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I. PHENOMENA OF INTERFERENCE

Teacher. The term phenomena of interference appeared in the 19th
century and was applied to some of the phenomena previously called
“periodical colors.” This term referred to alternating fringes of differ-
ent colors seen, for instance, in soap bubbles, around narrow obsta-
cles, etc. The new term implied a specific explanation of these phe-
nomena, namely through the principle of interference of light.
However, the phenomena themselves had been known long before the
discovery of the principle of interference and were explained differ-
ently at the time. We are going to examine one of these phenomena,
first experimentally and then theoretically.

1. Colors of thin plates
Preliminary part

Equipment. Two microscopic slides, paper, scissors.

Procedure Put together two microscopic slides, while supporting them
with index fingers from below, use your thumbs to move the upper
slide over the lower one with so much friction as to produce colors.
The colors are seen better against a dark background. If you suc-
ceeded in obtaining colors try to change them.

Experiments

Dorothy. 1don’t see any colors.

Michael. We obtained some, mostly near the edges.

Mary. I saw the colors even in the middle of the plate in the form of
irregular circles and rings. They alternate: green, red, green again,
red again, and so on.

David. I saw colored rings near my thumb so long as I pressed it to the
glass. When I removed the thumb the rings began contracting, until
they completely disappeared.

Ruth. I've noticed a change in colors when I looked at the same place at
different angles without changing the pressure.

Formulating a problem
What is the cause of the colors created by two glass plates?

Selecting variables
Teacher. Name the factors which affected the appearance of colors.
Mary. Pressure and the angle of reflection. Thus, we have two variables.
Teacher. Since pressure is not an optical concept, its influence must be
indirect. We have to find optical factors affected by pressure, and
those will be our variables.
John. Perhaps, pressure changes the shape of plates: we know that if
surfaces are not parallel, the image is distorted and may even be col-
ored.
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| Main part
a. shape of the plate

Hypothesis
Michael. Let us suppose that pressure bends the plates into a prism.

Test
Ruth. We've bent a single plate (one has to be careful not to break the
glass), but no colors appeared.
Dorothy. We've also tried it. No luck!

The hypothesis is wrong: colors are mot due to
bending of plates. A single plate doesn’t create
colors.

b. shape of the spuce between plates

Hypothesis
Mary. Perhaps two plates make an air prism which produces colors.

conclusion ’ l

Test
David. This sounds unlikely, because a prism produces only a single
spectrum., However, we can test it directly by separating the plates at
one end.
Michael. We placed a piece of cardboard between the plates near one
edge and pressed the plates together, but we haven’t seen any colors,
even a single set.

. The hypothesis is false: the shape of the air gap
conclusion . I between the plates is not important.

¢, substance between plates

Hypothesis ,
Dorothy. Perhaps the colors are due to the air between the plates

Test

John. Let us remove the air from between the plates. Our group
replaced air with water, and observed no change in coloration.

Mary. We did the same and found small bubbles between the plates,
which implies a mixture of air and water, but the colors are there
nonetheless! .

Dorothy. We put some vinegar between the plates and obtained colors ,
similar to those with water. -

conclusion W | The hypothesis is false: the air is not necessary
to produce colors. ‘
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d. distance between plates

Hypothesis
Ruth. Let us summarize the facts once more: 1) we need two glasses but
not to hold a specific substance between them; and 2) we need pres-
sure but not for bending the plates. We can reconcile the two by
assuming that the distance between the plates plays some role.

Test

David. We can obtain a variety of distances between the plates in a sin-
gle trial by inserting something (for instance, a piece of paper or card-
board) between the plates on one side.

Dorothy. We did it with cardboard and the result was negative.

Mary. We inserted a paper strip, and it worked. The colors appeared,
however, only on the side opposite to the paper strip. No colors
appeared near the strip however hard we pressed. This means that
the distance necessary to produce colors is much smaller than the
thickness of paper.

The colors are produced by two glass plates put

; together only if they have a very small distance

conclusion ’ - between them. Pressure is needed to reduce the
distance between the plates.

Teacher. We still have the angle of reflection to investigate. Mark a
point on the upper plate and watch how the colors will change when
you increase the angle of reflection.

e. angle of reflection

Preliminary experiments
Dorothy. When I looked at the plates at a smaller angle I saw a blue
ring; when the angle increased the ring became green.

Hypothesis
David. The greater the wavelength the greater the angle of reflection at
which we see that color.
Test
Michael. We've seen the red color at a larger angle than the yellow one,
and the yellow fringe appeared at a greater angle than the green one.

conclusion ’ l ;l;l;leg fhngle of reflection increases with the wave-

Teacher. Very good! You've repeated some of the experiments of Robert
Hooke (1635-1703) and Isaac Newton (1642-1727). Let us now see
how they explained this phenomenon.

good
point!

good
point!
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2. Hooke’s theory

A sickly boy who barely survived childhood, Robert enjoyed making mechanical toys.
In 1653, he came to Oxford to become Robert Boyle’s assistant, involved in making sci-
entific instruments and performing experiments. In recognition of his outstanding
mechanical skills, Hooke became curator of instruments and demonstrator of the newly
founded Royal Society of London. Every week he had to prepare several major experi-
ments and demonstrate them at the Society’s meeting. This greatly stimulated his inter-
est in scientific research and inventions. On the other hand, it prevented him from realiz-
ing in full many of his brilliant ideas and dragged him into priority disputes with
Huygens, Newton, and others. Hooke invented an air-pump, a spring balance, which
eventually made possible the watch and the maritime chronometer, and many other
instruments. He was one of the first to systematically use a microscope for biological
observations which he described in his book Micrographia. He discovered “Hooke’s
Law” for elastic deformations, influenced Newton in his work on universal gravitation,
gave a theory of the origin of fossils, and distinguished himself as an architect.

In his Micrographia Hooke described multiple spectra in thin pieces of mica. He found
that the order of these colored rings was inverse to that in the primary rainbow, and that
by pressing a particular place he could change the color there. By splitting mica further
and further he obtained pieces which exhibited a single color. Hooke supposed that col-
ors depend on the thickness of mica and that this is a property of all thin transparent sub-
stances. He confirmed this hypothesis through observations of a very thin glass film, a
thin film of air or of a liquid between two glass plates, soap bubbles, and finally of the
film that covers tempered steel. Hooke thought that light was a periodical sequence of
pulses and he explained the colors of thin plates as follows.

The pulse ab (white light)
falls on the font surface of
a plate AB, which reflects
a portion of it as the pulse
c¢d. The rest of it is refract-
ed and then reflected by
the back surface EF as the
pulse ef (Fig. 10.1).
Naturally, the pulse ef is
weaker than the pulse cd.
When the combination of
two pulses enters the eye it
produces a perception of
blue color when its weaker
- part precedes the stronger;
and of red color when the stronger part precedes the weaker one. Since the position of
the weaker pulse between the two following stronger pulses depends on the thickness of
the plate, the latter will determine the resulting color (Hooke, 47-56, 65-7).

Fig. 10.1. Hooke's theory of thin plates. From
Hooke, Micrographia (1665)
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3. Newton’s theory

Newton adopted Hooke’s idea that the color of a thin film depends on its thickness. For
a film of air between two lenses he was able to find the relation between the radius of a
colored ring and the thickness of the film. From his measurements Newton found that
the thicknesses that corresponded to the brightest part in consecutive spectra formed an
arithmetical progression 1, 3, 5,... while the thicknesses in their darkest parts were
2,4.6,... ... The unit in these progressions was 1/178,000 of an inch, which was the thick-
ness of the film at the brightest part in the spectrum of the first order, which Newton
associated with yellow color. He found experimentally the ratio of the thicknesses that
corresponded to the red and violet parts of the same spectrum, and using an acoustical-
optical analogy, calculated the thickness of the film for every color (Opticks, Book II,
193-224). How difficult these quantitative experiments were may be seen from the fact
that no one repeated them until the middle of the 19th century. While acknowledging
Hooke’s experimental results on thin films, Newton rejected his explanation of these col-
ors and offered his own.

In Newton’s view, light can periodically change its property of being reflected or refract-
ed (he called this “fits of easy reflection and transmission”). This meant that after enter-

ing a refracting medium, at every v v

distance from the surface multi- X X

ple of 2/178,000 in. light X Y v
acquired a property to be trans- o
mitted further, while in the mid- Y}~ — — |[— + — —¢ — |- Y¥ —3

dle between these distances it ! K

could be reflected back. - =4 4 _ _Y__ - _\
Therefore, light either passes V P
through a film or returns, NN IR AN N S
depending on whether the film’s v I o
thickness consists of an odd or * * *

even number of 1/178,000’s of an
inch (Fig. 10.2). Fig. 10.2. Newton's “fits of easy reflection & transmission”.
Newton called the distance between the two consecutive points of easy transmission or
easy reflection the interval of fits. Its magnitude depended on the color and on the index
of refraction of the film. Thus, to some extent the interval of fits resembled the wave-
length. Although Newton’s concept of periodicity of light differed somewhat from the
modern one, he was able to obtain some interesting results with its help. The most
important of these was calculating the dimensions of colored rings produced by concave
glass mirrors (“colors of thick plates”). Newton’s measurements confirmed his theory
with great precision (Opticks, 278-315).

The first wave explanation of the colors of thin films was provided by Thomas Young.
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I1. PRINCIPLE OF INTERFERENCE OF LIGHT
1. Thomas Young and his discovery

Teacher. Thomas Young was the eldest of ten children in a family of Quakers. His
grandfather stimulated his interest in classic literature, and his neighbor, a surveyor,
acquainted Thomas with mathematical and physical instruments. Most of his knowl-
edge he obtained by his own efforts. Thomas first distinguished himself in classical
languages. At the age of 14, he was more or less versed in Greek, Latin, French,
Italian, Hebrew, Persian, and Arabic. While studying botany he decided to make a
microscope from a description in a book. For this purpose, he acquired a lathe and
for a while abandoned science for learning the art of turning. Then he found in a
book some fluxional symbols and did not stop until he mastered an introductory cal-
culus. Classical scholars were greatly impressed with his Greek translations, but
Thomas decided to pursue a career in medicine. In 1792, Young began his medical
studies in London, continuing them in Edinburgh and finally in Goéttingen. He
became interested in physics because he believed that a thorough knowledge of that
science was important for becoming a good physician. In 1796, while preparing for
his medical degree in Goéttingen, Young studied the formation of human voice, which
led him to acoustics. Upon returning to England in 1797, he found that to practice
medicine he had to get a medical degree from an English university. Thus, he
enrolled at Cambridge, and since he was already well prepared for the examinations,
Young devoted his time to acoustical experiments. While studying beats of sound he
discovered in 1799 the principle of interference for sound: two sounds may not only
reinforce but also destroy one another. In 1801, he generalized this idea for all sorts
of waves, including light. This meant that light added to another light can produce
darkness. Young first presented this new concept to the Royal Society of London in
November 1801 in his article “On the Theory of Light and Colours.” He called it
principle (or law) of interference.

Dorothy. You mean that turning on two lights instead of one can make
a room darker?

Teacher. No, the principle of interference is applicable not to every
light. Neither two electrical bulbs, nor two candles, nor any other two
independent sources of light can produce interference.

John. Can we produce darkness by combining direct light from the sun
with sunlight reflected by a mirror?

Teacher. No. Another limitation concerns the angle between interfering
rays: it must be close to zero, which does not take place in the exper-
iment you have described.

Mary. How about two mirrors set at almost 180° to one another and
reflecting sunlight? Will this work?

Teacher. A similar idea was realized by Augustin Fresnel in 1816. To
succeed, this experiment has to fulfill another condition: the two rays
must differ very little in the length of their routes. This is possible if
the reflection occurs at a very small angle. Besides, for this experi-
ment, the source of light must be very small, and sunlight can be
used only after passing through a pinhole.

Michael. So many restrictions! It is probably a very rare phenomenon,

.
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which would be difficult to observe or reproduce. If so, what is the
point in studying it?

Teacher. Indeed, interference of light occurs much less frequently than
reflection or refraction of light. It can be observed only under the fol-
lowing conditions (called conditions of coherence):

The interfering rays must:

. originate from the same light source;

. have the same wavelength (color);

. have about the same intensity;

. form a very small angle between themselves;

. have a very small path difference; and

. in some cases, come from a luminous body of a small angular
size.

o2 Wl SR

When these conditions are not fulfilled our eye cannot detect any
interference pattern. We study this phenomenon because of its great
theoretical and practical value. As to its rarity and difficulty to
observe, you simply don’t know that some well known phenomena
belong to this category. For instance, the colors of soap bubbles, with
which you all have played are produced by interference. The same is
true about the multicolored spots in pools of water contaminated by
gas or mineral oil.

Mary. Do colors we've observed between glass plates also result from
interference?

Teacher. Precisely.

Ruth. How can this be? These colors have another explanation!

Teacher. You mean two other explanations. There is nothing wrong
with advancing a new explanation of the phenomenon which had
already been accounted for. The purpose of any new theory is to give
a fuller explanation of the given phenomenon and to extend its appli-
cation to other phenomena as well.

Dorothy. But how can the principle of interference explain colors?
When light destroys another light, that means darkness rather than
colors. ‘

Teacher. This is correct as applied to monochromatic light. According
to Young, if two rays of, say, red light meet after traveling different
routes, and their path difference at the meeting point is an integer
number of the wavelength for red light, we will see a bright red spot.
If at another point their path difference equals an odd number of the
half-wavelength, this point will appear dark. When two rays of white
light interfere, the red component of the first ray will interfere with
the red part of the second ray, the blue light from the first ray will
interfere with the blue light from the second ray, etc. Since the ratio
of the wavelengths for red and blue light is about 1.5, wherever the
path difference is one wavelength for red light, it will be three half-
wavelength for blue light. This means that at the same point where
red light will be reinforced, blue light will be extinguished. As a
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result, this point will appear not white but reddish. Let us now see
how this theory explains the colors of thin films.

2. Young’s theory of thin films.

According to Young, the interfering rays are those which are reflected
from two parallel surfaces (Fig, 10.3) of the film. The ray 1 is reflected
from the first surface and travels the path SCO, while the ray 2 first is
refracted and then reflected from the second surface following the route
SAEFO. is P=SA+AE+EF+FO-(SC+CO). Let us draw AB perpendicular-
ly to SC, and CD perpendicularly to AE. If the angle ASC is very small,

I{S

Fig. 10.3. From T. Young ,"Theory of light," Misc. Works, v.1, p.169.

