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Before Daniel Bernoulli’'s Hydrodynamica (1738)

« Hydrostatics: Archimedes, Static pressure (Stevin, Pascal)
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Before Daniel Bernoulli’'s Hydrodynamica (1738)

 Hydrodynamics: Velocity-Area law, Efflux, Resistance

\\H_———_
— §TD Newton'’s Principia (Book 2)
S

narrower hose

wider hose, faster speed 3 Q

slower speed
“where the river becomes shallower, SO SR
the water becomes faster” (da Vinci) A H] ®

“‘Newton’s” Sine-Square law
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Context and Motivation

« Daniel Bernoulli was a doctor (blood pressure)
» Hydraulico-statics
The pressure of water at rest must be clearly

distinguished from the pressure of flowing waters,
although no one, as far | know, has been aware of this.

p=pgh
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Original derivation of the Bernoulli equation

Problem (§ 5 — Chapter XIl): Find the water pressure against the walls of pipe ED

Speed through orifice o v, o< Ja

a

/A,=n Speed in the pipe v, < —

pipe

Apipe

Thus, the water in the pipe “tends to a greater motion”

The effect of the perforated plug can be interpreted as
if its presence were compressing and retaining the
water, pressing it against the walls of the reservoir and
preventing it from expanding. This retention pressure
will be greater as the velocity of the water circulating
through the tube is slower (qualitative explanation)
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Original derivation of the Bernoulli equation

Problem (§ 5 — Chapter XIl): Find the water pressure against the walls of pipe ED

It seems that the pressure of the lateral walls is
proportional to the acceleration which the water would
receive if the entire obstacle to motion were to vanish in
an instant, so that [the water] might pour out directly into
the air. Therefore, the problem is now: if during the flow of
water through o the pipe ED were broken at cd at an
instant, we seek the magnitude of the acceleration the
volume element acbd would thence be about to obtain.

(How to determine the acceleration?)

S(z)
[ —

Compound pendulum Analogy with efflux

ma (V3 /29) + ms(vz /29)
ma + Mg

:ZG

>mv’ =2g¥mh

Potential ascent = Actual descent

Details in Darrigol (2000)
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Original derivation of the Bernoulli equation

Problem (§ 5 — Chapter XIl): Find the water pressure against the walls of pipe ED

It seems that the pressure of the lateral walls is
proportional to the acceleration which the water would
receive if the entire obstacle to motion were to vanish in
an instant, so that [the water] might pour out directly into
the air. Therefore, the problem is now: if during the flow of
water through o the pipe ED were broken at cd at an
instant, we seek the magnitude of the acceleration the
volume element acbd would thence be about to obtain.

Total increment of live force (kin energy)  pSv’dx + 2 pScvdy

Equal to actual descent (potential energy) 2gpSadx
- ~‘a >mv’ =2g¥mh vdv _2ga— v
= v el dx 2c¢
A Z . vdv 2ga—v°
dx dx Pressure o acceleration  p o< — = o
m = pSdx

Details in Calero (2000)
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Original derivation of the Bernoulli equation

Problem (§ 5 — Chapter XIl): Find the water pressure against the walls of pipe ED

the other, acdb, is ejected; moreover, while the volume element at
E, the mass of which is n dx, enters the pipe, it acquires the velocity v
and the live force nvv dx, which entire live force was generated anew;
indeed, the volume element at E, not yet having entered the pipe,
had no motion on account of the infinite size of the vessel AE ; to this
live force, nvv dx, is to be added the increment of live force which the
water at Kb receives while the volume element ad flows out, namely,

oncv dv; the sum 1s due to the actual descent of the volume element
n dx through the height BE or a; therefore, one obtains nvv dx +
vdv  a— v

oncv dv = na dx, or =
dx 2¢

Total increment of live force (kin energy)  pSv’dx + 2 pScvdy

Equal to actual descent (potential energy) 2gpSadx
2
S >mv’ =2g¥mh vdv _2ga—v
- V dx 2¢
v=0 / Vo +dv /
=4 é 5 orat vdv 2ga—v°
ressure o< acceleration oc =
& dx P vdt 2¢
m = pSdx

Details in Calero (2000)
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Original derivation of the Bernoulli equation

Problem (§ 5 — Chapter Xll): Find the water pressure against the walls of pipe ED

_ vdv 2ga—v’
Pressure o acceleration p o< =
vdt 2c
Si V=— o<« ——|1-— S 1—— |=kp=poh
ince p p e ( 2 ) . e P =pPg
If the orifice is infinitesimal 7n— o Pressure is hydrostatic p = pga

Today we would write ]

1
P=Py— %PVZ or p+ Epv2 = constant

That is Bernoulli’s

Can you see/show that
equation in the original

they are equivalent?
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Questions for discussion

 As an experimentalist, | due fancy that his theories can be
shown easily by experiments! :-) For example, the system as
in Figure 73 would not be that difficult to set up.

 Why are the units so strange? Did they simply not care about
the units in the same way at this time? No matter what it
makes some of the derivations kind of nonsensical.

 Why does Bernoulli not mention the quantity energy?

