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motion are derived from requirements that certain quantities related to motion 
realized in nature must assume minimal or maximal values. We met the extremal 
principle earlier when we discussed how Fermat determined the path of a ray of 
light. As we shall see, Maupertuis consciously began with Fermat’s principle. We 
take particular note of the fact, as it also can be also seen from Figure 4.31, that 
Euler played a decisive role in the formulation of all these methods. Many solu-
tions to problems in mechanics and to mathematical questions were brought by 
him into the form that we know today.

Finally, some branches of mechanics for various reasons were at the center of inter-
est before Newton or developed independently of him during his lifetime: Here 
we point to the contributions of Pierre Varignon (1654–1722) on statics and the 
methods devised by Johann Bernoulli for solving problems in statics using the 
concept of virtual work. Moreover, the concept of vis viva or living force had been the 
subject of heated discussion ever since the time of Galileo. It is Leibniz who for-
mulated the problem precisely and partially solved it. The term is due to him as well.

Of course, these parallel developments eventually were either integrated into the 
general field of mechanics or continued to live an independent life within the field, 

	�Figure 4.31 Paths to the 
perfection of mechanics after 
NEWTON.

We shall have more to say later 
in the text on the equations of 
motion for systems of mass points 
and of rigid bodies.

The mechanics of continua begins 
with the Bernoulli and Euler equa-
tions. These relate, respectively, 
to incompressible and frictionless 
ideal fluids. NAVIER proposed his 
equation in 1822, in which he 
considers internal friction using 
the coefficient of viscosity İ. 
This equation is usually referred 
to as the Navier–Stokes equa-
tion, although STOKES presented 
the equation in a more general 
form in 1845. Cauchy’s equation 
describes the motion of deform-
able solid bodies. Here T is the 
stress tensor. Turbulent flow was 
investigated by OSBORNE REYNOLDS 
(1842–1912; introduction of the 
Reynolds number, which mea-
sures the presence of turbulence), 
LUDWIG PRANDTL (1875–1953; 
theory of interfaces), and THEODORE 
VON KÁRMÁN (1881–1963). Today, 
these topics are of great interest: 
Chaos, a new scientific discipline, 
provides a method for treating 
problems in turbulent flow.  

Quotation 4.11, continued
in harmony with my soul, this body would no more 
belong to me than the body of a rhinoceros in the 
heart of Africa: and if, in the case of a derangement 
of my body, God should adjust that of a rhinoceros 
so that its motions were in such harmony with the 
determinations of my soul as to raise its paw at the 
moment I willed it, this body would then be mine, and 
would belong to my soul, as my present body now 
belongs to it, without having undergone itself, on that 
account, any change whatever. 
Mr. LEIBNITZ himself has compared the soul and the 
body to two clocks, which continually indicate the 
same hour. A clown who should see this beautiful 
harmony of these two clocks would undoubtedly 
conclude that they acted upon each other; but he 

continued on next page
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Before Daniel Bernoulli’s Hydrodynamica (1738) 

•  Hydrostatics: Archimedes, Static pressure (Stevin, Pascal) 
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Δp = ρgΔh



Before Daniel Bernoulli’s Hydrodynamica (1738) 

•  Hydrodynamics: Velocity-Area law, Efflux, Resistance 
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“where the river becomes shallower, 
the water becomes faster” (da Vinci) 

S1v1 = S2v2

 ℓ∝ H v = 2gh

Newton’s Principia (Book 2) 

“Newton’s” Sine-Square law 



Context and Motivation  

•  Daniel Bernoulli was a doctor (blood pressure) 

•  Hydraulico-statics 
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The pressure of water at rest must be clearly 
distinguished from the pressure of flowing waters, 
although no one, as far I know, has been aware of this. 

Stephen Hales 



Original derivation of the Bernoulli equation 
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Problem (§ 5 – Chapter XII): Find the water pressure against the walls of pipe ED 

Speed through orifice o   

Apipe /Ao = n        Speed in the pipe    

Thus, the water in the pipe “tends to a greater motion” 

vo ∝ a

vpipe ∝
a
n

The effect of the perforated plug can be interpreted as 
if its presence were compressing and retaining the 
water, pressing it against the walls of the reservoir and 
preventing it from expanding. This retention pressure 
will be greater as the velocity of the water circulating 
through the tube is slower (qualitative explanation)  



Original derivation of the Bernoulli equation 
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Problem (§ 5 – Chapter XII): Find the water pressure against the walls of pipe ED 

It seems that the pressure of the lateral walls is 
proportional to the acceleration which the water would 
receive if the entire obstacle to motion were to vanish in 
an instant, so that [the water] might pour out directly into 
the air. Therefore, the problem is now: if during the flow of 
water through o the pipe ED were broken at cd at an 
instant, we seek the magnitude of the acceleration the 
volume element acbd would thence be about to obtain. 
(How to determine the acceleration?) 

