that at least seemed to profound a physical basis for the com-
plicated series of steps which derived from the surface of elasticity, a surface that had
its physical seat, after all, in ether itself. What, then, was this basis? The ether, for
Fresnel (and for many later optical scientists as well) was a system of point masses
that exert central, repulsive forces upon one another. This much had almost certainly
been in the back of Fresnel’s thoughts for many years. But what did he, or even could
he, do with this image? Creatively he did scarcely anything at all with it. But he did
provide the elements of a foundation for the wave properties of such a system in a way
that provides a useful contrast to what the mathematician Cauchy did in the 1830s.

Fresnel developed his ether dynamics on two levels, the highest was closely tied to
the immediate demands of optical theory, while the lower was intended to provide
a foundation for the upper. The latter asserts essentially two things. First, that the
vector reaction to the displacement of any given point is a linear function of the
displacement’s components. Second, that the coefficients governing the reaction are
constants. From this, Fresnel was able rigorously to generate his ‘surface of elasticity’.
To prove it, however, he made the questionable assumption that the reaction gener-
ated by a given point’s displacement can be calculated by holding every other point
fixed. He was himself entirely aware that the assumption was not a reasonable one,
but only by making it could he reach the surface of elasticity from some facsimile of
ether dynamics.

This again shows that for Fresnel the behaviour of the ether did not have to be
known in order to formulate his new optical theory, including that part of it which
does impinge most directly upon the ether’s properties: namely, double refraction.
But one must not take this too far. Without the ether as a physical underpinning it
would have been extremely difficult for contemporary physicists to use the wave the-
ory without feeling that it lacked a firm physical foundation, whereas the alternative
to it, which was based on sets of rays, did at least have an apparently firm physical
basis in the image of the optical particle governed by forces. Indeed, one of the cri-
ticisms that wave theorists often threw at their predecessors was that the ether was
a much sounder physical foundation than was the optical particle—in part because,
as Fresnel had begun to show, and as Cauchy showed with much greater rigour, one
could actually generate from the mechanical structure of the ether theorems that lead
to formulas, and not only in double refraction.

It is unlikely that had Fresnel lived he would have continued working much as
he had in constructing the wave theory between 1815 and his death in 1827. On the
contrary, both published work of his as well as manuscript evidence indicates that
the ether was becoming increasingly important to Fresnel as a generator of theory.
One phenomenon in particular seemed to him to require an intimate knowledge
of the ether’s behaviour: the dispersion of light. In 1823 Fresnel advanced a qualit-
ative explanation of dispersion, based on ether dynamics, that became immensely
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influential in the 1830s, particularly for Cauchy. Dispersion, accjordlng 'to Fre;nlil,
depended on the spacing and forces between the mutually repelling particles C(l)dt e
ether. The clear implication of Fresnel’s remarks was that theory had ‘to address
these two factors (spacing and force) in order to deal quanjutatnf?ly with disper-
sion. This was precisely what Cauchy had begun to atnalyse, ina .dlfferent. contéxt,
in 1827, the very year that Fresnel died. And Cau.chy $ mathen.lat'lcs forddlspersmn
set a programme of research that was pursued in France, Britain, an (gerrgany
during the 1830s and (in Germany and France) into the 1850s. During the 1830s,

in fact, optical theory became for a time nearly synonymous with Cauchy’s ether
14

S
dyr(llzrlrll;;y’s early ether dynamics dates to 1830. B'y that Fime hF was Welllprepared tcz
see the possibilities in Fresnel’s suggestions, and in particular 1‘mmed1at<il y to }forrle(t:-
the great lacuna in Fresnel’s dynamics: namely, the assump§10n. that the ether a
tice remains essentially rigid even when one of its ele@ents is Fhsplaced. Assuml?lg
only that the displacement is small in compari.son w1th- the. dlsta.nces'between '; e
points, Cauchy was able to generate a differential equation in finite differences or
the motion of an arbitrary lattice element in function of jche dlff.erences 'between its
displacement and that of every other element in the lajctlce. This equat}on beigr{;e
so common in optics articles and texts during the ensuing decade that it sbou be
called canonical. To produce from these intricate expressions a theory of d.lspers1on
whose constants reflected ether properties was no easy task, as the almost 1mp§net—
rable mound of computations and approximations th:?t Cauchy eventually publ.ls.hed
in 1836 would seem to show. In essence, Cauchy first 1mposed symimnetry condltlo;ls
on the lattice and then calculated the differences in the dlsplacement's by means ofa
Pourier series. After a very great deal of tedious work these elephantine calculatlo.ns
birthed what some of his contemporaries considered to be a very sma(ll mous?: a se.rle)s
for the refractive index that has since been known eponymo.usly as ‘Cauchy’s series’.
In fact, Fresnel had himself generated precisely the same series, .though he had never
published it, though in his (unlike Cauchy’s) the physical meanings of the associated