SB=SA, and for the time necessary for light to come from B to C it will
also pass from A to D. Thus, at the points C and E the ray 2 will be
delayed relatively the ray 1 by nDE, where n is the film’s index of refrac-
tion. Similarly, one can find that on the way from points C and E to the
eye O the ray 2 will be delayed by the same distance nDE. Thus, the
path difference of the two rays is P=2nDE, and since DE=CEcosr, we
have '

P=2tncosr

where t is the plate’s thickness, and r is the angle of refraction. The
results calculated with this equation differed from Newton’s observa-
tions, and to reconcile the two Young supposed that a ray coming from a
rarer to a denser medium to be reflected back loses half of a wavelength
from its path. Thus, Young’s modified equation for the path difference in
reflected light is

P=2tncosr + A/2 (10.1)

...

e
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The bright fringes will be seen in the directions where P=m) (A is the
wavelength and m=0, 1, 2, ... which is the spectrum’s order), or where

2tncosr ,, + A/2=mk (10.2)
Analogously, the minima of light will appear at
2tncosr i, tA/2 = (2m + 1/2) A (10.3)

Thus, if the incident light is white, the rays producing maxima are
reflected under different angles for different wavelengths, as the result of
which white light is decomposed into fringes of different colors. The
spectra of higher orders overlap, and colors mix until they produce
white. For this reason, ordinarily, only spectra of the first few orders are
seen. Since the number of spectra produced increases with the path dif-
ference which, in turn, depends on the film’'s thickness, only extremely
thin films (about 1 micron) produce colored fringes in white light.
Thicker plates produce an interference pattern only in more or less
monochromatic light, and the thicker the plate, the narrower the range
of wavelengths must be.

3. Principle of interference and waves of light

Dorothy. This theory is more complicated than the previous two.

Teacher, Perhaps, but it is better.

John. Why?

Teacher. Hooke’s theory showed that a parallel plate can create colors
which depend on the plate’s thickness. However, it was a qualitative
proof, it dealt only with two colors, and it didn’'t show why only thin
plates produce colors. Newton’s theory was quantitative, it explained
the origin and place of all colors, and it was applicable to two other
phenomena. However, it could not explain why thicker plates don’t
make colors. Young's theory was also quantitative and applicable to
all colors. In addition to this, it accounted for the limitation in the
thickness of the plates and could be extended to many other phenom-
ena. Thus, we see how each theory improves over its predecessors.
Young’s theory of thin films was also superseded by others which
explained, for instance, the intensity of the interference fringes.
However, as far as the location of the fringes is concerned, Young’s
theory remains a good theory because it provides a precision satisfac-
tory for many purposes by very simple mathematical means.

Michael. Perhaps it is a fine theory, but it is very obscure, at least as
you presented it. Why did Young compare the path difference to the
wavelength? Where did he get this rule from?

Teacher. Young supported the wave hypothesis of light, thus he com-
pared light waves to sound waves. He knew from mechanics that
when a point participates in two vibrations the compound amplitude
can be either a sum or a difference of amplitudes, depending on
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whether the vibrations
were in the same or the
opposite phase. This
can be expressed
graphically as in Fig.
10.4 (equal frequencies)
or in Fig. 10.5 (slightly
unequal frequencies).
Initially, Young applied
such graphical addition
to explain beats of
sound, or a periodical
increase and decrease
of loudness (Fig. 10.6)
produced by two
sounds of slightly dif-
ferent frequencies. He
extended this principle
to light waves: if two
waves bring to to the
eye vibrations in the same phase, their amplitudes add; if the phases
are opposite, the amplitudes subtract. An addition of amplitudes is
supposed to produce a spot brighter than the background, while their
subtraction should create a darker spot. The relative phase of the
two vibrations depends on the path difference of the two waves. The
phases are the same when the path difference is a multiple of the
wavelength, and they are opposite when the path difference equals an
odd number of the half-wavelength. The concept explaining at which
point we should expect an increase or decrease of the intensity of
vibrations was also discovered by Young and is called the principle of
superposition of waves. The principle of superposition is applicable to
any two intersecting waves, but
the result of such an intersection
is not always observable. The
principle of interference refers to
observable phenomena, thus it
includes the principle of superpo-
sition of waves and the condi- °~
tions of coherence.
David. The idea of adding two
- waves as expressed in Fig. 10.4
and Fig. 10.5 is so simple that it
was probably easy for Young to
stumble upon it after he adopted
the wave hypothesis. Is that A
right? v
Teacher. Wrong. It took him two
years to advance from interfer-
ence of sound to interference of

x 3

Fig. 10.5. Superposition of waves of different frequency.

F ig. 10.6. Superposition of waves of unequal
frequency. From T. Young, Misc. Works, v.1, pl. IIL
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light. One of the reasons for this can be seen in Fig. 10.6. At the
time, mathematicians believed that a sine wave representation of
sound (introduced by Newton) was too simplistic and they used more
complicated curves. However, such curves are not applicable to light.
To produce beats of sound we need two waves of different frequency
which produce vibrations of differential frequency changing their
intensity in time (it is called temporal interference). The eye cannot
perceive temporal interference of light because the difference of any
two optical frequencies is beyond the range of visible frequencies.
The eye can only perceive spatial interference, or the one which
changes the intensity only in space and not in time. Such interfer-
ence is produced by waves of identical frequency.

Mary. Is that is why you said that red light interferes with red, and blue
with blue?

Teacher. Exactly. Of course, you can mix, red light with blue but you
won't see any interference pattern.

Dorothy. O.K. So it took Young some time to decide on selecting sine
waves to represent light mathematically, but after that everything
was obvious, wasn’t it?

Teacher. Not at all! For instance, he had to decide whether to use sine
waves of finite or infinite length. What would be your choice?

John. 1 would probably choose an infinite wave.

Teacher. Wrong: Infinite sinusoidal waves must interfere whatever
their path difference, which contradicts experiment. Among other
things, Young had yet to discover all the conditions of coherence, and
to confirm his theory by a quantitative experiment.

Michael. How was Young’s principle of interference received?

Teacher. Most scientists misunderstood it. They were asking (not
always explicitly) the same questions you did, however Young didn’t
bother to answer them in detail. Instead, he relied on analogies, com-
paring the interference of light with an intersection of waves on the
surface of water or with beats of sound. He meant that all these phe-
nomena can be explained by an addition or subtraction of amplitudes
of vibrations. His opponents, however, looked at them from an entire-
ly different perspective. In their view, the intersecting water waves
did not interfere at all because they preserved their form and velocity;
and the beats of sound had a psychological rather than a physical
cause. For these reasons, the principle of interference of light was
accepted only after 1815, thanks, to a considerable degree, to the
efforts of Augustin Fresnel.

David. Why didn’t Young bring forth new experiments to support his
case for interference?

Teacher, He did, and we will repeat some of them in a short while. In
1804, for instance, he offered an experiment (I call it the “screening
experiment”) which later became very influential in winning support
for the principle of interference and the wave theory. The idea was to
show that two rays of light are necessary for interference, and that
blocking one of them destroys the interference pattern. Young placed
a wire into the cone of sunlight entering a dark room through a fine
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™

math is
a friend !




Pistory

- or, that the path difference of the two rays increased

‘200 REDISCOVERING OPTICS

pinhole and observed parallel fringes
inside the shadow. That was a phe-
nomenon of diffraction known since
Grimaldi (see Ch. 11). Young supposed
that these fringes resulted from the
interference of two rays of light AM
and BM (Fig. 10.7) coming to the
screen from the opposite edges of the
wire AB , and his calculations agreed
with experiments (Ch.11). When he
inserted a small opaque screen P@ in
the shadow in order to intercept the
ray AM, he discovered that the fringes
] disappeared. Young interpreted this
Fig. 10.7. Young's "screening experiment’.  outcome as proving that two rays of
light are necessary for producing the
interference pattern. In his view, this refuted Newton’s explanation of
periodical colors as resulting from periodical changes in a single ray.

III. INTERFEROMETER
1. The idea

In.1816, Frangois-Dominique Arago (1786-1853), a member of Paris Academy of
Sciences, was engaged by the Academy in reviewing Fresnel’s early papers. Arago
reproduced Fresnel’s and Young’s experiments on interference of light. While repeating
Young’s “screening experiment” he happened to S

have in his hand a glass plate P,Q, (Fig. 10.8) e

instead of an opaque screen PQ. To his surprise, the \
fringes inside the shadow CD of the body AB disap-
peared although the plate did not stop the ray AM.
Fresnel supposed that the ray AM was delayed
inside the glass on its way to the meeting point M,

and they met at another point M; outside the shad-
ow. There, the background was so bright that the
fringe became invisible. To test his hypothesis
Fresnel suggested replacing a thick glass plate with
an extremely thin one: the fringe reappeared within
the shadow at the point M,. Arago found that the
same result could be achieved by means of two
thick glass plates P;Qy and P,Q, of a slightly differ-

Fig. 10.8. Arago's experiment..

- ent thickness placed at both sides of the shadow: a small difference in their thickness

produced a noticeable shift of fringes. This gave Fresnel and Arago the idea to measure
small changes in length or in the index of refraction, because the optical path of a ray
depends on both. That is how the first refractometer-interferometer was born.
Astrqnomers provided the first task for the new method: to check whether refraction of
the air depends on its humidity. That was necessary for calculating the atmospheric

Gealadie
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refraction and determining the true positions of heavenly bodies. Interferometers were
much improved in the second half of the 19th century, to a considerable extent due to the
American physicist Albert Abraham Michelson (1852-1931).

2. Michelson interferometer

The son of a Jewish immigrant from Poland, Albert early displayed courage, inventive-
ness, and determination. He dreamed of entering the U.S. Naval Academy but was tied
with two other applicants, and the place was given to another person. With a letter of
support from his senator, Albert intercepted President Grant during his walk and pleaded
with him for an extra appointment. He succeeded and eventually became the first
American to win the Nobel prize. After graduation he taught at the Academy for a while,
and at that time he distinguished himself by measuring the velocity of light (1878). Two
years later, he went to Europe for graduate studies, and it was in the laboratory of
Helmholtz that he conceived of the idea of a new interferometer. The instrument had to
be sensitive enough to discover whether or not the earth moves relative the ether. If
“Yes,” the “ether wind” must depend on the direction of light relative to the direction of
the earth motion, which can be discovered by rotating the interferometer. The result was
negative. In 1887, Michelson and Edward Morley repeated the experiment with an
improved interferometer, but the result was the same. The negative results of
Michelson’s experiments played an important role in physics, by preparing the ground
for the theory of relativity. Michelson, however, realized that his instrument has also
important practical uses. For instance, with the help of his interferometer he found that
the Paris standard of meter contained 1,553,163.5 wavelengths of the red line of cadmi-
um. Subsequently, this became the foundation for replacing the metal meter as a
standard of length with a much more constant "light meter", based on the wavelength.

The Michelson interferometer consists of two front-surface mirrors A and
B and a beam-splitter C (Fig. 10.9). While Michelson used a spectral

TR A

Fig. 10.9. The Michelson interferometer.
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tube for a source of light, we will have a laser L, which will considerably
simplify the procedure. The beam is divided in two parts in the plate C.
The ray 1 enters the eye after being reflected by the silvered side of the
plate C and then by the mirror A; the ray 2 is transmitted by the plate C,
reflected by the mirror B and again reflected by the silvered side of the
plate C towards the eye. The two rays interfere in the same way as on a
plane-parallel plate (if the mirrors A and B are perpendicular) and pro-
duce a system of concentric bright and dark rings. With white light, one
cannot see more than a few rings, but their number increases with the
degree of monochromaticity of light. With a laser, one may see many
rings, which implies a large path difference and a high monochromaticity
of light. When the path difference is very large, it may be difficult to
locate the center of the ring system,

The purpose of the interferometer is to measure a change in the path
difference of two interfering rays, caused by either a movement of a mir-
ror or by a change in the index of refraction of the medium crossed by
one or both rays. The index of refraction varies with pressure or temper-
ature. If An=n,- n, is the change of the index of refraction and L is the
length that light traverses, the change in the path difference will be
?IP=2LAH, and, if expressed in the number N of wavelengths A, AP=NA\.
ence,

N=2LAn/ A

Thus, when the path difference changes, the fringes move: a shift by N
times the width of the fringe corresponds to a path difference change of
N wavelengths. The shift is difficult to measure when it is large: one
counts how many fringes crossed a chosen mark on the screen. This is
easier to do when we see the center of rings, in this case one counts how
many new circles appeared from the center (the path difference
increased) or how many circles collapsed in the center (the path differ-
ence decreased). Since the ray 1 crosses the plate C twice (at 45°) while
the ray 2 does not cross it at all, the original path difference of the two
rays is about 2.8t where t is the thickness of the plate C. The precision
of measurements increases when the initial path difference of the two
rays is very small. To achieve this, one has to compensate the extra
path of the ray 1 by introducing a proper glass plate (or several plates)
into the ray 2.

.
;%(
.
.
.

.
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IV. EXPERIMENTS
1. Soap bubbles

Background. The first investigations of soap bubbles were conducted by
Boyle, Hooke, and Newton.

Equipment. Plastic cup, detergent, glycerin or corn syrup, cocktail
straw.

Procedure. In a plastic cup, prepare a detergent solution, for instance,
“Joy” diluted 20 times by volume with a few drops of glycerine. Moisten
the walls and the rim with the solution. Make a bubble using a cocktail
straw, set it on the rim, and remove the straw.

Investigate.

1. The form of colored fringes and their sequence from the top.

2. Do colors change with time? Watch the same spot on the bubble, for
instance, the reflection of a window.

3. Why do colors change? Why do bubbles break? Are the two causes
connected? :

Conclusion. Can you prove that these colors depend on the thickness of
a soap film?

Teacher's note. The soap liquid flows from the top of the bubble to its
bottom because of gravity. Thus, the bubble's wall has the same thick-
ness at equal height, and the thickness increases downwards. That is
why the colored fringes are horizontal circles. A small bubble has thick
walls and does not produce colors.

2. Colors of “mixed plates”

Background. Young discovered that two glass plates which held between
them a mixture of two different substances, water and air, for instance,
produced what he called the colors of mixed plates. He supposed that
these colors resulted from interference of light passing through different
media, i.e. water and air, and their path difference was determined by
the difference in velocity of light in these two media. After assuming that
light travels faster in air than in water, he confirmed this theory by
experiment.

Equipment. Glass plates, water, vinegar, corn syrup.

Procedure. Wet two glass plates and press them together.

Investigate.

1. Describe the shape of colored fringes and their sequence when you
look at them in reflected light. Repeat the experiment with other liquids.
2. Mark a point on the plate. Watch the color at this point in reflected
light, then move the plates without changing their orientation in space
so as to see through them. Did the color change?

3. Do colors change if you squeeze the plates or look at them at a differ-
ent angle?

Conclusion. What is the main difference between the colors of thin and
mixed plates?