Σmv2 = 2gΣmh
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Figure 1 Compound pendulum

ment, much of the prehistory of Euler’s equation has to
do with the difficult reintroduction of internal pressure as
a means to derive the motion of fluid elements. Although
we are now accustomed to the idea that a continuum can
be mentally decomposed into mutually pressing portions,
this sort of abstraction long remained suspicious to the
pioneers of Newtonian mechanics.

Daniel Bernoulli’s Hydrodynamica

The Swiss physician and geometer Daniel Bernoulli was
the first of these pioneers to develop a uniform dynam-
ical method to solve a large class of problems of fluid
motion. His reasoning was based on Leibniz’s principle
of live forces, and modeled after Huygens’s influential
treatment of the compound pendulum in his Horologium
oscillatorium (1673).9

Consider a pendulum made of two point masses A and
B rigidly connected to a massless rod that can oscillate
around the suspension point O (fig. 1). Huygens required
the equality of the “potential ascent” and the “actual
descent,” whose translation in modern terms reads:

mA(v2
A/2g) + mB(v2

B/2g)
mA + mB

= zG, (2)

where m denotes a mass, v a velocity, g the acceleration
of gravity, and zG the descent of the gravity center of
the two masses measured from the highest elevation of
the pendulum during its oscillation. This equation, in
which the modern reader recognizes the conservation of
the sum of the kinetic and potential energies, leads to a
first-order differential equation for the angle θ that the
suspending rod makes with the vertical. The comparison
of this equation with that of a simple pendulum then
yields the expression (a2

mA + b

2
mB)/(amA + bmB) of the

length of the equivalent simple pendulum (with a = OA
and b = OB).10

9 D. Bernoulli 1738; Huygens 1673.
10 Cf. Vilain 2000: 32–36.
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Figure 2 Parallel-slice flow in a vertical vessel.

As D. Bernoulli could not fail to observe, there is a
close analogy between this problem and the hydraulic
problem of efflux, as long as the fluid motion occurs by
parallel slices. Under the latter hypothesis, the velocity
of the fluid particles that belong to the same section of
the fluid is normal to and uniform through the section.
If, moreover, the fluid is incompressible and continuous
(no cavitation), the velocity in one section of the vessel
completely determines the velocity in all other sections.
The problem is thus reduced to the fall of a connected
system of weights with one degree of freedom only, just
as is the case of a compound pendulum.

This analogy inspired D. Bernoulli’s treatment of ef-
flux. Consider, for instance, a vertical vessel with a sec-
tion S depending on the downward vertical coordinate
z (fig. 2). A mass of water falls through this vessel by
parallel, horizontal slices. The continuity of the incom-
pressible water implies that the product Sv is a constant
through the fluid mass. The equality of the potential
ascent and the actual descent implies that at every in-
stant11 Z

z1

z0

v

2(z)
2g

S(z) dz =
Z

z1

z0

zS(z) dz, (3)

where z0 and z1 denote the (changing) coordinates of
the two extreme sections of the fluid mass, the origin
of the z-axis coincides with the position of the gravity
center of this mass at the beginning of the fall, and the
units are chosen so that the density of the fluid is one.
As v(z) is inversely proportional to the known function
S of z, this equation yields a relation between z0 and

11 D. Bernoulli 1738: 31–35 gave a differential, geometric version
of this relation.

Details in Darrigol (2000) 
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Compound pendulum Analogy with efflux 

Potential ascent = Actual descent 



Original derivation of the Bernoulli equation 
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Problem (§ 5 – Chapter XII): Find the water pressure against the walls of pipe ED 

m = ρSdx 

Total increment of live force (kin energy) 

Equal to actual descent (potential energy) 

ρSv2dx + 2ρScvdv
2gρSadx

Σmv2 = 2gΣmh

 
 
 
 
 
316 THE GENESIS OF FLUID MECHANICS, 1640–1780 

reservoir to be very large. According to Torricelli’s Law, the speed of the liquid 
flowing out through the orifice will be gavs 2 ,32 and consequently the velocity 
in the tube, obviously less, must be vs/r, where r is the relation between the sec-
tions of the tube and the orifice. From what has already been said, it follows that 
the velocity inside the reservoir is zero, given its large size. 