constants remained undeveloped.' '

Nevertheless the series did seem to work empirically, though Preasely what even
that meant was open to question, since it had so many freely dl.sposable constants
that at least one English physicist (Samuel Earnshaw) felt tbat 1t'amounted t;) an
identity. Moreover, there was more than one way to e)dracF a dispersion forrr%ulatl Tom
Cauchy’s general structure, and even then it was not clear just what the manipu atﬁo)n
of constants meant physically. Still, there can be no doubt but that many of Cauc }}:'s
contemporaries, including William Rowan Hamilton, were deeply impressed by his
ability to obtain a dispersion formula. . S

Articles on Cauchy’s theory poured forth, particularly in ’Bn’Faln, and. a very gre:at
deal of thought was devoted to it. But, despite the structure’s difficult birth of a dis-
persion law, it was in other respects almost entirely barren. Insofar as the laboratory
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was concerned, Cauchy’s structure was an alien being. He used Fresnel’s wave surface

as a sort of intellectual laboratory against which to test its results, but nothing empir-

ically novel ever emerged. It remained an exercise in the highest reaches of abstract
model-making, or rather it did so until a moody Irish mathematician named James
MacCullagh found its Achilles heel.

Many years earlier, Arago had discovered the phenomenon of optical rotation,
in which the plane of polarization of light is rotated on passage through quartz,
This discovery had in fact been an important clue for Fresnel in his development
of a new understanding of polarization. Cauchy’s ether lattice had in principle to
embrace all optical phenomena, including this one, the procedure being to effect suit-
able adjustments of the constants that describe the state of the lattice in equilibrium.
The equations of the structure are so complicated and difficult to penetrate with any
degree of ease that this gargantuan claim seemed entirely plausible, particularly in
view of Cauchy’s novel success for dispersion, and his early success for double refrac-
tion. But in 1841 MacCullagh unequivocally demonstrated that the very structure of
the equations forbids optical rotation: the kind of lattice—or better put, the kind of
mathematics for the lattice that Cauchy had created—fails without hope of salvation
to capture a very important phenomenon indeed.

As far as MacCullagh was concerned, this ended what he in any case thought to be

the building of fanciful structures to encompass things that are already known per-
fectly well (since, like Earnshaw, MacCullagh did not consider the dispersion law to
be much more than a sort of interpolation, something with about the same empirical
force as a Taylor series expansion). In Britain, Cauchy’s structure did indeed disap-
pear rapidly, but not simply because MacCullagh had dealt it the analytical equivalent
of a mortal blow. In fact, the structure could be salvaged; Cauchy himself never had
any doubt that it could be, and his several French (and later German) supporters
agreed with him. Indeed in 1847, six years after MacCullagh’s mathematical tirade, a
French abbé by the name of Moigno produced a hefty Repertoire d’Optique Moderne
which was essentially a long argument for the wonders that Cauchy had produced—
one that simply treated optical rotation as a troubling little problem that could be
made to go away. The problem could be overcome, but only by creating a new math-
ematical structure for the lattice that made Cauchy’s earlier equations seem the soul
of simplicity by comparison.