Teacher's note. Those colors are much wider than the colors produced
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by the air film. Squeezing the plates should not change these colors.
3. Two-slit interference

Background. This most famous Young's experiment was very briefly
described in his Lectures (1807). The diagram provided (Fig. 10.10) did
not clarify much. Lack of any details about the experimental arrange-
ment led some historians to suggest that it was a thought experiment
introduced to explain the princi-
ple of interference rather than a
real one. Indeed, the hyperbolic
lines of maxima and minima in
the upper part in Fig. 10.10
remind one of similar lines in
another diagram by Young
drawn to illustrate the interfer-
ence of water waves coming from
two centers, and which certainly
was constructed on the basis of
| | his theory rather than experi-
ment (Fig.10.11) Evidence has
been found, however, that Young
did perform this experiment,
although perhaps not exactly in
the way described in physics textbooks, which show a pinhole before the
slits and a white screen behind them. He may have used the direct
observation method, that he had applied in other experiments: holding
the slits near the eye and looking through them at a candle flame a few

)

Fig. 10.11. Interference of two water waves , From T. Young, Lectures, v.1, Fig. 267.

N N N W

F ig. 10.10. Two-slit interference. From
T. Young, Lectures, v.1, Fig. 442.

/
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meters away. It also appears that Young did not realize that the fringes
he observed with two slits were very different from those obtained with a
single slit (see Ch.11).

Equipment. Two microscopic slides, candle, desklight with a housing, V-
slit made out of an index
card, pins, razor blades,
pieces of wood or card-
board, short rulers, mask-
ing tape.

Procedure. To make a V-
slit, hold a microscopic
slide over a candle flame
and deposit soot on the
middle part of it. Place the
slide 1 (Fig. 10.12) on a
table between two supports
2 made of wood or card-
board that are taller than
the slide. To prevent the
slide from moving while you
draw on it, press the sup-
ports to it and tape them to the table. Take a fine razor blade and with
the aid of a ruler 3 draw a line on the sooty surface. Then, without
changing the ruler's position draw another line: a slight change in the
position of your hand is sufficient to produce two lines crossing at a very
small angle (the intersection point should be visible). At some distance
from the two lines draw a single line: you will need it in some experi-
ments where you will compare the phenomena produced by a single slits
and by two slits. To make a double slit take two razor blades, separate
them with a single layer of masking tape, and tape them together. Using
this double razor draw the lines as described above. When a slide with a
V-slit or a double slit is ready, wipe the soot at two opposite edges to free
a margin about 5 mm wide, and cover it with several layers of masking
tape. Place another slide (a clean one) on the top of the first and tape
the slides together. This will preserve your slits from destruction. Use a
magnifier with a scale to measure the distance between the lines.

Fig. 10.12. Making double-slits
and V-slits (view from above).

Investigate.
1. Look at a distant source of light (a

candle flame or a filament of an electric

bulb) through a double slit (Fig. 10.13).

Describe the fringes. P ‘

2. Now look through a single slit. Do ‘ [
you see any difference?

3. Move your eye to and from the vertex

and away from it and describe the

change. How would you go on estab- s 10.13. Dj od of cbser
lishing the cause of this change? 18. 1015, Direct method of observing

\YZ Y

the two-slit interference.
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Conclusion. What is the main difference between the colors produced by
a single slit and a double slit?

4. Michelson interferometer

Equipment. Interferometer, laser, air cell, vacuum pump, microscopic
slides, ground glass, paper tissue.

Procedure. Set a laser and the screen T, as shown in Fig. 10.9. Direct
the laser beam at the middle part of the plate C so as to obtain two rows
of images on the screen T. Using the screws adjust the mirror B so that
the two rows coincide. At this moment you will see fringes. If you don't
see them, repeat the process. It may be helpful to reduce the beam’s
brightness by placing near the laser's exit window a ground glass or a
piece of toilet tissue.

Investigate.

1. Press the base of the instrument with a finger and check whether this
affects the fringes. Is there a correlation between the amount of
pressure and the shift?

2. Place a microscopic slide perpendicularly to the ray 2 and slowly turn
it around the vertical. Describe the change. Suggest a reason for the
change and test your hypothesis. ‘

3. Insert several glass plates into the path of the ray 2. How can you
determine whether you increased or reduced the path difference?

4. Measure the index of refraction of the air. Evacuate the cell and place
it on the cell support between C and B. Readjust the mirrors if the
fringes disappeared. Mark a dot on the screen, open the valve so as to
let the air in very slowly. Count the number of rings passing by the dot.
Calculate the index of refraction (the length L is shown on the cell).

Conclusion. How great a length change can you measure with this
instrument?
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I. EARLY STUDY OF DIFFRACTION

1. Is there light inside shadow?

Teacher. By definition, the rectilinearity of light means that in a uni-
form medium the rays of light don’t bend. This means that light can-
not penetrate shadow. Right? Have we actually tested this?

David. No, we didn't look for light inside a shadow. But isn't this a con-
tradiction in terms? I guess that “shadow” is defined as the zone
inaccessible to light.

Teacher., You are right, I was not precise. By “shadow” I meant the so-
called “geometrical shadow”, or the area behind a body limited by the
light rays coming from a point source and touching the body. Thus,
to check whether light bends around corners we must have a point
source of light.

Dorothy. Can we use a laser?

Teacher. Yes. I will aim a laser beam at a white screen and place a nail
in the path of the beam. Michael, would you please approach the
screen and tell us what do you see?

Michael. 1 see a long shadow of the nail, probably caused by stray light,
which appears to be narrowing where the nail crosses the beam with
its outlines becoming dim.

Mary. Doesn't this mean that light entered the shadow on both sides of
it?

Teacher. It certainly does. Now, I will replace the nail with a pin. What
do you see?

John. There is practically no shadow to speak of. Light reaches the
middle of the geometrical shadow but it isn’t uniform, for there are
two narrow dark lines running lengthwise. Where do these lines
come from?

Teacher. Forget the dark lines for the moment (we’ll discuss them in a
short while). Do you still believe that light follows straight lines?

Ruth. Perhaps what we see is an exception? Why don’t we try a wider
object, such as a pencil?

Teacher. Let's do it.

Dorothy. 1 moved a pencil all the way from the laser to the screen but

there was practically no effect.

Ruth. This may imply that rays bend only around narrow bodies, or,
more exactly, a deviation from a straight line is very small and hence
it is noticeable only when a body and its shadow are narrow.

Michael. Sounds interesting. Can this be proven without a laser?

Teacher. Yes, this phenomenon has been known for more than three

centuries.
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2, Grimaldi

Teacher. That narrowing of the shadow was discovered by Robert Hooke in 1672, when
he let sunlight into a dark room and placed in its path a round wooden body. Hooke
claimed that it was a new phenomenon rather than the result of reflection
or refraction. He interpreted it as the result of bending of light rays Ap
inside the shadow, which he called deflection. Hooke was
unaware that a similar property of light had already been
discovered by Francesco Maria Grimaldi (1618-
1663), Professor of Mathematics at a Jesuit
Collegium in Bologna. Grimaldi found
that when light entered a dark room
through a very small opening
AB (Fig. 11.1) and illuminated
a narrow body EF, its real
shadow MN was considerably CM I G HL N D
larger than the geometrical
shadow IL. On the outside,
the shadow was terminated with three colored fringes, red outside and violet inside
(Fig. 11.2). These external fringes always followed the body’s outlines (Fig.11.3).

N OQRTV He also found dark and light fringes inside the shadow of a

narrow body which generally ran lengthwise, except for the

corners (Fig.11.4). Grimaldi was also greatly surprised to
find that the image of a small opening or of a narrow body

M pllis produced by a sunbeam appeared to be wider than it was

supposed to be for geometrical reasons. Grimaldi stated
that he discovered a new phenomenon of bending light
around corners, different from reflection or refraction, and
called it diffraction. To him,

diffraction consisted of a

splitting of each ray passing

near an obstacle into a num-
ber of rays, scattered into all
directions. Grimaldi’s discovery of diffraction was
published posthumously in 1665 in the first chapter of

a large volume on light and

colors. Perhaps the size of

the book scared readers off
because few people knew of

Grimaldi’s discovery and still

fewer understood its impor-

tance. An indifferent review
of Grimaldi’s book published
by Henry Oldenburgh ,the :

Secretary of the Royal _'-_.e:_ RN ;!

74  Society, inspired neither c

Hooke nor Newton to read it.

Having failed to repeat Fig. 11.4. From Grimaldi,

Grimaldi’s experiments, DeLumine (1665).

Fig. 11.1. From Grimaldi, De Lumine (1665).

N OQRIV

Fig. 11.2. From Grimaldi,
De Lumine (1665).

=)

LRI

Fig. 11.3. From Grimaldi,
De Lumine (1665).
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Huygens even questioned the validity of his discovery.

Dorothy. How come a scientist of Huygens’ stature couldn’t observe diffraction?

Teacher. Well, it is not clear whether he learned about diffraction from Grimaldi's book,
and not from a secondary source. Moreover, even if he did, he might have missed the
some details, such, for instance, as the size of the opening in the shutter. You will see
for yourself, how important this size is.

David. How did Newton respond to the discovery? He was probably aware of Hooke’s
work on diffraction, wasn’t he?

3. Newton

Teacher. Yes. Newton had heard Hooke’s presentation (a very brief one) in 1675, and
he read something about Grimaldi’s experiments in a secondary source. He agreed
with Hooke that all of Grimaldi’s phenomena could be attributed to bending of light
rays rather than their splitting. Newton believed, however, that rays bent outward
rather than inward, and called this phenomenon inflection. Initially, Newton stated
that the new phenomenon was actually a refraction produced by a change in the den-
sity of the ether adja-
cent to a body. After
1687, he adopted a
new explanation of the
bending of light: a
body repels light rays
passing by, the
stronger the closer
they approach the
body (Fig.11.5).

Fig. 11. 5. Trajectories of diffracted rays.
From Newton, Opticks (1704), Bk.III.

Newton was the first to
have performed quan-
titative diffraction experiments: he measured positions of fringes and tried to express
them by a mathematical law. He was also the first to use a monochromatic light to
study diffraction. Some of his measurements were very precise and physicists used
them as late as the early 19th century for testing new theories. Other observations,
however, were erroneous or incomplete. For instance, he never mentioned the inter-
nal fringes described by Grimaldi. Actually, since he experimented primarily with a
hair, he could not see on the screen multiple internal fringes. However, it is difficult
to miss a light band which runs along the hair in the middle of the shadow. It is pos-
sible that Newton chose to ignore this phenomenon because it didn’t fit into his theo-
ry. Newton was the first to have found the following phenomenon: when a glass mir-
ror with a silvered second surface was illuminated by sunlight through a hole in an
opaque screen, the light reflected back to the hole displayed colored rings around it.
Newton named the rings the colors of thick plates and explained them as follows.
The rays that fall on the first surface are diffracted in different directions by particles
of dust. Some of the diffracted rays travel towards the second surface where they are
reflected back and are again diffracted by dust.

Newton’s experiments stimulated a considerable interest in diffraction. In 1723,
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Giacomo Filippo Maraldi (1665-1729), an astronomer and a member of Paris
Academy of Sciences, rediscovered the internal fringes (Fig. 11.6). He found that the
interval between them decreases with the thickness of the body, which explains why
these fringes cannot be seen in the shadow of a hair. He was the first to use a magni-

Woon W

Fig. 11.6. nternal fringes. From Maraldi, Mem. Acad. Sci. Paris, 1723.

: _-___

fier to observe diffraction fringes on a screen. In 1723, he made a very important
discovery by observing a bright spot at the center of the shadow of a small disk or a
ball. In 1755, Michel Ferdinand d’Albert d’Ailly, Duc de Chaulnes (1714-1769),
subsequently a general of the French Army and a governor of Picardie, confirmed
Newton’s explanation of the colors of thick plates and discovered another phenome-
non similar to it. He shined a beam of sunlight on a wooden frame with a piece of
gauze stretched out on it, with a metal mirror behind it, and observed colored rings

Fig. 11.7. From Duc de Chaulnes, Mem. Acad. Sci. Paris, 1755.

(Fig. 11.7). In his view, the fibers of the fabric diffracted light in the same way as
particles of dust in Newton’s experiments,

David. Why should the results of diffraction on a hair be different from those on nails
and other wider objects?

Teacher. If you want a theoretical explanation of the difference, you have to wait until
we discuss the wave theory of diffraction. If you doubt the existence of such a differ-
ence, see for yourself. We are going to repeat.a number of historical experiments,
including the experiments with various long and narrow bodies.

S e e
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4, Experiments with sunlight

Equipment. It is easier to run these experiments when the sun is com-
paratively low in the sky. Cover the windows with cardboard sheets.
Cut with a razor blade several square openings of about 1 cm and cover
them with aluminum foil. Make a small hole in the foil with a tip of a
fine sewing needle (have one hole per group). Prepare several narrow
objects: metal and cardboard strips 3-10 mm wide, nails of about 1-2
mm in diameter, wires 0.1-0.5 mm in diameter, and a V-slit. Use a floor
stand with a slider to which you attach the larger objects using masking
tape or reusable adhesive (“Tak”). Wires and hairs are to be mounted on
a slide frame which is taped to the slider (Fig. 11.8)
Procedure. Bring the object into the sunbeam close to the hole and so
as to have the whole object illuminat-
ed. Place a white screen about 30 cm
from the object and examine its shad-
ow. Move the screen back and forth
and watch whether the shadow
changes, both inside and outside
(remember: the range of distances
should be large!). The most difficult
part will be to see colored fringes out- | .
side the shadow. With a naked eye —' T
]
you should sec them at about 5 ra | -
your screen far enough, use a magnifi- l
er (x5 - x10), it certainly helps. Make
a drawing of what you see.
Purpose. Investigate diffraction on the
following objects.

@. narrow body (Grimaldi, Newton)

Fig, 11.8. Diffraction experiments with sunlight.

Equipment. Use the stand with a slider, that carries nails, wires, hair,
narrow paper and metal strips as shown in Fig. 11.8.

Procedure. In these experiments your primary concern should be with
the coloration of external fringes and the number (or the width) of inter-
nal fringes.

Investigate.

1. Under what circumstances the external fringes are colored? Show in
a diagram the sequence of colors.

2. How do the internal fringes change with the distance between the
object and the screen ( what should you keep constant)?

3. Try to establish a qualitative relation between the number of dark
inner fringes and the width of the body (what must be constant?).

b. aperture (Newton)

Equipment. A V-slit is made of two pieces of an index card 10 cm long

lab
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taped together at the ends and in the mid-
dle so that on one end they touch one
another and on the other end they are 1
mm apart (Fig. 11.9)

Procedure. Place the slit 1 m from the pin-
hole and shine light on it so as to include
the apex.

Investigate.

1. What is the sequence of colors?

2. Is the number of internal fringes the
same at different distances from the apex?
3. What is the shape of fringes at different
distances from the apex?

 1lmm

Fig. 11.9. vslit.

€. “thick plate®

1. Newton's experiment.

Equipment. Concave glass mirror, pieces of nylon stocking or some
other fabrics. For these experiments you need a larger opening (5-10
mm) in the window covering.

Procedure. Hold the mirror against the window and reflect sunlight back
through the opening
(Fig.11.10). Move the mirror
back and forth until you see
colored rings. If you don’t
see any, try reflecting light
by different parts of the mir-
ror and make note about the
conditions of the parts
which do produce rings.
Investigate.