 

c
c

v=0

dx dx

Vs

 

 

was to disappear suddenly. It is clear that the liquid in the tube would accelerate 
from its previous velocity vs/r to vs, which would be the velocity accorded it by 
Torricelli’s Law. Therefore, according to Daniel, the effect of the perforated 
plug can be interpreted as if its presence were compressing and retaining the 
water, pressing it against the walls of the reservoir and preventing it from  
expanding. This retention pressure will be greater as the velocity of the water 
circulating through the tube is slower, because the water will have greater accel-
eration capability upon the disappearance of the plug, which is the obstacle pre-
venting free movement. 

The result of this compression and retention (nisus et renisus) is that the 
water is compressed along the axial hub of the tube, and this pressure is trans-
mitted to the lateral walls. We see that there is a likeness between this containing 
pressure and accelerating force that appears when we remove the plug. He 
writes: 
 

 

                                                      
32 From this point on of the Hydrodynamica, Daniel changes the conceptual sense of the velocity, 
which goes from being represented by the kinetic height to its intrinsic sense of a space travelled in 
a unit of time. 

Fig. 7-12. Separation of the spout 

a) b)

Given this, let us imagine that the right part of the horizontal tube (Fig. 7-12a) 

v0 + dv

Details in Calero (2000) 

vdv
dx

= 2ga − v
2

2c

p∝ vdv
vdt

= 2ga − v
2

2c
Pressure ∝ acceleration  

It seems that the pressure of the lateral walls is 
proportional to the acceleration which the water would 
receive if the entire obstacle to motion were to vanish in 
an instant, so that [the water] might pour out directly into 
the air. Therefore, the problem is now: if during the flow of 
water through o the pipe ED were broken at cd at an 
instant, we seek the magnitude of the acceleration the 
volume element acbd would thence be about to obtain. 



Original derivation of the Bernoulli equation 

9 

Problem (§ 5 – Chapter XII): Find the water pressure against the walls of pipe ED 

m = ρSdx 

Total increment of live force (kin energy) 

Equal to actual descent (potential energy) 

ρSv2dx + 2ρScvdv
2gρSadx

Σmv2 = 2gΣmh

 
 
 
 
 
316 THE GENESIS OF FLUID MECHANICS, 1640–1780 

reservoir to be very large. According to Torricelli’s Law, the speed of the liquid 
flowing out through the orifice will be gavs 2 ,32 and consequently the velocity 
in the tube, obviously less, must be vs/r, where r is the relation between the sec-
tions of the tube and the orifice. From what has already been said, it follows that 
the velocity inside the reservoir is zero, given its large size. 

 

c
c

v=0

dx dx

Vs

 

 

was to disappear suddenly. It is clear that the liquid in the tube would accelerate 
from its previous velocity vs/r to vs, which would be the velocity accorded it by 
Torricelli’s Law. Therefore, according to Daniel, the effect of the perforated 
plug can be interpreted as if its presence were compressing and retaining the 
water, pressing it against the walls of the reservoir and preventing it from  
expanding. This retention pressure will be greater as the velocity of the water 
circulating through the tube is slower, because the water will have greater accel-
eration capability upon the disappearance of the plug, which is the obstacle pre-
venting free movement. 

The result of this compression and retention (nisus et renisus) is that the 
water is compressed along the axial hub of the tube, and this pressure is trans-
mitted to the lateral walls. We see that there is a likeness between this containing 
pressure and accelerating force that appears when we remove the plug. He 
writes: 
 

 

                                                      
32 From this point on of the Hydrodynamica, Daniel changes the conceptual sense of the velocity, 
which goes from being represented by the kinetic height to its intrinsic sense of a space travelled in 
a unit of time. 