To solve the problem Cauchy in effect created the mathematical theory of periodic
structures using concepts that had recently been introduced by Auguste Bravais in
crystallography. In terms of his old equations, what this meant was that the ‘con-
stants’ had now to be treated as periodic functions of position. Cauchy was able
to demonstrate, after a truly acrobatic performance with the vast array of relations
that periodicity provided, that there are new low-order terms that can capture optical
rotation. This took place in 1850, nearly a decade after MacCullagh’s critique. By that
time the early, powerful influence of Cauchy’s conception of the ether lattice had
vanished entirely in Britain and was becoming less common in France, though it

continued to crop up in Germany, which was only just then beginning to contribute
in substantial numbers to research in mathematical optics.
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The physical models that gripped theorists .of the opt)ical ether, as Wil as thee Er(glljl—t
lems that they addressed, have their origins in Fresnel s work, as we fjwe.se1 ) ith
here we find for the first time physicists attemptmg to grapple quantitative i’ w.n—
the models themselves rather than relying exclusively on t}'1e more ﬁn}lldame.nt; ;)frihe
ciples that the models were designed to encompass. In this respect t 1 fengmeWhat
1830s during which Cauchy’s structure was n?ost av1dl¥ pt%rsued resiamf esﬂs1 penha
the late 1890s and early 1900s, during which quantitative m‘ode $ orUl eI o
structure of matter were first built that could yield testable optical for@ les. ndee %
there was no earlier attempt by physicists to develop on t.h1s scale the imp 1caic10ns o
a detailed model for things that cannot be observed. Unt]l. the advent of t}.lzl electron,
these kinds of investigation remained unusual and even }'11ghly controversial. .

By the early 1840s at the latest there were few physicists or ma.thematthans H\:\;n
disputed the wave theory’s fundamental prmelples, and of equal 1rr.1p(1)rdailc§,that 1{
were by then capable of applying it at the high level of mathematlcle; e at fhat 1
required. During this period, investigations based on the Wave, theory egar;l o e
into two related but distinct areas. Work designed, like Cailuchy s, to pursue the imp
ations of ether mechanics continues. However, the fact is 'that by the.earl.y 185hos vs}rlz
few published papers in optics directly concern mechanical deductzons, i;t ne;z,tical
vast majority of them involve the working out of the wave theory’s mathe

inci heir applications. .
prﬁiﬁﬁi}?atmcs pril;er has received the lion’s share of historical. attentllon., t‘lzoigalz
it really has the mouse’s share of contemporary F)pt1cal pl‘Odu.Cthl"l. Re'atlv;r;f has
so thoroughly coloured modern views that pracjuc.all?r the entlre VICtO]r;an has
often been treated as a sort of prelude to it. This is 11.1correct, 1f.01‘11y ecause ne
one in the nineteenth century knew what was coming in 1905. This is why Cfauc 1y s
ether mechanics was something of an aberration rather t.han a central.part 0 op’elcz.
ether mechanics was simply not at the centre of most eptlcal work durlr.lg the petrﬁe ,
though there were times when it did move closer in as it see@ed to promise sonfqe mn:)gf
useful. The preponderance of work concerned such q}lestmn.s as the proper for N
the solutions to the wave equation, how to build 0p‘e1cally significant equations ot
various kinds of media, and so on—some of which did touch on the ether, but mos

i tantially independent of it.
Of%}l‘;}; ‘1/\sf,a ;Zlizr)esvir, noydoubf but that a considerable amount of powerful effo;t
was devoted to ether mechanics, particularly before 1870 or so, though ?fter the ear g
1840s a second trend emerged that differed considerably from Cauc}.ly s. It emerged
first in the work of James MacCullagh and of George Green, ‘followed in the 181505tanu'
1860s by that of George Stokes and others. Here lattice equa}tlons pl.ayed 1o ro ;ta‘ ae(i
indeed, they were conspicuously avoided. Instea'd, the et'her s equations weie ot alirllCl N
by manipulating a macroscopic potential function, which took on energetic sign e
ance after the 1850s and which (in the case at least of Stokes) could be ?C)t:],lat;
by considerations of the microworld. These two metbods—what one might hc . e
molecular and the macroscopic—shared the assurn'ptlon that @atter affeits }tl et }e: er
by altering the coefficients that determine its equations o-f motion ('.(h'oug t fﬁe r j;):;
ies diverge from one another over whether to alter density or elasticity coeffic .
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However,

equ i
dq ate 'an ved ether and matter had to be treated
bynamlcaﬂy connected to one another. This way
€came a conviction rather than a programme
gl

dispersion in 1870, on which more below. il the dlSCOVerY °f snomalous

PRINCIPLE, THE DIFrRAC
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pulse, and he specified particular conditions that it must satisfy. These conditions, it
seemed to him, were not easily satisfied by the demands Fresnel placed on Huygens’
principle. Poisson admitted the empirical cogency of Fresnel’s diffraction integrals,
but he rejected Fresnel’s justification for them.