1. Test Newton's hypothesis
that particles on the mirror
surface are responsible for
the phenomenon. Dust the
mirror with a chalk powder
or other fine powder. Describe the rings observed.

2. Breath on the mirror where you see the sun spot. Why do the rings
appear and vanish after a short time?

3. If the rings are produced by particles on the mirror surface, what is
essential about these particles: their diameter or the distance between
them? How can you test your hypothesis?

Fig. 11.10. Newton's experiment with colors of "thick plates".

2. Duc de Chaulnes’ experiment.

Equipment. A concave mirror, pieces of a pantihose and other fabrics
stretched over a slide frame,

Procedure. The frame is held close to the mirror. The rest of the experi-
ment is conducted similarly to the previous experiment.

Gheblaseinase el e
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Investigate.
1. Do the colors or the size of the rings depend on the fiber's thickness
or on the distances between fibers?

d. ball (Maraldi)

Equipment. Pins with well-rounded heads.

Procedure. Place the pinhead into the sunbeam and watch the center of
the shadow. Can you see any light there?

Investigate.

1. Does the shape or brightness of the light spot change if you move th
screen to or from the pin? :

2. Does the diameter of the pinhead affect the result?

5. Is diffraction a new phenomenon?

Ruth. O.K. We've completed the experiments and found the claim of
Grimaldi and others about light entering the shadow to be correct.
But how could they prove it was a new phenomenon?

Teacher. This time, I will let you experiment first and tell about their
results afterwards. We are going to resolve the following problem.

Problem
Prove that diffraction is a new phenomenon, different from reflection
or refraction.

Michael. What does bending of light have to do with reflection or refrac-
tion?

Teacher. Bending of light is an interpretation of the phenomenon
rather than a fact. What you see is simply light entering a zone sup-
posedly forbidden for it. This can be explained in different ways, and
some scientists contended that it was light reflected by the edges of
either the aperture or the body, or both. Our purpose is to prove that
this is not the case. How would you eliminate reflection?

Hypothesis 1
Mary. A black body reflects much less than a polished one, thus if the
material of both the diffracting body and the aperture is black there
should be no light inside the shadow.

Test 1
John. If we take a polished nail or a pin and blacken a part of it with
ink or paint, we can compare diffraction from both parts.
Dorothy. Our group found no difference between the two.
Michael. So did ours.

Test 2
David. It is difficult to get a sturdy black material in which to make a
pinhole. On the other hand, only the edges of the hole are supposed

, i
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to reflect. Thus, perhaps we can burn a hole in an index card with
the tip of a red-hot pin?

Michael. 1 held a needle over a candle flame with pliers and then
pressed it lightly against a card. The holes produced had black
edges, and some of them were quite small. The result was the same.

Hypothesis 2
Ruth. The amount of reflected light depends not only on color but also
on the size of the reflecting surface. If the diffracting body has a
sharp edge, it should not produce fringes.

Test 3
John. Let us try diffraction on a razor blade.
Dorothy. We observed a razor blade producing the same phenomenon
as a pencil, although the latter has a much larger reflecting surface.
Teacher. Congratulations! You follow Hooke without knowing it. Now,
with reflection out, how can we test the role of refraction? I mean
refraction by the surrounding medium.

Hypothesis 3
Ruth. The refraction of air depends on its temperature. Thus, heating a
diffracting body may change the diffraction pattern.

Test 4
David. I've used the tip of a soldering gun as a diffracting body and
found that the fringes didn’t move when it became hot.
general ’ Diffraction is not due to reflection or
conclusion refraction of light.

II. WAVE THEORIES OF DIFFRACTION
1. Diffraction and theories of light

Diffraction became a major battlefield in the debate on the nature of light. Newton’s
chief argument against the wave hypothesis was that light does not bend around obstacles
as sound does, when we hear it behind a building. In his view, the deviation of light
from its rectilinear path observed in diffraction phenomena was too small to support the
wave nature of light. Euler, the champion of the wave theory of light, responded to this
that hearing a sound behind a building has nothing to do with it bending around corners:
sound simply penetrates the walls of the building. Strangely, no one tried to test Euler’s
statement by direct experiment. While in modern textbooks diffraction is considered to
be unquestionably a wave phenomenon, it was not so in the 18th century. Newton’s the-
ory of an interaction between light and bodies explained some phenomena of diffraction,
and although it was merely a qualitative theory, the “undulationists” had nothing to offer
even at the qualitative level. The situation began to change early in the 19th century due
to the efforts of Thomas Young and Augustin Fresnel.
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2. T. Young
a. diffraction by @ hair

In 1802, Young discovered a new method of
observing diffraction. Instead of projecting the
diffraction fringes on a white screen as Grimaldi
did, he observed them directly by placing the eye
behind a small obstacle and looking “through” it at
a small distant source of light (a candle flame).
With this method (we will call it “direct observa-
tion”) he was able to identify without difficulty the
internal fringes of a hair missed by Newton.
Young explained the colors produced by a hair by
an interference of two rays of light diffracted at the
opposite sides A and B of the hair (Fig. 11.11). If
M is a bright point at a screen, AM and BM are
the interfering rays. If AB«AM, BC is perpendic-
ular to both AM and BM, and 6 is a very small
angle. Then, the path difference will be P=AM-
BM=AC. If b=BN, x=MN, d=AB, then
0~sinB~tan®, P=dsin6=d6, x=btanO=bB, and
P=xd/b. Since bright fringes correspond to P=m
(m=0,1,2,...), xd/b=m), and the angular radius of
the mth bright fringe will be

Fig, 11.11. Young's explanation
of internal fringes.

0=m)/d (rad) (11.1)

Subsequently, Young realized that he could improve the agreement of this equation with
his measurements (there were discrepancies for low m), by assuming that the inflected
ray loses one half of the wavelength, which changed the equation to

8=(m+1/2)A/d (11.2)

Young used this equation to measure the wavelength.

b. diffraction by many particles

One of the best achievements of Young's theory was its explanation of colored rings seen
around the sun behind a cloud, or produced by a thin layer of wool illuminated from
behind. He supposed that these rings are of the same nature as the fringes produced by a
hair: both result from interference of light diffracted by the edges of a single fiber (or
water globule). Young asserted that the more equal are the globules or fibers, the sharper
and brighter are the rings. He confirmed this theory in experiments with various fibers,
globules, and particles using a device he called eriometer. Young’s eriometer consisted
of a piece of a cardboard or metal A with a small hole O (Fig. 11.12) in the middle. The
hole was a center of two circumferences the diameters of which were 1/2 inch and 1
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inch, feach circumf'ercnce being pierced through so as to make 8 tiny holes. Young held
an object C near his eye E and looked through the hole in the plate A at the candle flame
D. He moved the plate A back and forth until a chosen colored ring coincided with

Fig.11.12. Eriometer.

eithe; cir'cle. After measurh}g the distance b between the object C and the plate A and
thg circle's rgdlus R, he obtained the angular radius 0 of a ring as 6=R/b. By comparing
this result with eq.(11.2) he calculated the diameter of particles (or fiber’s thickness) d:

d=(m+1/2) Ab/R (11.3)
3. Fresnel

@a. “a man of genins”

Like Young, Augustin Fresnel (1788-1827) entered optics with an ambitious plan to
establish the truth of the wave hypothesis of light, and he began with diffraction. He was
born in thp family of an architect at the North of France. As a child, he was good in math
apd drawing a_nd hated languages. His health was always poor, and if other kids accepted
hlm to play with th'em it was because he was very inventive. They called him “a man of
gf:mus.” One of his discoveries was, for instance, determining the best dimensions of a
pipe for a blovy- gun. In 1806, he graduated from the Ecole Polytechnique (Polytechnical
School) in Paris where he received a thorough knowledge of mathematics and chemistry.
Thqn he con§1nged his education at the School of Roads and Bridges and became an
engineer. Bu11d;ng roads bored Fresnel, and he was looking for a better application for
his brain. He tried his hand in inventing, first in hydraulics then in chemistry, but with-
out much success. In 1814, he turned to optics. His duties did not leave him much
time for science until he obtained an unexpected break. In the spring of 1815, Napoleon
returned from Elba. Fresnel, who hated Napoleon, went to the South of France to join
the royalist army. By the time he reached the army he was so sick that he was turned
bgck. However, 'when Napoleon seized power, Fresnel was dismissed from his job for
fhsh.)yalty‘and exiled to his native village. It was there that he made his first discoveries
in d1ffract1§>n. Lacking any scientific instruments, he made a good use of his inventive-
ness. .For instance, Wh_en he needed a short-focus lens, he made it out of a drop of honey
covering a smal.l hole in a copper sheet. To measure very small distances he invented a
micrometer, which consisted of a thread and a wooden frame,

In October 1815, Fresnel rediscovered the principle of interference and applied it to dif-
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fraction on a narrow body. Fresnel’s theory was the
same as Young’s, however the response to it was
more favorable. In 1817, he entered the contest
announced by Paris Academy of Sciences for the
best theory of diffraction supported by exact experi-
ments. While working on this, Fresnel discovered a
new idea which helped him build a more general and
exact wave theory of diffraction than Young’s.
Fresnel called it the Huygens Principle, but later it
was renamed the Huygens-Fresnel Principle because
it differs from the concept introduced by Huygens
himself. According to this principle, the wavefront
can be divided into small parts Am, mm;, m;M,
Mn, Nny each of which becomes a source of sec-
ondary waves. The intensity of light I at the point of D
observation P (Fig. 11.13) is the result of interfer- b P B
ence of all secondary waves reaching thi§ poin}. Fig. 11.13. Huygens-Fresnel Principle.
When the number of zones increases to 1nf1n1.ty, their  4po A Fresnel, Ocuvres, v.1, p.174
width tends to zero, and the compound sum is trans-

formed into a definite integral over the open part of the wave front. Fresnel applied this
integral to a number of phenomena of diffraction and obtained a very good agreement
with his observations. This impressed his judges so much that, despite their opposition
to the wave hypothesis, they awarded the prize to Fresnel. Fresnel’s saying was “Nature
is not afraid of mathematics.” He realized, however, that many people are. Thus, he
developed a simplified version of his theory, called the zone theory. This is a beautiful
theory which is simple enough for high school students.

b. the zomne theory

The wave front is divided
into zones. A zone is a part
of the wave front with the
origin at S cut off by two
spheres with the center at
the point of observation O,
the radii of which differ by
a half-wavelength (Fig.
11.14). If the radius of the
first wave is b+A/2, the
radius of mth wave will be

Fig. 11.14, Fresnel's zones.

I,=b +mA/2; (11.4)
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From the triangles SC,,B,, and OC By, one can determine the radius py, of the mth zone afriend!

C,.B,, approximately as

mAab (11.5)
a+b
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where a=SP is the radius of the wave, and b=PO is the minimum distance of the wave
from the observation point. Since a path difference of one half-wavelength means an
inversion of the phase, the total amplitude of vibrations A at the point O created by all
zones is :

A=A1- A2 + A3-A4+ cee s (11.6)

The amplitude of vibrations created at the point of observation O by a wave from a given
zone diminishes with its area and with an increase of its distance ry, and the angle oy,
Fresnel studied only cases of small angles of diffraction, for which all zones have
approximately the same area. This leaves only ry and o, as variables, both of which
increase with the zone number. For this reason, A;>A,>A3>..., and equation (11.6)

may be rewritten as follows:

A=-A-L+ AL_AZ"‘AS— + Ai__ 4_*_A.s. 4 -AS—_& +.& . (11'7)
5 (2 5) (2 A 2) (2 2) _t
Assuming that A =(Ay_; + Ay, ;)/2, we obtain
A-_-:“-“-iézm. (11.8)

where “+” and “-” correspond, respectively, to an odd and even number of open zones.
This means that an odd number of zones produces at O a maximum of intensity, while an
even number of zones creates a minimum.

Thus, if only the first zone is open, the total amplitude is A;, while the whole wave pro-
duces only A;/2. When less than the whole first zone is open there will be a bright spot
at any distance from the aperture. This leads us to the wave explanation of the rectilinear
propagation of light: almost all energy carried by a light wave is propagated within a
very narrow channel connecting the source of light and the eye. For a century and a
half, the rectilinearity of light had been the prime argument against the wave theory.
However, by the time Fresnel offered this theory, the debate on the nature of light began
to focus on other things.

Fig. 11.15. Diffraction on a circular aperture.

Let us now imagine an aperture MN of radius p (Fig. 11.15). The number of zones m
seen at this aperture from the point O can be determined as

m =p2(a +b)/ab7» - (11.9)
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Thus, when the distance from the aperture to the eye increases, the center of the hole will
appear alternatively bright and dark. In white light, the central spot is colored, and the
colors vary according to the distance b. An off-center point O' creates another set of
zones, in which the number of open half-zones in the upper and lower parts of the aper-
ture is different. For this reason, the intensity of light at Q' will be different from that at
O, but it will be the same at all points equidistant from O. As a result,we have alternat-
ing bright and dark (or colored) concentric rings. If the aperture is rectangular, we will
see parallel dark and bright straight lines (for convenience sake, Fresnel's zones will be
made rectangular). In both cases, the number of fringes, as well as whether the central
fringe will be dark or bright depends, according to eq. 11.09, on the distances a and b
and the width of the aperture 2p.

If instead of a hole we have a a disk (or a ball) covering the first m zones (Fig. 11.16), at
the shadow's center the total amplitude will depend solely on the amplitude of the first
open zone,

Ans
A==r (11.10)

which means that whatever the diameter, the center of the shadow will be bright.

In his memoir submitted to the
contest on diffraction, Fresnel
did not discuss the case of a
disk. Simon-Denis Poisson
(1781-1840), a renown mathe-
matician and one of the judges
in the contest, applied
Fresnel’s integral to a disk and

Fig. 11.16. Diffraction on a disk. found that there must be a
bright spot in the center of the shadow. With Maraldi’s experiment forgotten, Poisson
considered this result to be physically impossible, which was a strong objection to
Fresnel’s theory. However, Frangois Arago, another judge, performed an experiment
together with Fresnel and demonstrated that there was no mistake. It was Poisson’s criti-
cism that inspired Fresnel to invent his “zone theory,” which made everything crystal
clear and easy to grasp.

We have shown that by covering almost all of the
wave front and leaving open only the first zone we
actually increase the image’s brightness. Therefore,
a small hole plays the role of a converging lens.
It is possible to collect even more light by covering
all the even zones, for in this case the total ampli-
tude is

A=A +Az+As+.... (11.11)
Thus, a plate (zone plate) made so as to let through

light of the odd zones and absorb that of the even
zones, will concentrate light like a lens (Fig. 11.17).