Fig. 7-12. Separation of the spout 

a) b)

Given this, let us imagine that the right part of the horizontal tube (Fig. 7-12a) 

v0 + dv

Details in Calero (2000) 

vdv
dx

= 2ga − v
2

2c

p∝ vdv
vdt

= 2ga − v
2

2c
Pressure ∝ acceleration  



Original derivation of the Bernoulli equation 

10 

Problem (§ 5 – Chapter XII): Find the water pressure against the walls of pipe ED 

p∝ vdv
vdt

= 2ga − v
2

2c
Pressure ∝ acceleration  

Since  p∝ 2ga
2c

1− 1
n2

⎛
⎝⎜

⎞
⎠⎟v = a

n
2ga
2c

1− 1
n2

⎛
⎝⎜

⎞
⎠⎟ = kp = ρgh

If the orifice is infinitesimal  n→∞ Pressure is hydrostatic p = ρga

h = n2 −1
n2

⎛
⎝⎜

⎞
⎠⎟
a

That is Bernoulli’s 
equation in the original  

Today we would write 

p = p0 −
1
2
ρv2

Can you see/show that 
they are equivalent? 

p + 1
2
ρv2 = constantor 



Questions for discussion 
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•  As an experimentalist, I due fancy that his theories can be 
shown easily by experiments! :-) For example, the system as 
in Figure 73 would not be that difficult to set up. 

•  Why are the units so strange? Did they simply not care about 
the units in the same way at this time? No matter what it 
makes some of the derivations kind of nonsensical. 

•  Why does Bernoulli not mention the quantity energy? 

Activity for discussion 

•  Compare a modern derivation of Bernoulli’s equation with the 
original one. What are the differences and similarities? 
Considering the learning perspective, could there be 
advantages of understanding the original?  



Euler’s Principia motus fluidorum (1752) 
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Euler’s Principia motus fluidorum (1752) 
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3

Thus, we put upon a differentiation

du = Ldx + ldy and dv = Mdx + mdy,

which differential formulas, since they are complete,5 satisfy
furthermore dL

dy
= dl

dx
and dM

dy
= dm

dx
. Here it is to note that

in such expression dL

dy
, the differential of L itself or dL, is

understood to be obtained from the variability with respect
to y; in similar manner in the expression dl/dx, for dl the
differential of l itself has to be taken, which arises if we take
x to vary.
12. Thus, it is in order to be cautious and not to take in

such fractional expressions dL

dy
, dl

dx
, dM

dy
, and dm

dx
the numera-

tors dL, dl, dM, and dm as denoting the complete differentials
of the functions L, l,M andm; but constantly they designate
such differentials that are obtained from the variation of only
one coordinate, obviously the one, whose differential is repre-
sented in the denominator; thus, such expressions will always
represent finite and well defined quantities. Furthermore, in
the same way are understood L= du

dx
, l = du

dy
, M= dv

dx
and

m = dv
dy
; which notation of ratios has been used for the first

time by the most enlightened Fontaine,6 and I will also apply
it here, since it gives a non negligible advantage of calculation.
13. Since du = Ldx+ldy and dv = Mdx+mdy, here it is

appropriate to assign a pair of velocities to the point which is
at an infinitely small distance from the point l; if the distance
of such a point from the point l parallel to the axis AL is dx,
and parallel to the axis AB is dy, then the velocity of this point

5 Exact differentials.
6 A paper “Sur le calcul intégral” containing the notation df

dx
for the partial

derivative of f with respect to x was presented by Alexis Fontaine des
Bertins to the Paris Academy of Sciences in 1738, but it was published
only a quarter of a century later (Fontaine, 1764). Nevertheless, Fontaine’s
paper was widely known among mathematicians from the beginning of
the 1740s, and, particularly, was discussed in the correspondence between
Euler, Daniel Bernoulli and Clairaut; cf. Euler, 1980: 65–246.

parallel to the axis AL will be u+Ldx+ ldy; furthermore, the
velocity parallel to the other axis AB is v+Mdx+mdy. Thus,
during the infinitely short time dt this point will be carried
parallel to the direction of the axis AL the distance dt(u +
Ldx + ldy) and parallel to the direction of the other axis AB
the distance dt(v + Mdx + mdy).
14. Having noted these things, let us consider a triangular

element lmn of water, and let us seek the location into which
it is carried by the motion during the time dt. Let lm be the
side parallel to the axis AL and let ln be the side parallel to
the axis AB: let us also put lm = dx and ln = dy; or let the
coordinates of the pointm be x+dx and y; the coordinates of
the point n be x and y + dy. It is plain, since we do not define
the relation between the differentials dx and dy, which can be
taken negative as well as positive, that in thought the whole
mass of fluid may be divided into elements of this sort, so that
what we determine for one in general will extend equally to
all.
15. To find out how far the element lmn is carried during

the time dt due to the local motion, we search for the points
p, q and r, to which its vertices, or the points l, m and n are
transferred during the time dt. Since

of point l of pointm of point n
Velocity w.r.t. AL= u u + Ldx u + ldy
Velocity w.r.t. AB= v v + Mdx v + mdy

in the time dt the point l reaches the point p, chosen such that:

AP − AL = udt and Pp− Ll = vdt.