Poisson’s work on the wave equation accordingly had nothing to offer wave
optics—quite the contrary, it seemed to pose problems for it, not the least of which
was Poisson’s further claim that Fresnel’s inclination factor was itself highly prob-
lematic. In 1849 Stokes addressed this latter problem, which, ironically, he attacked
by using the very solution that Poisson had himself developed. Stokes in fact attemp-
ted to develop a theory for the diffraction of a vector wave and from it to deduce
the very same inclination factor that Fresnel had long before conjectured, and that
Poisson had criticized.!” However, Poisson’s solution was not suitable for addressing
the general questions raised by Fresnel’s use of Huygens’ principle. For his solution
began with an aperiodic front and found subsequent fronts by integration over this
initial one. Huygens’ principle as used in diffraction theory, however, requires consid-
ering an infinitely long, periodic disturbance. Indeed, arguments based on periodicity
lay at the heart of Fresnel’s analysis, and were precisely what Poisson refused to
accept.

The route to a useful, general method of front integration, based on the solu-
tion properties of the wave equation, was first developed by Hermann Helmholtz in
1860.!8 To analyse the behaviour of organ pipes, he assumed periodicity and reduced
the equation to the form V2w + ( ZT”)Z w = 0 (wherein \ represents the wavelength).
The critical step in Helmholtz’s analysis involved his use of Green’s theorem, which
permitted him to express the disturbance at a point as integrals over a bounding
surface; these integrals contained the values of the function and its normal deriv-
atives over the surface. Helmholtz’s discussion was limited to spherical, harmonic
waves, and he did not extend it to diffraction since he was not considering optical

disturbances. As a result, difficult questions concerning the boundary conditions to
be applied under these circumstances did not arise.

In 1882 Gustav Robert Kirchhoff applied Helmholtz’s use of Green’s theorem to
wave optics. Kirchhoff first extended Helmholtz’s result to the general case of an arbit-
rary, infinitely long disturbance, developed surface integrals suitable for diffraction
theory, and then specialized to the case of a purely harmonic form."” Kirchhoff’s
formulae, however, required assuming inconsistent boundary conditions over the
diffracting surface, and this inconsistency generated a great deal of subsequent discus-
sion, culminating in a reconsideration of the problem on the basis of electromagnetic
theory by Arnold Sommerfeld in 1896, though issues concerning Kirchhoff’s ana-
lysis remain to this day. Sommerfeld’s theory, which made special use of Riemannian
spaces, succeeded well for diffraction by perfectly reflecting screens, but still left prob-
lems for black, or perfectly absorbing ones. These several analyses, as well as others of

the period, reduced Huygens’ principle to, at best, a statement concerning the differ-
ential terms that appear in general diffraction integrals. It had been stripped nearly
altogether of direct physical significance. In the late 1930s, however, B. B. Baker at the
University of London and E. T. Copson at the University of St Andrews published
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an extensive discussion that attempted to retrieve, insofar as possible, the physical
content of the principle.?

Huygens’ principle and the diffraction integrals were not the only problems that
troubled wave scientists as they sought to develop and to expand the dominion of
the system. Polarization itself posed particularly hard problems. In Fresnel’s new
optics, polarized light consisted of a directed quantity, located in the wave front
proper, whose magnitude and direction change in a calculable manner over time
as the front moves through space. To provide an appropriate mathematics for this
entity, Fresnel employed a method of orthogonal decomposition: any disturbance
could be specified by providing the parameters that characterize its components along
a given pair of mutually orthogonal axes. In general, each component has the form
a cos(wt + @), where a specifies the component’s amplitude and ¢ its phase. This
worked extraordinarily well for handling all the forms of polarized light known in
Fresnel’s day, as well as for predicting the character of a form that had not yet been
investigated (namely, elliptically polarized light).