Activity for discussion

« Compare a modern derivation of Bernoulli’'s equation with the
original one. What are the differences and similarities?
Considering the learning perspective, could there be
advantages of understanding the original?
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Euler’s Principia motus fluidorum (1752)

Here are treated the elements of the theory of the motion of fluids in general, the whole matter being reduced to
this: given a mass of fluid, either free or confined in vessels, upon which an arbitrary motion is impressed, and
which in turn is acted upon by arbitrary forces, to determine the motion carrying forward each particle, and at
the same time to ascertain the pressure exerted by each part, acting on it as well as on the sides of the vessel.
At first in this memoir, before undertaking the investigation of these effects of the forces, the Most Famous
Author! carefully evaluates all the possible motions which can actually take place in the fluid. Indeed, even
if the individual particles of the fluid are free from each other, motions in which the particles interpenetrate
are nevertheless excluded, since we are dealing with fluids that do not permit any compression into a narrower
volume. Thus it is clear that an arbitrary small portion of fluid cannot receive a motion other than the one which
constantly conserves the same volume; even though meanwhile the shape is changed in any way. It would hold
indeed, as long as no elementary portion would be compressed at any time into a smaller volume; furthermore?
if the portion expanded into a larger volume, the continuity of the particles was violated, these were dispersed
and no longer clinged together, such a motion would no longer pertain to the science of the motion of fluids;
but individual droplets would separately perform their motion. Therefore, this case being excluded, the motion
of the fluids must be restricted by this rule that each small portion must retain for ever the same volume; and
this principle restricts the general expressions of motion for elements of the fluid. Plainly, considering an
arbitrary small portion of the fluid, its individual points have to be carried by such a motion that, when at a
moment of time they arrive at the next location, till then they occupy a volume equal to the previous one; thus
if, as usual, the motion of a point is decomposed parallel to fixed orthogonal directions, it is necessary that
a certain established relation hold between these three velocities, which the Author has determined in the first part.
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Euler’'s Principia motus fluidorum (1752)

Part 1: Constant volume of the fluid particle (incompressibility)

..- ”

13
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Euler’s Principia motus fluidorum (1752)

Part 2: Forces (pressure, gravity) and motion (Newton’s 29 law)

Acceleration (kinematics)

ux,y,t) vixyt

du :a—udx+6—udy+g—jdt

ox oy

dvzﬁdx+@dy+@dt
X oy ot

du ou ou Ou
—=U—tV—t+—
dt ox oy Ot

dv ov ov Ov
—=U—F+V—t—
dt ox Oy ot

Convective acceleration

Forces (dynamics)
If gravity (g) along OX

Internal pressure
“Accelerating forces”

N 0 Direction OX
::> N —la—pZua—u+v8—u+a—u
p Ox ox oy Ot
L M
U Direction OY
X _lop_ v ov ov

0
L: p M: p+—pdx
Oox
Pressure can also

0
N: p+a—pdy o: p+a—pdx+a—pdy oAl
y change with time

ox oy
OX Axis: —a—pdxdy OY Axis: —a—pdxdy dp = a—pdx +a—pdy +a—pdt
Ox oy Ox Oy Ot

Force due to pressure gradient Substituting



UNIVERSITY OF COPENHAGEN 15

Euler’s Principia motus fluidorum (1752)

Part 2: Forces (pressure, gravity) and motion (Newton’s 29 law)

d, 0 ou O 0 ov O 19
—ngdx— iy P M Ly dy-l———pdt
Jo, ox 0Oy Ot ox Oy Ot p Ot

That (!) it must be integrable, i.e. dp is an exact differential
* @ is per se integrable
* No restrictions for dp/dt, thus integrable

« Therefore, equality of cross-derivatives yields i(

ou ou oOu 0 ov ov Ov
+ + + +
y

U—+v—+—|=—|u—+v—+—
ox oy ot ox\ ox oy ot

ou 0 o o0 o\ou o
After manipulations (—u+—v+u—+ ](—”——V}O

V—+—
ox Oy ox oy otN\ody Ox
Which implies du v

From part 1 —+—=0  incompressible |deal Fluid
du ov ox dy .
270 Potential Flow
dy ox du dJv _ . ,

From part 2 oy ox 0 firrotational Velocity Potential



o? UNIVERSITY OF COPENHAGEN

16

Euler’s Principia motus fluidorum (1752)

‘“Now we shall be able to ascertain the pressure p itself, which is absolutely
necessary for the perfect determination of the motion of the fluid”

Combining d_p: gdx—(uZ—u+va—u+a—ujdx—(u@+v@+@jdy+la—pdt and u _ v

0 x oy or o oy ot p ot oy ox
dp ou ov : ]

leads to — = gdx —udu —vdv — adx — 5dy static pressure field dp/ot = 0
o,

Introducing the function S (velocity potential)  dS = udx + vdy

yields dp _ gdx —udu —vdv —d o
P

ot

1
Integrating % =gx — E(M2 + vz) —U + Cte

Voila: Bernoulli’s equation from Euler’s!!!
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Read Euler, read Euler, he is the master of us all! (Laplace)
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Be aware that we barely scratched the surface...

TN

Viscosity Vortices
Turbulence

__———"""\
———————

e ——
A
ﬂ. a
v <w \
v
M RELATIVE WIND
M
W

Drag and lift
Resistance
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End of module feedback

Please go to b.socrative.com (student login)
Enter the HISPHYSKU room
Fill out the short (anonymous) survey

Tak skal du have!
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