Furthermore, the pointm reaches the point q, such that

AQ−AM = (u+Ldx)dt and Qq−Mm = (v+Mdx)dt.

Also, the point n is carried to r, chosen such that

AR − AL = (u + ldy)dt and Rr − Ln = (v + mdy)dt.

16. Since the points l,m and n are carried to the points p, q
and r, the triangle lmnmade of the joined straight lines pq, pr
and qr, is thought to be arriving at the location defined by the
triangle pqr. Because the triangle lmn is infinitely small, its
sides cannot receive any curvature from the motion, and there-
fore, after having performed the translation of the element of
water lmn in the time dt, it will conserve the straight and
triangular form. Since this element lmn must not be either
extended to a larger volume, nor compressed into a smaller
one, the motion should be arranged so that the volume of the
triangle pqr is rendered to be equal to the area of the triangle
lmn.
17. The area of the triangle lmn, being rectangular at l, is

= 1

2
dxdy, value to which the area of the triangle pqr should

be put equal. To find this area, the pair of coordinates of the
points p, q and r must be examined, which are:

AP = x + udt; AQ = x + dx + (u + Ldx)dt;

AR = x + (u + ldy)dt; Pp = y + vdt

Qq = y + (v + Mdx)dt, Rr = y + dy + (v + mdy)dt

4

Then, indeed, the area of the triangle pqr is found from the
area of the succeeding trapezoids, so that

pqr = PprR + RrqQ − PpqQ.

Since these trapezoids have a pair of sides parallel and per-
pendicular to the base AQ, their areas are easily found.
18. Plainly, these areas are given by the expressions

PprR =
1

2
PR(Pp + Rr)

RrqQ =
1

2
RQ(Rr + Qq)

PpqQ =
1

2
PQ(Pp + Qq)

By putting these together we find:

∆pqr =
1

2
PQ.Rr −

1

2
RQ.Pp−

1

2
PR.Qq

Let us set for brevity

AQ = AP + Q; AR = AP + R; Qq = Pp + q; and

Rr = Pp + r,

so that PQ = Q, PR = R, and RQ = Q − R, and we
have∆pqr = 1

2
Q(Pp + r) − 1

2
(Q − R)Pp− 1

2
R(Pp + q) or

∆pqr = 1

2
Q.r − 1

2
R.q.

19. Truly, from the values of the coordinates represented
before it follows that

Q = dx + Ldxdt; q = Mdxdt

R = ldydt; r = dy + mdydt,

upon the substitution of these values, the area of the triangle
is obtained

pqr =
1

2
dxdy(1 + Ldt)(1 + mdt) −

1

2
Ml dxdydt2, or

pqr =
1

2
dxdy(1 + Ldt + mdt + Lmdt2 − Mldt2).

This should be equal to the area of the triangle lmn, that is
= 1

2
dxdy; hence we obtain the following equation

Ldt + mdt + Lmdt2 − Mldt2 = 0 or

L + m + Lmdt − Mldt = 0.

20. Since the terms Lmdt and Mldt vanish for finite L and
m, we will have the equation L + m = 0. Hence, for the mo-
tion to be possible, the velocities u and v of any point l have
to be arranged such that after calculating their differentials

du = Ldx + ldy, and dv = Mdx + mdy,

one has L + m = 0. Or, since L= du
dx
and m = dv

dy
, the

velocities u and v, which are considered to occur at the point
l parallel to the axes AL and AB, must be functions of the
coordinates x and y such that du

dx
+ dv

dy
= 0, and thus, the

criterion of possible motions consists in this that du
dx

+ dv
dy

=

0;7 and unless this condition holds, the motion of the fluid
cannot take place.
21. We shall proceed identically when the motion of the