This system could not, however, easily deal, in the form introduced by Fresnel, with
unpolarized or even partially polarized light, because these kinds of polarization do
not have stable values of amplitude and phase. Indeed, in Fresnel’s optics unpolar-
ized light is defined as light whose phase at least varies randomly over time, while
partially polarized light must in some fashion have restricted variations. In neither
case can one directly employ for purposes of analysis the decomposition that Fresnel
had introduced for polarized light.

In modern terms, Fresnel constructed wave optics on the basis of an amplitude
formulation, in which the amplitude and phase of the wave are used directly for
purposes of analysis. Yet amplitude and phase cannot be detected directly, they can
only be inferred from experiments that work with what can be observed, namely
optical intensities and angles. Since unpolarized and partially polarized light do not
have stable amplitudes and phases, any system that seeks to incorporate them into a
consistent general scheme must work with intensities and angles, and not with amp-
litudes and phases, with what may be called an intensity formulation. Developed by
George Gabriel Stokes in 1849, the new system characterized polarization in terms
of four parameters, each of which could be directly observed. The Stokes parameters
did not, however, have much contemporary significance (and were not for that mat-
ter pursued extensively by Stokes himself) since at the time there were no pressing

physical questions to which they could be applied.?!

Geometric representations of complex numbers had been developed in 1797 by the
Norwegian Caspar Wessel, and in 1806 by a Swiss, Jean-Robert Argand. They had
not, however, found a natural use in many physical problems. Indeed, wave optics
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was the first area of physics in which complex numbers provided specific benefits
that could not otherwise be obtained. They appeared for the first time in Fresnel’s
1823 analysis of internal reflection. When light strikes within, for example, a glass
prism placed in air beyond a specific angle of incidence, then it is totally reflected.
Fresnel’s equations for the ratio of light reflected to light incident yield complex num-
bers precisely at and above this incidence. In seeking to interpret this apparent failure
of his expressions to retain physical meaning, Fresnel developed the first productive
(albeit hardly rigorous) use for such things.

He reasoned in the following manner. First of all, Fresnel remarked, the complex
expression that he did obtain under these circumstances has the characteristic that the
sum of the squares of its real and imaginary parts is equal to the square of the incident
intensity. This suggested to him the following interpretation. The light must be totally
reflected, and it undergoes some phase shift as well. Using the general decomposition
that Fresnel had originally produced for diffraction, such a phase shift can be under-
stood by separating the resultant wave into two parts that differ in phase from one
another by 90°. One of the parts has the same phase as the incident wave, and the
amplitudes of the parts must be the cosine and sine of the phase of their resultant.
In the case of total internal reflection there are two terms (one imaginary, the other
real) whose real squares sum to 1. Suppose, Fresnel reasoned, that each of these terms
represents the amplitude of one of the parts of the usual quarter-wave decomposi-
tion. Then the light will be completely reflected, and it will also be shifted in phase by
an angle whose tangent is the ratio of the real to the imaginary part of the complex
expression for the reflected amplitude, if we assume that the real part is the one that
has the same phase as the incident wave.

In subsequent years Fresnel’s interpretation was taken up and further developed
by, among others, Cauchy, who himself made fundamental contributions to complex
function theory. Cauchy analysed reflection from metals under the assumption that,
in them, the index of refraction itself becomes complex, but that the usual Fresnel
expressions for the reflected amplitudes remain the same in form. The Irish math-
ematician James MacCullagh independently hit on the same idea. The Frenchman
Jules Jamin was the first to compile tables of the metallic constants for various metals
and wavelengths. This approach reached its fullest mathematical form in the German
Friedrich Eisenlohr’s treatment of the subject, and his equations were widely used
during the latter part of the nineteenth century.??