Fig. 11.17. Zone plate.
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Applying Fresnel’s zones is simpler for diffraction in par-
allel rays. For instance, when a plane wave fallsona a
parallel slit AB (Fig.11.18), light will diffract in all pos-
sible directions. Let us select the rays which diffract at an
angle o with incident rays and which are collected by a
lens L at the point O. Since refraction in a lens does not
change the path difference of diffracted rays, the total
path difference of the two rays coming from points A and
Ay, of the slit AB equals A, Cy, where AC,. is perpendic-
ular to A Cy If we select the points Ay, A, Aj,...50
that A1C1=7\./2; A2C2=2)\/2; A3C3=37\,/2..., then A1A2,
A,Aj;, AjA,...can be treated as consecutive Fresnel
zones. Whether the point O will be dark or bright will
depend on the slit AB containing an even or an odd num-
ber of zones. The total number of zones seen at the angle
o can be obtained by dividing the path difference BC=asina of the extreme rays (a is the
width of the slit) by the half-wavelength. Thus, diffraction minima (dark fringes), will be
observed where the number of zones is even, which means

Fig. 11.18. Diffraction on a

rectangular slit.

asing;,=mA; (11.12)

where m=1, 2, 3... Incidentally, diffraction maxima differ in their intensity. If, for
instance, the slit contains three zones, two of them cancel the effect of one another, and
the remaining zone produces the amplitude of vibrations equal one third of the maximal
amplitude that is produced when there is only a single zone. Similarly, in the case of
five zones, four would cancel one another, and the remaining zone would produce only
one fifth of the maximal amplitude. The number of zones increases when the point of
observation moves away from the center of the slit. For this reason, the central diffrac-
tion maximum is the brightest, while the side maxima, left and right, lose in their intensi-
ty the more the farther they are from the center.

Two parallel slits will produce a system of dark and bright fringes that depends both on
the width of each slit a and the distance between them
AA;=d (Fig. 11.19). The direction at which a single slit
produces dark fringes, according to equation (11.12) will
be also the direction of minima for two slits. However, Y

N :

in addition to the diffraction pattern produced by inter- ERSSTa BESSSIA BE
ference of light from different zones of the same slit, we S
will have interference of light from different slits. The ‘

Z
%

latter can be considered as taking place between the rays
originating from such points of the two slits the distance
between which is always d (the corresponding rays).
The path difference of such rays will be A;C=dsin€;,.
Thus there will be additional minima in the directions Fig. 11.19. Diffraction on two slits.
Omin at which the rays of one slit destroy the correspond-

ing rays of the other slit, such that

dsin®, ;,=(m+1/2)); (11.13)
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where m=0,1, 2,... On the other hand, there will be directions 6,,, at which the corre-
sponding rays from both slits reinforce each other and produce bright fringes, or,

dsin®,, g =m\ (11.14)

Since d>a, according to eqs. 11.12-11.14, within the central maximum produced by a sin-
gle slit (or between the two minima corresponding to m=%1) there will be several
maxima produced by interference of light from two slits (Fig. 11.20) The same is true
when we have a set of many parallel slits, or a diffraction grating, only in this case the
maxima are much brighter because in such a direction the resulting amplitude of vibra-
tions equals the amplitude produced by each slit multiplied by their number.
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F ig. 11.20. Intensity of light distribution produced by two slits.

III. DIRECT OBSERVATION OF DIFFRACTION
1. Hair (Young)

Equipment. Nails, pins, paper clips from 0.5 mm to 2 mm thick; cop-
per wires of different diameter from 0.5 mm to 48 gauge; hairs, slide
frames for mounting hairs and wires, a candle, a tape measure, a
meterstick. ‘

Teacher. In the following experiments you will study the external and
internal diffraction fringes by looking through an object at a source of
light of a small angular size. Investigate how the fringes' width and
coloration vary with the size of an object, its shape, material, position,
etc. We'll begin with Young's experiment with a hair. Mount a hair
on a slide frame and holding it near the eye look at a distant candle
flame. What do you see?

Dorothy. Nothing of interest.

John. I see colored fringes on both sides of the flame, several spectra on
each side, red and green are visible the best.

Teacher. If some of you cannot see the fringes, move the frame across
the eye so as to bring the hair exactly opposite the pupil.

Mary. I've just tried the same experiment with a paper clip instead of a
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hair. I saw a yellowish narrow band perpendicular to the paper clip
gut nqtgolors. Why does a hair produce color fringes and a paper clip
oesn

Michael. Perhaps metals cannot do it. I've tried a nail, and it doesn't
work either.

David. I've mounted on a slide frame a few copper wires and found that
a thin wire produced colors but the thick ones didn't.

Ruth. I know: it all depends on the object's thickness and not on its
material.

John. If this hypothesis is true, a fine thread pulled out of a fabric
Sh?l‘l:tl'ld produce colored fringes as well. Indeed, it works! Ruth was
right! '

Dorothy. If a single thread creates colors, shouldn't the whole piece of
_the fabric do the same? Let's try it.

Michael. It works, but I saw two perpendicular rows of colored fringes
instead of one. Strange, isn't it?

David. Not really. If you look closely at the fabric, you'll see the fibers
making a neat rectangular lattice. Since a single fiber produces
gringes parallel to it, perpendicular fibers should make perpendicular

ringes. '

Ruth. But why do many parallel fibers create only a single set of
fringes? |

John. I mounted on a slide frame a few thin copper wires so that they
were all parallel and close to one another. I obtained, however, the

_same set of colors as with a single wire, only brighter.

Michael. We taped to a glass plate two hairs that were not parallel.
What we've found was that each hair produced its own row of fringes
which made an angle with one another.

Mary. Probably the spectra produced by parallel wires or hairs coincide,
which makes fringes brighter.

Dorothy. Why should they coincide? Can't two parallel wires make two
rows of fringes parallel to one another but located at different places?

David. Such two rows of fringes couldn't be spaced vertically because of
'the whole wire only the part equal to the size of the pupil participates
in creating colors. I discovered this by placing behind the wire a
small aperture: although only a small part of the wire was visible
through the aperture, the fringes were the same as those produced by
the whole wire. On the other hand, the two sets of fringes cannot be
spaced horizontally (within the same row) either, because, according
to equation (11.2), identical wires produce fringes equally distant
from the flame,

Teacher. Can you now explain why a hair or a thin wire produce
colored fringes while nails, paper clips, and pins don't?

Mary. We see that in the spectrum of each order the red fringe is seen
farther away from the object's shadow than the green one, which
agrees with equation (11.2). The same equation tells us that the
thicker the object, the closer the fringes to the shadow and to one
another. Perhaps, when an object is too thick the fringes of different
orders overlap, and we see no colors.
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Teacher. Can you prove that the same fringe is visible at the same
angle whatever the position of an observer?

John. A given fringe (for instance, the red of the first order) is seen far-
ther from the shadow when you move away from the candle, which
hints at the possibility that the ratio of the two distances (x/b) is con-
stant. To test it, we have to measure the distance of the first red
fringe to the shadow =x and the distance between the frame and the
light source b. For a better precision, we can measure the distance
2x between two red fringes of the first order on different sides of the
flame and divide it in two. Two persons are needed to do this: one
watches the fringes and directs the other one where to put two white
paper riders on a meterstick held near the light. Then the partners
exchange their roles, each making two measurements.

Teacher. Is it possible to use Young's experiment to measure the wave-
length of light, for instance, of red light?

Ruth. We can use the same equation (11.2). We already know how to
measure the angular distance of the fringe from the shadow (6=x/b).
To measure the diameter of the hair d we need a microscope with a
reticle. To improve the precision we can repeat the experiment with
the red fringe of the second order and take the average wavelength.

Teacher. 1think you are now ready to do another Young's experiment.

- 2. Eriometer (Young)

Equipment. An eriometer, a microscope with a reticle, lycopodium pow-
der, a blood smear, a flock of wool, cotton puffs. The eriometer consists
of three parts: an object, the measuring plate, and a ruler (or tape). An
object is placed between two microscopic slides taped together. To
reproduce Young’s original measuring plate take an index card, draw two
concentric circles, the radii of which are, for instance, lcm and 2cm;
make the central hole 3 mm in diameter and 8 peripheral holes in each
circle 1 mm in diameter. Install the object in a holder at the beginning of
a ruler with the millimeter scale (or attach it to the ruler with a “Tak”).
Place the measuring plate in a sliding holder that can be moved along
the ruler.
Teacher Hold the object C near the eye (Fig.11.12) and look through it
and through the central hole O of the plate A at a source of light D of
a small angular size (a candle flame or an electric bulb). You will see
colored rings around the light. To measure the angular radii of these
rings, move the sliding holder until a chosen color ring coincides with
the perforated circle on the plate A. Try the red rings of the first and
second orders. A candle flame should be sufficiently close to the eye
(30-50 c¢cm). To obtain a bright and distinct image, you may have to
move sideways both the object (to find a better spot on it) and the
plate A.
Dorothy. Why do we need two concentric circles at the plate A?
Teacher. To cover a large range of fiber thickness without moving the
plate A too far. Young wanted farmers to use his device to measure
the thickness of wool produced by different sheep.

good
point!
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John. How do we know that Young was right to apply his theory of dif-
fr.actlon on a hair in this experiment. Not only the objects here are
different (a flock of wool or a smear of lycopodium, for instance), but
even the shape of fringes ? |

David. We know that each fiber produces fringes parallel to it, thus a
number of identical fibers oriented in all directions will produce arcs
say, of red color, of the same radius, which form a red circle.

Teacher. Very good! The key word is "identical." If fibers differ in thick-
ness, they will produce arcs of different colors which overlap and
destroy any coloration.

Mary. We've tried various fabrics instead of yarn and found that they
produce straight parallel fringes arranged in two perpendicular rows
rather than circles. The only fabric that made circular fringes was
nylon stockings. Why is it so?

Ruth As seen under a maghnifier, in most fabrics fibers form a rectangu-
lar lattice. That is why the result is the same as with a mesh. In
nylon stockings, the fibers are curved in different directions which

_makes them work rather like a yarn than like other fabrics.

Michael. But why do particles produce colored circles like wool fibers?

Dorothy. Not always! Lycopodium does it, but not a chalk powder or
my face powder.

Teacher. We've already noted that when seen through a small hole a
ﬁb('ar creates the same fringe pattern as when seen unobstructed, and
we've found that only thin fibers produce colors. Thus, the length of
anflber appears to be of no importance, and cutting it into small
pieces should not change the result. But these "small pieces" are
nothing else as particles. To produce colored circles the particles or
fibers must be: 1) small, 2) identical, and 3) randomly located. Each
ﬁl?er from the stockings create the same fringe pattern, and when the
frlpges of the same color coincide the resulting fringe becomes
brighter. But if the fibers (or powder particles) differ from one anoth-
er, they create circles of different radius for light of the same color. As
a result, the circles of different colors overlap and produce white. As
to the last condition, it can be proven, for instance, by demonstrating
that changing distances between fibers doesn't affect the result. Do
you know how to do it?

John. I increased the distances by stretching a stocking, but the circles
didn't change.

David. I mounted a piece of a stocking on a slide frame. First, I observed
circles by holding the frame perpendicularly to the visual line. Then I
tilted.the frame so as to make a sharp angle with this line. The circles
remained the same although in the latter case the distance between
the two next fibers, as projected onto the original plane of the frame
certainly decreased. ’

Ruth It is now clear to me why Young used the equation derived for a
s1ng1e hair in the experiment with a flock of wool: it is a single fiber

which is responsible for the angular size of the fringes, the multitude
of fibers only improves the fringes' brightness.

Teacher. Very good! Moreover, Young extended this theory to transpar-

e
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ent particles as well. In his view, colored rings around the sun or the
moon hidden behind a cloud are due to diffraction of light on water
drops in the cloud.

3. Fresnel's method

Dorothy. Is Young's method of viewing diffraction fringes directly better
than Grimaldi's observation of the fringes on a white screen?
Teacher. In certain cases, yes. For instance, you saw more fringes
inside a hair's shadow even in a weak candle light, and you didn't
have to move the object following the sun's movement. Your were
able to perceive a weaker light because this light entered the eye
directly without losing much of its intensity while being reflected from
a white screen. Fresnel improved the direct method still further by
adding a lens before the eye. We will use Fresnel's procedure to solve
a practical problem: to recreate classical diffraction experiments
when sunlight is not available. Upon the completion of the experi-
ment we will discuss your results.
Equipment.
a. Take as a source of light the "light-house" described above, which con-
sists of a base-mounted light fixture surrounded with a square card-
board house and covered with a cardboard lid. The electrical bulb must
be clear, of 40 or 60 watts. In one of the walls make a square window of
1x1 cm at the level of the filament. Take a piece of aluminum foil of 3x4
cm, place it on cardboard, punch a tiny hole in it with the tip of a
straight pin (if the pinhole is large, you won't see much of diffraction),
and tape the foil to a slide frame and the latter to the window. For home
observations use any desk lamp with a housing open on one side: cut a
cardboard lid slightly larger than the opening, make a window in its
center, and tape the lid to the housing.
b. For a narrow object use human hair and wires taped to a slide frame;
straight pins with spherical heads, paper clips, nails of 1 to 4 mm in
diameter, toothpick, strips of aluminum and of an index card 2 to 4 mm
wide, both rectangular and triangular. For an aperture, drill a circular
hole of 1 to 2 mm in diameter in a thifi aluminum sheet and polish its
edges, or punch a hole with a straight pin in an index card. Make aV-
slit of two pieces of an index card taped together.
c. To carry objects use a lens-holder with a flat top (Fig. 11.2 1): tape the
strips and slide frames to the top’s side and stick pins or nails into a ball
of “Tak” (reusable adhesive). Use another lens-holder to support a lens
with the focal distances between 2 and 5 cm.

Fig. 11.21 Fresnel's arrangement to observe diffraction
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Procedure.

Position yourself at the narrow side of the table and place the "ligh

hou_se" 1.5-2 m frqm the eye. Move your eye and turn tﬁe "light ltlougs;e;E
until you see the pinhole very bright. Place the lens very close to the eye
and adjus!: it and the eye so as to see a lighted gray (not yellow) circle
covered with dots, specks, and lines: this is the image of the inside of
your eye. Set the object-holder about 30 cm from the lens and adjust it
so as to obtain a clear shadow of a pin crossing the circle: if you see par-
allel lines running lengthwise inside the shadow, your apparatus works
fine. In each experiment draw the picture of what you see (use colors if
necessary) and compare your diagrams to the original ones. We will
check whether su_ch variables as the width of a body and its distance
frpm the lens, so important in the Grimaldi's procedure, retain their sig-
nificance when using Fresnel's method.

@. Barrow body (Grimaldi, Newton, Maraldi)

Watch the fringes produced by long and narrow bodies, such as paper
metal strips, nails, hairs, wires, paper clips. How does the cll)islzgngg
between the fringes depend on the body’s width and its distance from
the lens? Can you make the fringes colored? Tip:a nail should be moved
much farther from the lens (increase the distance between the light
source and the lens), and if this doesn't help, try a smaller pinhole.

b. V-slit (Grimaldi, Newton)

Attach a V-glit to the holder's top vertically and move the eye before the
lens up and dowp so as to look through different parts of the slit. Does
the pumber of fringes depend on the width of that part of the slit you are
looking through? Does this number change when you move the slit to
and from the eye? Can you produce colored fringes?