fluid is not confined to the same plane. Let us assume, to in-
vestigate this question in the broadest sense, that all particles
of the fluid are agitated among themselves by an arbitrary mo-
tion, with the only law to be respected that neither condensa-
tion nor expansion of the parts occurs anywhere: in the same
way, we seek which condition should apply to the velocities
that are considered to occur at every point, so that the motion
is possible: or, which amounts to the same, all motions that
are opposed to these conditions should be eliminated from the
possible ones, this being the criterion of possible motions.
22. Let us consider an arbitrary point of the fluid λ. To

represent its location we use three fixed axes AL, AB and AC
orthogonal to each other (Fig. 2). Let the triple coordinates
parallel to these axes be AL= x, Ll = y and lλ = z; which
are obtained if firstly a perpendicular λl is dropped from the
point λ to the plane determined by the two axes AL and AB;
and then a perpendicular lL is drawn from the point l to the
axis AL. In this manner the location of the point λ is expressed
through three such coordinates in the most general way and
can be adapted to all points of the fluid.

23. Whatever the later motion of the point λ, it can be
resolved following the three directions λµ, λν, λo, parallel to
the axes AL, AB and AC. For the motion of the point λ we
set

the velocity parallel to the direction λµ = u,

the velocity parallel to the direction λν = v,

the velocity parallel to the direction λo = w.

Since these velocities can vary in an arbitrary manner for dif-
ferent locations of the point λ, they will have to be considered
as functions of the three coordinates x, y and z. After differ-

7 This is the two-dimensional incompressibility condition, which in a slightly
different form has already been established by d’Alembert, 1752; cf. also
Darrigol and Frisch, 2008:§ III.

Part 1: Constant volume of the fluid particle (incompressibility) 

   



Euler’s Principia motus fluidorum (1752) 
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Part 2: Forces (pressure, gravity) and motion (Newton’s 2nd law) 

   
u (x, y, t)   

Acceleration (kinematics) 

   v (x, y, t)   
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In order to find the accelerations of any particle whose velocity components 
are u and v, he takes the variation of these when they move in a time dt. Deriving 
with respect to time and space he obtains the result: 
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t
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As the particle in question moves precisely with the velocities u and v, the dis-
placement will be dx = udt and dy = vdt, which introduced into the previous 
equations lead to: 
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Which are the ‘accelerating forces’ along the axes OX and OY, ‘by which the 
forces that are acting on particle of water must be equal’ [§.41]10 and which he 
goes on to make equal to the forces acting upon it. Among the possible acting 
forces he enumerates three: gravity, friction and pressure. Of the first he says its 
effect, 
 

                                                      
10 In the text of Euler it says precisely: 

Vis acceleratirx secundum AL = 2(Lu + lv + L) 
Vis acceleratirx secundum AB = 2(Mu + mv + M) 

that correspond to the formulas above expressed with the exception of factor 2, whose reason to 
exist he radicates in the peculiar system of units which Euler employs, in which the value of the 
acceleration of gravity is ½. See his work ‘Découverte d’un nouveau principe de méchanique’ 
Mém. Acad. Berlin VI (1750), where he expounds for the first time the Newtonian equation of the 
second principle in a differential form to the time , in the following manner: 

2MX = P;   2MY = Q;    2MZ = R; 
The justification of this value is found in the ‘Théorie plus complete des machines qui sont mises 
en mouvement par la reaction de l’eau’ that appears in Vol. X of the Mém. Acad. Berlin (1754) He 
repeats the ‘2’ again now. We shall ignore it. See also Truesdell, ‘Rat. Fluid mech-12’, p. XLIII. 
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Forces (dynamics) 
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Fig. 9-2. Pressure forces 
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Therefore, the result of the forces produced by the pressures on the sides of the 
rectangle along both axis, will be: 
 

OX Axis:          dxdy
x
p
w
w

�  [9.23] 

 

OY Axis:          dxdy
y
p
w
w

�  [9.24] 

 
These forces, plus the gravity along the axis OX, will be the ‘accelerating 
forces’, and by making them equal to the accelerations given in equations [9.19] 
and [9.20] the following two equations are obtained12: 
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12 In the formulas that follows the density, ȡ, is introduced as the deviser of the pressure, the aim 
being to make the equations coherent. 
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12 In the formulas that follows the density, ȡ, is introduced as the deviser of the pressure, the aim 
being to make the equations coherent. 