The topic of metallic reflection raised several issues that puzzled many scientists
during the last quarter of the nineteenth century. Extensive experimental work by,
among others, Georg Quincke had shown that for all known metals the real part of
the index of refraction must decrease with frequency, implying that metals should
(were it observable) exhibit precisely the opposite dispersion of ordinary transparent
bodies.?® Nor was this the only difficulty, for the same measurements also indicated
that the wave speed in metals should be more than five times greater than the speed of
light in vacuo, which raised a number of questions concerning how the specific char-
acteristics of matter affected optical phenomena. Our account of wave optics can close
appropriately with a brief discussion of the major changes that began to occur in the
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1870s and 1880s, as scientists in Germany shifted their attention from the behaviour of surrounding matter particles: an harmonic force of restitution and a frictional force
the optical ether itself to issues concerning the interaction between ether and matter. of resistance. As the matter particles absorb energy from the ether waves, the optical
In 1870 the Danish scientist Christiansen observed a phenomenon that came to energy decreases, and the absorbed energy is converted into thermal motion by the
be known as ‘anomalous’ dispersion. Using the aniline dye fuchsin dissolved in alco- frictional force. Just how the latter transformation occurs was foreign to Helmholtz’s
hol, he determined that the refractive index of the solution increases from the B to D theory. Neither of the two material forces were supposed to act on an entire molecule.
spectral lines, decreases from D to G, and then increases again after G.24 The exist- Rather, each molecule consists of a massive central core, which hardly moves when
ing interest, in Germany, in metallic reflection fuelled concern with Christiansen’s struck by an ether wave, together with a light, moveable particle; the latter is resisted
discovery, for the peculiar optical properties of metals could be related to his anom- ‘ frictionally in its motion, and the harmonic forces tie it elastically to the massive core.
alous dispersion. Indeed, scarcely two years after the discovery the German Wolfgang The mutual actions of ether and matter that cause energy transformations between
Sellmeier developed a quantitative mechanical theory for it according to which all them must, Helmholtz reasoned, satisfy the principle of action and reaction: whatever
forms of dispersion are due to the interaction of ether vibrations with the natural force represents the action of matter on ether in the latter’s equation of motion must
oscillatory frequencies of material molecules. The guiding ideas of his account were appear with the opposite sign in the former’s equation of motion. Helmholtz assumed
that the wave equation of the ether is itself unaffected by the presence of matter on mechanical grounds that this mutual action is directly proportional to the differ-
particles, but that energy must be abstracted from an ether wave in order to displace ence between the displacements from equilibrium of ether and the light, moveable
the massy particle, which is tied elastically to a fixed location. Employing an analysis ' particle of matter. He further treated both media as effectively continuous and inter-
based solely on energy considerations, Sellmeier deduced a formula for dispersion ~ penetrating, so that the ethereal and material displacements are continuous functions
that yielded the major features of the phenomenon.?® of time and distance. This gave him partial differential equations. The equation of
The critically important aspects of Sellmeier’s theory were its tacit assumptions motion of the ether consists of the usual one for an incompressible, isotropic, elastic
that neither the elasticity nor the density of the ether itself should be manipulated, continuum, to which a term is added to represent the action of matter upon ether.
its properties remaining effectively fixed, though Sellmeier was not dogmatic on this , The material equation of motion contains three forces: the ether term (with reversed
point. For him these assumptions were primarily conveniences, for he held that ether sign), the frictional force, and the harmonic action. These twin equations constitute
and matter together actually constitute a dual lattice of point masses. All refract- the mathematical structure of Helmholtz’s theory, for they lead at once to a wave
ive phenomena then implicate a mechanical resonance action in which ether waves equation that is easily applied to all forms of dispersion and to absorption—one that
must move massy particles of matter as well as the substance of the ether itself. What ’ agreed well with laboratory results when proper choices were made for the various
Sellmeier’s theory lacked was a mathematical representation of what occurs at reson- constants, as Helmholtz showed in some detail.
ance between the frequency of an ether wave and that of a material particle, which is Helmbholtz’s theory was immensely influential, and not only in Germany. During
precisely where absorption takes place. the next fifteen years, numerous German physicists, including Eduard Ketteler, Eugen
In 1875 Helmholtz appropriated Sellmeier’s basic ideas and reformulated them Lommel, and Woldemar Voigt, used it in one way or another to construct mechanical

mathematically in mechanical equations of motion that were capable of dealing with theories of phenomena in physical optics. These theories, like Helmholtz’s, generally
absorption as well as dispersion. Helmholtz’s equations were based on the commonly ' gave little detailed consideration to the actual molecular structure of matter, prefer-
received idea that optical absorption involves the transformation of light energy into ring instead to employ simple and usually a priori terms in the material equations.?’
the ‘inner, irregular motion of the molecules’ of matter: that is, into heat. To effect ‘ Among the British, Lord Kelvin (1884), in his acclaimed Baltimore Lectures, based
this transformation a force is necessary, and this is what was missing in Sellmeier’s. k most of the intricate mechanical models for which he soon became famous directly
theory. Helmholtz’s account formed the basis for a great deal of subsequent optical on the Helmholtz—Sellmeier model. Kelvin’s work, however, differed substantially
theory, eventually appearing (in changed form) in early electromagnetic optics as from contemporary German accounts in that his goal was to construct a continuum
well. %6 ‘ representation for ether and matter,