¢. ball (Maraldi)

This is one of the most impressive optical phenomena illustrating the
111:mtat10ns of the everyday experience. Move the holder carrying a pin
with a well rounded head away from the lens and watch the center of the
head's shadow. Can you see there a small bright spot? Does the spot
change when you move the pin to or from to he lens? Does the spot
vary with the size of the head or its shape?

d. small apertnre (Fresnel & Arago)

"[‘hIS experiment deserves special attention because of its historical
importance for the wave theory. Observe colored rings inside the hole.
Investigate how their number varies with the distance between the hole
and the lens. Can you obtain at the center a dark spot ? a colored spot?

Does this color change with the distance?' Do the ri .
diameter of the aperture? o the rings change with the
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Teacher. Let us discuss the results starting with a narrow body.

Mary. When investigating the distance as a variable, we found that the
number of fringes inside a pin's shadow decreased to two when the
distance increased, and we adopted this result as a hypothesis.

Michael. We tested this hypothesis with nails and paper clips and con-
firmed it. Big nails didn't show any inner fringes, only outer fringes.

Dorothy. We've tried various paper strips: no success.

John. Apparently, the conclusion is that the number of visible inner
fringes diminishes as the distance between the body and the lens
increases. This agrees with the results of similar experiments with
sunlight. What I cannot understand, however, is why no fringes can
be seen at small distances?

David. I guess I know: at small distances the intervals between the
fringes become two small to see them separately. Can this be
explained in the zone theory?

Teacher. Yes, but before answering this question, let us summarize
your findings about the second variable, the body's width.

Dorothy. It was clear from the previous experiments that only very nar-
row bodies deserve attention. Thus, we used a straight pin and a
small nail. However, the nail didn't show any fringes.

Ruth. When we ran into a similar problem, we recalled that the fringe's
width increases with the distance and moved the holder 1 m from the
lens: there we observed the fringes in both the pin and the nail. In
the pin's shadow, the fringes were wider than in the nail's, thus we
supposed that the thinner the obstacle the wider the inner fringes.
We tested this hypothesis with a paper clip and a bigger nail: the
results were the same.

John. For our test, we've selected a triangular paper strip of 2 mm at the
base and 5 cm tall. At its tip, the inner fringes were wide but
towards the base they became more and more condensed until coin-
cided. Thus, the hypothesis is correct.

Teacher. According to our theory, the central fringe must be always
bright. The first dark fringe will be where the first open zone of one
part of the wave (say, to the left from the body) is odd, while on the
right side the first open zone is even, next to the odd one. It means
that the path difference of rays from the edges of the body at the first
dark fringe will be A/2. Using considerations similar to those on p.
217, one can show that the width of an inner fringe is proportional to
the distance from the lens (the light source is far away) and inversely
proportional to the body's width.

Michael. With a V-slit, the result was different from that with a triangu-
lar strip: apparently the same fringes run along the slit becoming
wider where the slit is wider. The central fringe could be bright or
white depending on the distance from the lens. How come that a dark
fringe appears against the center of the slit?

Teacher. The two halves of the slit act identically, thus if one half con-
tains an even number of zones, they will destroy light of each other.
To calculate the number of zones, take the path difference for the
rays coming from the slit's center and one edge and divide it by A/2.
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Dorothy. What if the path difference is less than A/29?

David. This may happen only at a large distance, and the result will be
a bright fringe. Incidentally, if we move the slit farther away, the path
difference becomes even smaller. This means that at large distances
there is only a single zone within the slit, and the central fringe will
stay bright whatever the distance.

Teacher. Very good! How about the shadow of a round pinhead?

John. Maraldi was right: we did observe a tiny light spot in the center of
the shadow. However, a larger head did not produce this effect. Why?

Ruth. According to the theory, the intensity of light at the center
depends on the first open zone. However, zones of higher orders con-
tribute less light than the zones of low orders. A large head covers
many zones, and the light coming from the rest is too weak to excite
the eye. : ‘ o

Teacher. Excellent! Did a circular aperture act similarly to a sphere?

Mary. Not at all! The central spot was either dark or coiored, red and
green were especially clear. There were also several concentric rings,
dark in the proximity of the lens, and colored, at larger distances.

David. Well, we've seen colored fringes with other objects too, although
they appeared only at large distances and were fainter.

Michael. Is it correct to say that at small distances fringes of different
colors fully overlap and produce an impression of gray?

Teacher. Yes. And who knows why was the center differently colored at
different distances?

Ruth. The number of zones depends on both the wavelength and the dis-
tance (eq. 11.9).

Teacher. Good! As you see, the zone theory is a powerful tool for
explaining diffraction phenomena.

Dorothy. How about regular reflection? You had promised us to explain
in the wave theory why an uneven surface can reflect as a mirror.

Teacher. The ideal surface reflects in a single direction because in all
other directions the rays reflected by different particles of the surface
destroy one another through interference. If the height of the "hills"
is less than A/4, even at normal incidence the rays reflected by neigh-
boring particles will have the path difference less than /2, and no
light reflected at the angle of incidence will be destroyed.
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I. DOUBLE REFRACTION

1. Polarizing sunglasses

Preliminary observations

Dorothy. Michael, your sunglasses are rather light, do they work well?

Michael. They surely do: these are polarizing sunglasses.

Dorothy. But how it be that your light sunglasses act the same as my
dark ones?

John. They don’t act the same. I have here both types, and you can try
and see that polarizing glasses cut a lot of light from the blue sky and
from a water surface but they don’'t make the ground as dark as the
ordinary ones.

Mary. Indeed. How can this be? I know that ordinary sunglasses
absorb much of the incident light, which reduces the amount of
reflected light ( because of the conservation law). That is why such
glasses appear dark to an outside viewer. But polarizing glasses must
work in a different way because they are not as dark.

David. Maybe they aren’t as dark as some absorption glasses but they
certainly absorb some light. The main difference must be not in
absorption.

Ruth. Some glasses transmit less because they reflect a great deal: they
are semi-transparent mirrors. However, polarizing sunglasses don't
look like mirrors from outside. But if they neither absorb nor reflect
an excess of light, how do they cut the glare?

Teacher. To get a clue to this problem let us do the following experi-
ment. Michael, put your polarizing glasses on! John, hold your
polarizing glasses before your eye and look at Michael's eyes! What
do you see?

John. I see his eyes, not as well, of course, as without glasses.

Teacher. Now, John, rotate your glasses by 90° in their plane. What do
you now see?

John. Wow! Now, I don't see his eyes. How can this be?

Dorothy. I tried the same trick with ordinary glasses but it didn't work:
I saw Michael’s eyes equally dim in both positions of my glasses.

Formulating a problem
How do polarizing glasses work?

Hypothesis.
David. Apparently, the orientation of polarizing glasses in the plane
perpendicular to the line of vision is important in cutting the glare.

Test.
Michael. Let us watch various shiny objects through polarizing glasses
while rotating them around the visual line.
Teacher. Good idea! Since only a few of you have polarizing glasses, T'll
give you pieces of the same type of a polarizing film as applied in

investigation
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your glasses, that is placed between two plates of glass or plastic.
We'll call such a device polaroid.

Mary. We've found that by rotating a polaroid we made the sky appear
brighter and darker. The pavement didn’t change its brightness, how-
ever. '

John. The images in the pool changed their brightness twice every full
revolution.

Dorothy. We've observed the same with car windows but not with the
car fenders.

There is a specific orientation of a polarizer rela-
tive to the visual line at which it transmits more
light reflected from certain objects than in the
perpendicular orientation.

conclusion ’

Michael. Well, we've found that there is a material whose capacity of
transmitting light depends on its orientation in space. Are there
other materials of this sort?

David. It's not just the material that produces the effect! Have you
noticed that neither the pavement nor some parts of car bodies
changed their appearances? There should be something different
about the light reflected, for instance, by car windows or car bodies.

Teacher. You are right: both the material and the properties of reflected
light are essential for this phenomenon. That some materials refract
light differently from others was first discovered in a transparent cal-
cite known as Iceland spar.

2. Iceland spar
@. Bartholin’s experiments

Teacher. In 1669, Erasmus Bartholin (1625-1698), Professor of
Mathematics at the University of Copenhagen, found that an Iceland
spar made all objects seen through it double. Let us repeat some of
his experiments. Take an Iceland crystal and view different objects
through it; if you see them double, investigate the factors affecting
the degree of their separation.

Dorothy. 1 see only the edges of bodies double. Letters, however, do
appear double, but it is difficult to see how much they are separated.

David. Among the objects we've tried pencil dots were the best, because
the distance between them is larger than the dots themselves. The
;iail?tance between the images increased with the thickness of the crys-

Ruth. While rotating the crystal relative to the vertical axis we've seen
that one image stood still and the other moved around it. Besides,
one image was brighter than the other.

John. When I looked along a diagonal the two images almost coincided,
perhaps even exactly.

L
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Teacher. You have obtained Bartholin’s
principal results. The direction in
which the images coincide is called
the optic axis (CG in Fig. 12.1).
Bartholin concluded that the two
images resulted from a different
refraction of light. He called the ray
that forms the immobile image ordi-
nary, because it obeys the law of
refraction, and the one that produces
the moving image extraordinary,
because the index of refraction of
this ray depends on the direction of
incident light.

Fig. 12.1. From Huygens, On Light

b. Hluygens’ theory

In 1678, Huygens presented a detailed account of the properties of Iceland spar,
which he published in 1690 (On Light, ch. V). He found a specific plane CFHG in
the crystal, called principal section, which retained the incident ray and the two
refracted rays for different angles of incident. This plane is parallel to the plane
formed by the edge CF and the line CG bisecting the obtuse angle ACB. In the prin-
cipal section, the incident ray IK that is perpendicular to CG produces the ordinary
ray KL and the extraordinary ray KM, which form the angle 6°40” between them.
Huygens suggested that the extraordinary ray behaves so strangely because its veloci-
ty depends on the direction of its propagation in the Iceland spar, while the velocity
of the ordinary ray is constant. Since the index of refraction of a medium depends on
the velocity of light in this medium, the index of refraction of the extraordinary ray
must depend on its direction. According to Huygens, such a phenomenon can be
explained in the wave theory by assuming the existence of two types of light waves,
spherical and spheroidal. He represented the ordinary light by a spherical wave and
the extraordinary light by a spheroidal wave. In the plane of the drawing, the ordi-
nary wave front is represented by a circle and the ‘

extraordinary one by an ellipse (Fig. 12.2). The
radius drawn from the center C to a point at a
wavefront shows the velocity of light in this
direction. We see thus that the ordinary wave has
a constant velocity, while the velocity of the
extraordinary wave depends on the direction of
propagation. The two wave fronts touch in points
B and S , which means they have the same veloc-
ity in the direction BS, or, in other words, BS is
the direction of the optical axis. To describe the
propagation of the extraordinary wave Huygens
uses the same principle as for the ordinary wave,
with that difference, though, that the secondary . ,
waves are semi-spheroids SVT rather than semi- Fig.12.2. From Huygens, On Light
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spheres ( Fig. 12.3). If the incident wave front R_H b h ©
AB is a plane, the extraordinary wavefront NQ x
remains a plane parallel to AB. However, NQ is /

shifted to the left relative the direction of propa-
gation of light RA, which means that the extra- g AY
ordinary ray AV deviates from this direction. K [rf Ik
On the basis of his theory, Huygens calculated Z
the index of refraction of the extraordinary ray
for different directions of incidence and stated
(without giving any numerical data) that his the-
oretical predictions fully agreed with experi- N Q
ment.

Dorothy. This is all interesting, but what does it
have to do with polarizing glasses?

Teacher. 1am coming to that. Once, Huygens looked at an object through two Iceland
crystals and found to his surprise that the number of images varied, depending on the
relative position of the crystals. Let us repeat this experiment.

¢ . Hlmygens’® experiment

Fig.12.3. From Huygens, On Light

Equipment. Two Iceland crystals, index card, scotch tape.

Procedure. Cut a piece of an index card of the size of a side of the crys-
tal, make a 2 mm hole in the middle of it, and attach it to the crystal
with scotch tape. Look through the crystal at a light source or a
brightly lit surface ( the cover must be on the farther side from the
eye), and you will see two holes. Place another Iceland spar closer to
the eye and slowly rotate it around the line of vision.

John. In most cases, we've observed four images making a parallelo-
gram. The rotation changed their brightness.

Ruth. Apparently the images located on the same diagonal make a pair
because they change their brightness at the same time. When one
pair is getting brighter the other goes dimmer and the vice versa, and
these changes occur four times per revolution.

Mary. We have seen two images, apparently when the principal sections
of the crystals were parallel or perpendicular to one another.

Teacher. According to Huygens, two images
instead of four appear when the rays
emerging from the first crystal lose the
ability to split into two other rays in the
second crystal. In particular, when the
principal sections of the two crystals are
parallel, the ordinary ray is transformed
into the ordinary one, and the extraordi-
nary ray into another extraordinary one
(Fig. 12.4a). On the other hand, when the
principal sections are perpendicular, the
ray that was the extraordinary in the first
crystal becomes the ordinary ray in the

Fig. 12.4. From Huygens, On Light

!
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second one, and vice versa (Fig.12.4b). Huygens concluded that both the ordinary
and extraordinary rays had a new property absent in natural light, but he could not
specify it. (On Light, 92-94)

It was Newton who made the first attempt to explain this property. In his view, the
transformation of the extraordinary ray into the ordinary one solely by turning the
second crystal around the direction of light implies an asymmetry in a light ray rela-
tive to this direction. He attributed to a ray two pairs of different sides whose posi-
tions relative to the principal plane determine whether the ray will be refracted ordi-
narily or extraordinarily. (Opticks, 358-60)

Dorothy. How can a line have “sides?”

Teacher. I've already mentioned that when speaking of rectilinearity of
light not all scientists compared a light ray to a geometrical straight
line: in the Middle Ages, some of them attributed to a ray transverse
dimensions (the physical ray). Since such a hypothesis complicated
the explanation of many phenomena, scientists tried to avoid it.
However, Newton realized that one cannot apply the concept of a light
ray to Huygens’ experiment without assuming that the ray has sides,
or, that it resembles a rectangular rod with unequal sides (such as a
meterstick) rather than a straight line. Imagine a meterstick being
pulled through a lattice made of parallel wires the distance between
which d is larger that the thickness a of
the meterstick but much smaller than
its width b (Fig. 12.5). The meterstick
will pass easily between two wires only
when its narrow side is parallel to the
wires or forms a small angle with them.
When this angle increases the wires
give way, but their friction will slow the
passage of the meterstick. Finally,
when the angle approaches 90° the fric-
tion is too great to let the meterstick
through. This may serve as an analogy
to the transfer of light by the second
crystal, assuming that the amount of
emerging light corresponds to the
amount of energy of the moving meter-
stick transmitted through the lattice.

Fig.12.5. A corpuscular model
of polarization.