Convective acceleration 

   

Internal pressure 

   

If gravity (g) along OX 
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Force due to pressure gradient 

   

“Accelerating forces”  
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Moreover, the variation of pressure with time and space can be written as: 
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Introducing the values of the two previous equations into this one, we arrive at 
the following expression for dp: 
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Which he says that it must be integrable. He states that ‘the term g is per se inte-
grable and nothing is defined for �p/�t, and by nature the differentials need to be 
exact’ [§.46]. Therefore, it will be necessary to comply with the equality of the 
cross-derivatives between the other two terms: 
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Which, after the corresponding manipulations become the following: 
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That says [§.47] that it is completely satisfied by: 
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last condition will also verify the previous one, but the opposite is not true. This 
means that the condition [9.31] is sufficient, but not necessary. Euler limits the 
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Direction OX 

Direction OY 

Pressure can also 
change with time   
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Part 2: Forces (pressure, gravity) and motion (Newton’s 2nd law) 
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That (!) it must be integrable, i.e. dp is an exact differential 
•  g is per se integrable 
•  No restrictions for ∂p/∂t, thus integrable 
•  Therefore, equality of cross-derivatives yields 
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“Now we shall be able to ascertain the pressure p itself, which is absolutely 
necessary for the perfect determination of the motion of the fluid” 
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Which he says that it must be integrable. He states that ‘the term g is per se inte-
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possible motions to a single category, which later would be called ‘irrotational 

motions’. Later on, in successive works he rectifies having considered only this 

solution. D’Alembert had also found himself in a similar situation.
13

 Truesdell 

insisted that Euler’s mistake was due to d’Alembert’s influence,
14

 although one 

can easily interpret it as Euler having chosen the easiest and most obvious 

solution of the equation. 

Before continuing, we must introduce a specification which Euler fails to 

mention. In equation [9.30], the sum �u/�x + �v/�y is zero, as had already  

been found in equation [9.13] as a result of the continuity, which simplifies the 

formulation. 

We take note that having started from the pressure as the only acting force, 

returns, for which he introduces the results found in the expression containing 

the pressure, ‘hence now we shall be able to ascertain the pressure p itself, which 

is absolutely necessary for the perfect determination of the motion of the fluid’ 

[§.49]. With the condition [9.31], the pressure equation [9.28] becomes: 
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The condition that udx + vdy is an exact differential allows him to introduce the 

function S, which is the potential of the velocities.
15
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And after some transformations he arrives at: 
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This is already an integrable equation whose result is: 

 

                                                      
13

 Cf. Essai d’une nouvelle théorie de la résistance des fluides, §. 48–49. Although what 

d’Alembert really did was to demonstrate if the expression [9.31] was substituted by another of the 

type: O�ww ww yuxv  this will only fulfill the conditions of potentiality if Ȝ = 0. 

14
 Cf. ‘Rat. Fluid. Mech.-12’, p. LXXIII. 

15
 That is to say, it verifies Sv � K . 

favour of the velocities. Now, within the irrotationality hypothesis the pressure 

Euler arrived at some relationships in which this parameter disappeared in

static pressure field ∂p/∂t = 0 

Combining  and 

leads to 
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These equations may be written with vectorial notation as:  
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In which the nabla operator is used as the generator of the velocity gradient. It 
would be even simpler to use the concept of the substantial derivative, which 
would result in16: 

                                                      
16 The gradient function is applied to a scalar field or to each component of a vectorial field. In the 
first of the cases if the field is represented by ĳ the gradient would be the vector:  
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The direction of the gradient is the variation of the property ĳ when it moves through the field in 
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, what he obtains is Bernoulli’sAs the total velocity at a point is 
equation for a non-stationary motion. We shall come back to this potential func-
tion S once we have analysed the three-dimensional case.  

If we are dealing with motion in three dimensions, the arguments will fol-
low the same lines although, just as in the case of continuity, with a greater 
degree of complexity. There will be a third component of the velocity w, cor-
responding to the projection along the OZ axis, and on establishing the accele-
rations we shall have three equations that replace the two [9.19 and 9.20]. 

dM  �M ·dr  indicates the variation of ĳ when the position changes the distance dr.such a way that 
As regards the substantial derivative of  the property ĳ this is defined as follows: 
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Voilá: Bernoulli´s equation from Euler’s!!! 

   



Read Euler, read Euler, he is the master of us all! (Laplace) 

17 



Be aware that we barely scratched the surface… 
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Vortices Viscosity 

Turbulence 

Drag and lift 
Resistance 
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