Helmholtz was well aware that the fact of absorption (the exponential decrease ' Helmholtz’s twin equations, and the German and British treatments of them
in light amplitude with distance) requires the presence in differential equations of a ; before the 1890s, are purely mechanical. By 1878 the idea underlying the twin
term proportional to a velocity (more generally, to an odd-order time derivative), equations had already been used in electromagnetic theory. H. A. Lorentz in the
but he also knew that this term cannot appear in the ether’s equation of motion Netherlands had tentatively supposed that the ether’s properties are in themselves
since, in vacuo, no absorption occurs. Helmholtz’s solution to the problem was at ; invariant and that optical effects are due to the effect of inner electrical motions
once obvious and unprecedented: he constructed a distinct equation of motion for of material particles. He reaffirmed this idea when he deduced for the first time
matter that itself contains a velocity-dependent force. The idea was that the material an electromagnetic formula for dispersion by actually constructing two linked sets
particles, driven by ether waves, are subject to two other forces that emanate from the of equations: one for the ethereal polarization, and the other for the motion of a

moveable charge in a molecule with a fixed central core. The links between the two
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equations were, on the one hand, the polarization in the invariant ether effected
by the moveable charges, and on the other, the driving force exerted by the ether
polarization on the charge.?®

The correspondences between this and Helmholtz’s (1875) mechanical theory are
manifest. However, Lorentz viewed the ether as itself a polarizable substance, with
the result that he drew no clear distinction between material and ethereal polariza-
tion. In any case, Lorentz’s 1878 theory apparently had comparatively little influence,
except perhaps in Holland, for it involved the sort of detailed microphysical com-
putations and presuppositions which, even as late as the mid-1890s, few German
physicists were willing to employ. In order for Helmholtz’s twin-equation approach
to acquire an electromagnetic significance that most German physicists could easily
grasp and approve, the equations had to be reinterpreted in a way that preserved both
their formal structure as linked systems and their relative independence of detailed
microphysical calculations. This was accomplished by Helmholtz himself. His new
interpretation worked with Lorentz’s to stimulate a thoroughgoing transformation
in the foundations of optical science—one that increasingly sought explanations in
the structure of molecules and eventually of atoms themselves.??
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CHAPTER 16

THERMAL PHYSICS AND
THERMODYNAMICS

HASOK CHANG

16.1 INTRODUCTION

Heat is a subject that has commanded people’s attention through the ages, for prac-
tical as well as scientific reasons. It is still a major subject in introductory physics
textbooks and courses, though the science of heat is now presumed reduced to clas-
sical or quantum-mechanical principles through statistical reasoning. This chapter
covers the development of the physics of heat while it existed as a truly independent
subject, which is to say, up to the mid-nineteenth century. Most attention will be paid
to the important yet relatively neglected parts of the history, while well-known areas
will be covered briefly with references to existing secondary literature.

The study of heat began to flourish in the late eighteenth century, particularly in the
chemical communities of Scotland and France. Intense theoretical and experimental
activity continued in this field in the first half of the nineteenth century, mostly in the
tradition of the material theories based on the basic assumption that heat was (or at
least could be conceptualized as) an all-pervasive, weightless and elastic fluid, most
commonly called ‘caloric’. Great advances were made in caloric-based theoretical
treatments of thermal phenomena, which became more quantitative and systematic.
Experimental knowledge developed continually both in extent and precision, often
quite independently of theory. Also significant among the nineteenth-century devel-
opments was the relocation of the study of heat from chemistry to physics, partly
prompted by the increasing interest in heat engines. In this chapter we survey some
of the significant themes in the development of thermal physics up to the establish-
ment of classical thermodynamics. Much of the early achievement in this field was
lost when the assumptions of the existence and conservation of caloric were rejected