Neither Huygens® theory of double refraction (or birefringence) nor Newton’s con-
cept of sides received much support, and by the end of the eighteenth century both
had been practically forgotten. Their revival began in 1802 with experiments of
William Wollaston (1766-1828). Wollaston invented a new method of measuring the
index of refraction and applied it to a variety of, substances, including Iceland spar.
He knew nothing about double refraction and was surprised to find the index of
refraction of Iceland spar depending on the direction of incident light. When he men-
tioned this fact to his friend Thomas Young the latter referred him to Huygens’ theo-
ry. Wollaston found his measurements in agreement with Huygens’ theory and pro-
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nounced tl}is theory 'to.be true, Pierre-Simon Laplace (1749-1827), a leading French
mathematical phys_101st and a supporter of the emission hypothesis, didn’t like
Wollaston’s conclusion about Huygens’ theory, and was looking for someone able to

verify it. This role was left for a young military engineer Etienne-Louis Malus
(1775-1812).

IL POLARIZATION BY REFLECTION
AND REFRACTION
1. Malus and his discovery
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described its model in the emission
theory. Its wave model is similar if
we imagine a vibrating string pass-
ing between the wires of a lattice:
the vibrations will be transmitted
from one side of the lattice to anoth-
er if their plane is parallel to the
threads or makes an acute angle with
them. The greater the angle the
more energy is absorbed by the lat-
tice, which means less light coming
through, and no light at all will pass
when the plane of vibrations is per- Fig.12.7. A wave model of polarization.

pendicular to the threads (Fig. 12.7).
Michael. What does it mean that light is polarized in a specific direction?
Teacher It means a preferential orientation of the poles of light rays (or particles).

bt 3“1’? Teacher. In 1794, a new institution was founded in Paris named Ecole Polytechnique
and (Polytechnical School). Students entered this school at the age of 16 after passing

. . very difficult oral exams and studied there for two years. The main emphasis was on
discussion mathematics (among the professors were Monge, Lagrange, Poisson, Lacroix, and
Legendre). After graduation, a student could join the army (artillery) or to enroll an
engineering school, either civilian or military. Malus was in the first class of the
Ecole Polytechnique and then became a military engineer. In 1798-1801, he took part
in Napoleon expedition to Egypt and Syria (1798-1801), during which he almost died
from the plague. It was during his recovery there that he started to think about the
nature of light and other optical subjects. Subsequently, Malus served in Strasbourg
but he frequently visited Paris where he contributed two optical papers to the
Academy of Sciences. Laplace highly regarded these articles and decided that Malus
possessed all the necessary skills as experimenter and mathematician to solve the

- problem of double refraction. Thus, he suggested that the Academy made this topic

the subject of its next biannual mathematical contest in 1808. The program of the
contest required to build a mathematical theory of double refraction and support it by
exact experiment. Malus entered the contest, made a number of exact measurements
of the index of refraction of the extraordinary ray

b in several substances, and found them to confirm

Huygens’ theory of double refraction. This did not

mean an advocacy of the wave hypothesis, for

Malus (and Laplace too) found a way to reinterpret
Huygens’ theory of Iceland crystal so as to base it

on the properties of light particles. Following
Newton’s idea of a transverse asymmetry of light,

c Malus attributed to light particles two different
poles a and b which were perpendicular to one
another and to the direction of propagation ¢
(Fig.12.6). He called this asymmetry of light
polarization. According to him, the ordinary and
extraordinary rays were polarized in perpendicular

Fig.12.6. Malus' poles.
directions.

Dorothy. We don’t believe any longer in particles of light having poles, right? If so,

what does this polarization mean to us?

Teacher. 1t is simply a word to denote that light has different properties in two directions

perpendicular to one another and to the direction of propagation, I've already

When speaking of polarized light, we will call polarizer and analyzer the instruments
used to, respectively, produce polarized light and uncover it. The same device can
serve as either a polarizer or an analyzer. Prior to Malus, the only known
polarizer/analyzer was a double refracting crystal. That changed one evening when,
according to Arago, Malus took a look at the image of the setting sun in the windows
of Luxembourg Palace through an Iceland crystal. He discovered that the brightness
of the two images was different and it changed when he rotated the crystal around
the visual line. Malus concluded that since the light reflected by glass behaved simi-
larly to the light transmitted by an Iceland crystal, it had to be polarized. Malus
found that other substances, including marble and water (but not metals), can also
polarize light, and the effect is more pronounced at a specific angle of reflection,
such as 52°45’ for water and 56°30’ for glass. He tried another glass plate as an ana-
lyzer and observed that the image he saw in it changed its brightness with the angle
between the two glasses, being the darkest when the two were perpendicular  On the
basis of such observations, Malus formulated the following law for the intensity of
reflected (or transmitted) polarized light (“Malus’ law”): ’

=l cos?a; (12.1)

where I, is the intensity of the incident light, I is the intensity of the emergent light,
and o is the angle between the planes of polarization of light of the two mirrors, or
between two planes of reflec-
tion of light (Fig.12.8). In
Malus’ view, each ray has its
specific orientation of the pole
a in space, and polarization
refers to a statistical distribu-
tion of these orientations.
When light is natural, the poles
are randomly oriented; if light
is fully polarized, they have the
same orientation, Malus called
partially polarized the type of Fig.12.8. Polarizing and analysing light by reflection.
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light that shows a preferential orientation of i ifi )
_ . poles in a specific plane: in his view, it
was a mixture of fully polarized and unpolarized light. He believed, that a polarizinlg

device selects of all randomly distri ific ori
tion, which implied that the i]emainit::geri;:};iiﬁnly fose that have a specific orienta-
no longer retain a random distribution. For
instance, at the boundary of two media the inci-
dent light is either reflected or refracted, thus if
the reflected portion is polarized, so must be the
refracted one, and the two planes of polarization
must be perpendicular. Malus’ experiment con-
fnqu that the refracted light is partially polar-
1zeq in the plane perpendicular to that of reflect-
§d I}ght. He also found that the degree of polar-
ization of refracted light can be increased by
transmitting it through a number of parallel
glass plates (Fig.12.9)

Fig.12.9, Polarization of refracted light.
From Brewster, Phil. Trans.,1814, 23946,

2. Brewster

Teaclier_. A}though Malus was certain that each substance has its peculiar angle of full
%o a%zatlon, he could not derive any rule for it. This was accomplished in 1815 by
avid Brewster (1781-1868) who discovered that the angle of the full polarization [3

(later, it became known as Brewster’ ifi
( ) . s angle) for a specific i
index of refraction n as follows: 8le) P Substance depends on its

tanf3=n; (12.2)

E]?jr'e‘gSte; was born in Scotland .in. a teacher’s family. He attended the University of
inburgh and graduated as a divinity student. However, although he had a license
to p.reach.m the (?hqrch of Scotland, he was never ordained a minister, His first inter-
g§t 1n optics was 1n improving microscopes and telescopes, but he became famous for

1s investigations of double refraction and polarization. A war between Britain and
F_rance delayed thc; news about Malus’s discovery, and Brewster’s first results in this
field (publlsped in 1813) repeated those of French physicists. Brewster’s real
strength was in experiment, his theories were unsuccessful. Among his best achieve-
Erllglﬁ’gpart from Br?wster’s angle, were discoveries of artificial double refraction
(sl -n Ot) :&c;izf btlamf. crystal.s.(1818). During his most productive years, Brewster
coul a teaching position (there were few of them in Britain), and he made

is income ‘by writing pppular books and articles and editing scientific journals and
enpygloped1a§. He was involved in a number of scientific controversies, either on the
priority of his discoveries, or on the nature of light and colors. Hé remained a

staunch opponent of th . .
(since 18??&), of the wave theory of light even when it became generally accepted

Mary. How could he object the theory that was accepted by all scientists?

Teacher. Well, ﬁ_rst of all, he had a personal stake in the emission hypothesis, which was
the basis of his own theory of biaxial crystals. Second, although the wave’ theory was
accepted as providing a better explanation of double refraction and polarization
there were other phenomena unexplained in this theory, even in the 1850s. ’
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3. Repeating Malus’ experiments

Teacher. Let us go outside and repeat Malus’s original experiment with

light reflected by windows. You will use an Iceland spar as an analyz-
er: first try it as is, then cover one side of it with paper in which you
make a small (2-3 mm) hole. If you turn the opposite side to the eye,
you will see two holes instead of one, and you should observe the
polarizer through both images of the hole. After completing this
experiment you may do other experiments involving reflection and
refraction. In addition to an Iceland spar, use a polaroid, and other
analyzers. If indoors, use a window or a desklight as a light source;
outdoors, watch the image of the sun or the sky. Devise experiments
to verify Malus’ law.

Michael. We observed a big difference in brightness between two images
of a second floor window seen through an Iceland spar. This means
that a window can polarize sunlight not only at sunset. The angle
was around 50°, so I am not sure whether it was a full polarization.

Mary. We were watching the window reflecting clouds. At some posi-
tions of an Iceland crystal one image was dark and the other was
bright. When we turned the crystal by 90°, the bright image became
dark and the dark image changed to light.

Dorothy. I observed a piece of glass lying on the ground using a
polaroid as an analyzer. Every time I turned it by 90° the image of
the sky in the glass changed from bright to dark or vice versa.

John. 1 used an Iceland spar as an analyzer and watched water in a
pool reflecting clouds. It didn’t work at first, but eventually I found a
position from which the reflected light appeared to be quite polarized,
for one image was much darker than the other. This occurred at four
different positions of an Iceland spar.

David I've tried a glass mirror as an analyzer. First, I found a position
where I saw the reflected light at about 56° which is the angle of full
polarization. I measured the angle by means of a sighting device pro-
vided with a protractor. Then, I turned 90° to my left and, holding a
glass plate before me, found in it an image of the polarizing mirror. I
started turning the analyzer around the horizontal axis and noticed
that the image was the brightest when the analyzer was horizontal
and the darkest when the analyzer was vertical . Finally, while hold-
ing the analyzer vertically, I moved it to the right to increase the angle
of reflection. The image first darkened then lightened, the darkest
being at the angle of full polarization. It means that given the same
angle of incidence, two glass plates reflect the most light when they

are parallel, and the least, when they are perpendicular. Since the
angle between the two mirrors is the same as the one between their
planes of polarization, the experiment conforms to Malus’ law.

Ruth. I've tried to combine a polarizer based on refraction in a glass
plate using a polaroid analyzer. One plate showed some difference in
brightness of the sky when I turned the analyzer 90°. Five glass
plates put together produced a greater difference, and ten plates

made the image quite dark.
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imbedded in an organic substance so that they all have the same
direction.
John. With a polaroid film one can detect even a small degree of polar-
ization. Could physicists do it before the invention of polaroid?
Teacher. Yes, they had found a way to do it using the phenomenon of
chromatic polarization. ‘ ‘

III. CHROMATIC POLARIZATION
1. Arago

Teacher. A premature death from tuberculosis in 1812 terminated Malus’ brilliant but
short career in optics and left a rich new field of polarization to other investigators.
At the moment, the general attention was attracted to the phenomenon of chromatic
polarization, discovered in 1811 by Francois-Dominique Arago (1786-1853). As a
child, he received a traditional classical education, but he dreamed of becoming an
officer in the army. Once, he saw a very young officer and learned from him that stu-
dents of the Ecole Polytechnique obtain a promotion soon after the graduation.
Arago abandoned his literary studies and began preparing himself for the entrance
exams that were very demanding. In mathematics, he went beyond the secondary
school textbooks and studied works of Euler, Lagrange, Laplace, and Poisson. He
passed the exams with distinction and was enrolled at the Ecole Polytechnique in
1803. Upon graduation in 1805, Arago intended to join the artillery but was talked
into taking a position at the Observatory of the Paris Academy of Sciences. He was
involved in two optical projects measuring refraction of gases, together with Jean-
Baptiste Biot (1774-1862), and verifying whether the speed of light coming from
heavenly bodies depends on their movement. In 1806, Biot and Arago were sent by
the Academy of Sciences to Spain to continue measuring the earth meridian. Soon
Biot returned to Paris, and Arago continued to do the work alone. The assignment
was difficult in itself and it was especially endangered by highway bandits and the
war situation between Spain and France. In 1808, Arago was arrested under suspi-
cion of being a French spy. He managed to escape to Algiers. Disguised, with a
false passport Arago embarked a merchant ship heading for Marseilles, however, on
its way the ship was intercepted by a Spanish corsair, and the passengers were
detained. Three months later, the ruler of Algiers threatened to start a war if the
Spanish government would not release the ship. Arago was set free and again board-
ed a ship for Marseilles. The second attempt was no more successful than the first: a
severe storm forced them to return to the African coast. During that season there
were no sea communications with Algiers, and Arago decided on a very dangerous
journey by land joining an Arab caravan. To save his life he faked an intention to
convert to Islam. Finally, after some more adventures in Algiers, Arago arrived at
Marseilles in July 1809. When the news that Arago is alive and preserved the results

of measurements reached the Academy of Sciences, it considered filling the vacancy
in the section of astronomy. The Academy had 40 positions in five sections, and
each position was for life. The membership carried great prestige and some salary as
well, consequently the elections had been very competitive. Some very good scien-
tists had been waiting for decades for a vacancy. Although Arago was only 23 years
old and had only two papers to his credit, the academicians decided that his ability to
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handle so difficult an assignment made him a good candidate and decided to delay
the elections until his return. In September1809, Arago was elected to the Academy,
and he fully justified the credit given to him. Arago is most known for his work in
optics and electromagnetism. Since 1830, he was an active member of the
Parliament expressing democratic and liberal views. After the February revolution of
1848, he became a member of a provisional government, serving as a Minister of
War and Navy.

Arago’s road to fame began in 1811 with his discovery of colors of crystalline plates.

While experimenting with Newton’s rings produced in thin films by a polarized light,
he decided to check whether a thin film of mica produces the same phenomenon as a
pair of lenses or glass plates pressed together. While looking at a thin plate of mica
through an Iceland crystal, Arago accidentally placed the mica against the blue sky.
To his surprise, he found the two images colored.

David. s the "blue sky" a figure of speech or a physical factor?

Teacher. You have an opportunity to discover this yourself. Go outside, repeat Arago’s
original experiment and then try to modify it.

2. Colors of mica
Preliminary part

Experiments

Dorothy. First, I couldn’t see any colors at all, so I made the hole in the
screen somewhat larger and then I noticed a slight coloration but only
when I looked at some parts of the sky.

Michael. We didn’t see any colors against clouds or in the part of the
sky opposite the sun.

Ruth. Apparently, the colors are seen only in the direction perpendicu-
lar to that to the sun. When they do appear, the colors of the two
images appear to be complementary, such as greenish and purplish,
for instance. The colors changed when I rotated the crystal.
Sometimes, I was not sure about the color, but I noticed that one
image appeared darker than the other, and when I turned the crystal
by 90° the darker one became the brighter of the two.

John. We've got much brighter colors by tilting the mica plate to the line
of vision.

David. A thick plate of mica (thicker than 1 mm) didn’t show any colors,
and neither did very thin plates. While working with a plate of a prop-
er thickness we've discovered that colors changed when we rotated
the plate in its own plane. Since the rest was kept the same, the
cause could be in the plate’s thickness, because the crystal was not
uniform.

Teacher. O.K. Let us now summarize the results of your experiments
in order to formulate a problem and determine the factors that affect
the appearance of colors and, thus, could be the variables.

Formulating a problem
To find the cause of colors in mica.
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Selecting variables
Mary. The significant factors affecting the colors of mica are of two
kinds, some of them refer to mica (its orientation and thickness) while
others point to an external cause, apparently connected with the con-
dition of the sky.

Selecting a procedure
David. To have two distinct images in an Iceland spar we need a screen
with a hole on the way of light. However, since our mica crystals are
not uniform, I suggest attaching this screen to the mica rather than
to the Iceland spar: by doing this we will always look through the
same region of the mica (Fig. 12.10)

mica

/ —
|| — soreen

Fig.12.10. Arago's experiment..

Main part
a. the external canse

Preliminary experiments

Teacher. What can be different in different parts of the sky that could
affect colors?

John. How about the color of light? A blue light from a clear sky
works, while white light coming from clouds doesn’t.

Michael. Isn't it true, though, that not all areas of the blue sky produce
colors?

Ruth. You're right, of course. Listen, I noticed that the two images in
an Iceland crystal were of different brightness. Can't we suppose, as
Malus did, that light from blue sky resembles the one emerging from
a double refracting crystal, which means it is polarized?

Mary. Perhaps, and if so, the polarization must be partial, because I
never saw very dark images.

Hypothesis '
The colors of mica are produced by a partially polarized light.
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Test

David. Since a window glass partially polarizes the light from the sky
(even if overcast), let us look at a mica plate set against a window.

Dorothy. 1 looked at a window at a large angle, and saw wonderful col-
ors, much better than when I looked at the sky.

Michael. We couldn’t find a properly oriented window, so we laid down
a glass plate on the ground and watched the reflection of the sky.
The colors were very distinct.

Ruth. First, I made a bundle of ten glass plates, taped them together
and used them as a polarizer. When holding the bundle in my left
hand (it made about 30° with the horizon) and the Iceland spar with
mica in my right hand I looked at the sky through both of them and
saw nice colors.

conclusion . l ’lli‘lglgtcolors of mica are produced by polarized

David. We see that Arago discovered, among other things, that light
from the blue sky is partially polarized. Apparently, the degree of
polarization reaches a maximum in the direction perpendicular to
that of the sun.

b. orientation of mica

Preliminary experiments

Teacher. We've already found that the orientation of mica affects the
colors. To investigate this in detail we need a more convenient polar-
izer-analyzer system. Take two square polaroids and tape them to
the opposite sides of a book, or a box, or a table so that the polaroids
were parallel, about 10 - 20 cm apart, and have their planes of polar-
ization crossed (perpendicular).

John. Before stopping to use the Iceland spar as an analyzer I decided
to check whether the two images are indeed complementary. The
slightly polarized light from the sky is not very good for this experi-
ment, so I used a polaroid to make light fully polarized. I also
enlarged the hole in the screen so as to make the two images overlap
in half. Finally, I selected a piece of mica of apparently the same
thickness. With this arrangement, I observed that whatever the col-
ors of the two images, the overlapping part was white, proving that
the colors were complementary.

Dorothy. 1 placed a crystal of mica between the polaroids parallel to
them and saw a reddish-purplish color. Then I started slowly turning
it around a vertical axis, and the color changed in the following
sequence: blue, green, yellow, red, and so on.

Michael. 1 turned the mica around a horizontal axis and observed a
sequence of colors similar to that of Dorothy.

Ruth. We rotated the mica in its own plane, which is difficult to do with-
out giving it a tilt, so we pressed it to the analyzer. We observed the
same color (red-purple) but its intensity changed, and in two posi-
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tions of the mica the image became uncolored. We marked these two
directions in the vertical plane and found them to be perpendicular.

Teacher. The existence of such two directions implies that, unlike
Iceland spar, mica has two optic axes, and along each of them the
velocity of both refracted rays is the same. The existence of two optic
axes is not an unusual phenomenon: Brewster discovered in 1818
that most double refracting crystals are biaxial. It became clear that
Huygens’ theory could cover only a limited class of crystals. This
problem was solved by Fresnel in 1821-23.

At this point, given the time constraint and the simplicity of our
instruments, we have reached the limit for our investigation of the
orientation. As to the thickness, we will resume studying its role with
other substances that are more uniform than our samples of mica.

3. Biot and the emission theory

Teacher. In 1812-1816, Brewster’s main rival in the field of polarization and double
refraction was Biot. He was a very thorough investigator intent on deriving quantita-
tive laws of phenomena. Although some of the phenomena he studied were discov-
ered by others, this did pot diminish the importance of Biot’s contribution. Like
Malus, Biot entered the Ecole Polytechnique soon after its foundation. After gradua-
tion, he taught mathematics and physics first in province and then in Paris. In 1803,
he became a member of the Academy of Sciences (mathematics section). Late in his
life, for his contributions to the history of ancient astronomy and his writings, he was
elected to two other French academies devoted to antiquities and literature. Biot was
the leading champion of the emission theory of his time, and he devoted much effort
to reintroduce Newton’s quantitative method into physics and revive his theory of
fits. His first interest in polarization was excited by Arago’s discovery of colors of
mica. In1812-13, Biot. found that a relation between the colors of thin crystalline
plates and their thicknesses was very similar to that discovered by Newton for thin
films of air or water, and that the ratio of the thicknesses of Newton’s and Biot’s
plates which displayed the same color was constant for all colors. Thus, after deter-
mining this ratio experimentally for one color, aided by Newton’s table (Newton,
Opticks, 233), Biot correctly predicted the color of various plates given their thick-
ness (between 0.03 mm and 0.45 mm). To Biot, that was another confirmation of
Newton’s theory of fits of easy reflection and easy transmission. To explain chromat-
ic polarization, Biot supposed that when polarized ray penetrated a thin crystalline
plate, its plane of polarization oscillated between the initial one and another plane
which made the angle 2i with it (i was the angle between the planes of polarization of
the polarizer and of the crystal). The oscillations took place at equal intervals, which
were different for light of different colors. This theory satisfactorily explained a
number of phenomena but later was superseded by Fresnel’s theory (1821).

At the same year 1811, Arago discovered that sometimes colors could be produced by
thicker plates: a quartz plate 6 mm thick cut perpendicularly to its optic axis exhibit-
ed colors similar to those of mica. However, the similarity was not complete,
because when Arago rotated the quartz plate in its own plane only the brightness of
the transmitted colored light changed but not its hue. Two years later, Biot studied
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the colors of quartz in detail. He found that when the plate was perpendicular to the
beam its color depended on the plate’s thickness. While rotating the analyzer from
right to left Biot observed a succession of all spectral colors and supposed that quartz
polarized light of different colors in different planes. He explained this as follows:
while passing a quartz plate the light particles rotated their poles from right to left
and the angular speed of this rotation depended on color, This theory suggested that
the angle of rotation is proportional to the plate’s thickness and depends on the wave-
length (or, the interval of fits) if light is monochromatic. Biot proved these hypothe-
ses by exact experiments. He also found a different variety of quartz, which pro-
duced the same phenomenon with the analyzer rotating from left to right. In 1815,
Biot discovered that some liquids, such as oil of turpentine and citric acid, can also
rotate the plane of polarization, the former to the right, and the latter to the left.
Later, he found that sugar syrup does the same and suggested measuring the angle of
rotation of the plan of polarization in human urine as a test for diabetes.

Dorothy. This "rotation of the plane of polarization” staff literally makes me dizzy. Is
there a simpler way to understand it? v

Teacher. Let us do an experiment, then the subject will become clear.

4. Experimenting with optical rotation

Teacher. Let us experiment with corn syrup. Use small rectangular
containers that we've utilized in experiments on refraction. They are
convenient when one needs to measure the thickness of the optically
active medium. We will investigate the variables studied by Biot: the
thickness of a medium and the color of light. The experimental
arrangement consists of two crossed polaroids set at a sufficient dis-
tance from one another to place the container between them. Attach
a red filter to the outer surface of the polarizer. What do you see?

~ Dorothy. The visual field is dark because the polaroids are perpendicu-

lar.,

- Teacher. What do you see when you insert the container?

Michael. The syrup appears red.

active medium light rotates its plane of
polarization. This implies that the
angle between this plane and the plane
of polarization of the analyzer is other
than 90°, thus some light must come
through.

angle of rotation of the plane of polar-
ization?

David. Suppose that the original position
of the plane of polarization of light is P
and the final position is P’ (Fig. 12.11).
It is clear from this diagram that if we
rotate the analyzer A to a position A" where we regain darkness, its
angle of rotation o will be equal to the angle we are seeking.

Fig. 12.11. Aeasuring the optical rotation
(the idea)
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Teacher. Let us determine how the angle of rotation depends on the
thickness for a specific color, and then how this angle depends on
color. To reduce the range of transmission of your color filters tape
several identical filters together. Take a circular analyzer and mark
on its circumference the position of its plane of polarization. Make a
transparency photocopy of a protractor, whose inner diameter is 5
mm larger than the diameter of the analyzer (make sure the plastic
does not polarize light). Make a cardboard ring of 2-3 mm thick and
5 mm wide, whose inner diameter is the same as that of the analyzer.
Fix both the scale and the ring to a glass plate with “Tak” and place
the analyzer inside the ring (Fig. 12.12).

Michael. With a red filter, one container placed length-
wise (6 cm) produced the rotation of 30°, and two
containers aligned lengthwise (12 cm) rotated the
plane of polarization by 60°,

John. I've tried a larger container of 10 cm
long (also with a red filter) and found the
angle of 48°,

Ruth. With a blue filter, one small con-
tainer produced 60° of rotation,
while two such containers
aligned made the angle of
120°, It looks like the angle of
rotation is proportional to the
thickness of the liquid, yd
although the constant of pro- g@
portionality differs for different
colors.

Mary. We experimented with a
small container and three dif-
ferent filters. We obtained 32° for a red filter, 47° for a green filter,
and 61° for a blue one. This is consistent with the previous results
and shows that the angle of rotation of the plane of polarization
increases when the wavelength of light diminishes.

David. This means that when analyzer stood at 32° it eliminated red
light, at 47° it absorbed green light, and at 61° the blue one. If so,
what can we expect to see in white light while rotating the analyzer? 1
guess, that at these three positions we would see, respectively the
remains of the spectrum, that is, blue-green, blue-red or purple, and
yellowish-red.

Dorothy. Let me check your prediction. Yes, it comes quite close for
these angles. "

John Our group became interested in your remark about measuring the
concentration of sugar. We diluted the syrup two and four times with
water and found that the angle of rotation decreased 1.9 times with
the 50% solution and 3.8 times with 25% solution. We checked that
water does not have any effect on polarization. Thus, apparently the
angle of rotation is proportional to the concentration of the active
substance (sugar).

Fig.12. 12. Measuring the optical rotation
(the experiment)
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Teacher. Your results are similar to Biot’s, which is very good, taking
into account the simplicity of your equipment.

5. Artificial double refraction

Teacher. We have studied a variety of materials that polarize the trans-
mitted light. What do they all have in common?

Dorothy. Some of them are crystals (Iceland spar, quartz, mica), others
are liquids. I can’t see what these two groups have in common.

Ruth. These two groups don’t exhaust all polarizing materials. I placed
a piece of a clear scotch tape between the crossed polarizers, and it
exhibited colors like mica.

Michael. We've tried some wrapping cellophane, and it did the same
when several layers were used.

Teacher. Did you notice any directional properties in these materials?

Ruth. My material was certainly double refracting, because when I
rotated it the colors changed.

Michael. So it was in my case too0.

Mary. I understand that crystals are asymmetrical, you can see it.
Probably, that is why they transmit light with different speed in dif-
ferent directions. But how about plastics or liquids?

David. Perhaps the active liquids have asymmetrical molecules. As to
plastics, isn’t possible that they made asymmetric during their manu-
facturing, for instance, stretched in one direction.

Teacher. Excellent! You understand that the cause of double refraction
is an asymmetry in the physical properties of a body, which can be
achieved in various ways. Why don’'t we produce an artificial asym-
metry and see whether it leads to double refraction.

Dorothy. 1 stretched cellophane wrapping and observed colors near its
edges.

Michael. We've observed the same when stretching plastic lunch bags.

Mary. I've bent a plastic ruler, and it displayed colors.

Teacher. Very good! That mechanical deformations create double

S | refraction was discovered by Thomas Johann
Seebeck (1770-1831) and Brewster (1815).

Glass was the first material utilized for this

purpose (Fig. 12.13) Glass, however, required

a considerable force, and Brewster was glad

to find that a jelly, which is easily deformed,

shows signs of double refraction caused by
pressure or induration (12.14) I want you to
do this experiment at home. Take a packet of

a clear unflavored gelatin. Put it in boiling

water (take one half of the amount of water

recommended per packet) and stir until com-
pletely dissolved. Pour the liquid in a plastic
container and place it in a refrigerator. When
the jelly is set cuit a rectangular piece out of it
and place it between the crossed polaroids.

Fig.lZ. 13. Double refraction in

glass produced by a compression.
From D. Brewster, Phil. Trans., 1816
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Watch the image while pressing or
squeezing the jelly and try to relate
the figures produced to the type of
deformation. You have to remem-
ber that a coloration is not the only
sign of double refraction, because
it is observed only for a small range
of thicknesses. A more general
sign, true for every thickness, is a
lightening of the dark visual field
after inserting the sample between
the polaroids.

Teacher. Good! Now, is it possible to
discover a deformation that is invisible to a naked eye? Such defor-
mations are produced, for instance, during manufacturing, either by
mechanical forces or by a heating/cooling of the object.

Ruth. It is possible if the body retains the deformation. You place it
between the crossed polaroids, and if you see a coloration only in
some parts of it, it is probably the result of a deformation. I've
checked that with cellophane.

Teacher. Fine. This idea found a practical
application. If one makes a clear plastic
model of a working device and studies the
colors displayed in polarized light, one can
get a qualitative picture of the distribution
of stresses in the device, which is impor-
tant for improving its design (Fig. 12.15).
Brewster and Seebeck also discovered in
1814 that glass can be made double
refracting by heating it (Fig. 12.16). I want
you to repeat this experiment at home.
Heat a piece of glass over a candle flame
and insert it between the crossed
polaroids. Check whether it retains the
double refraction after cooling off.

David. I remember hearing a crackling

sound when I put an ice cube in
water. This implies that the ice had ‘ ' l *

some residual stresses acquired prob-
Fig.12.16. Double refraction in glass

ably during solidifying. Is it possible

that ice has a double refracting capa-
produced by heating.From T.Seebeck,
Journ. fir Chem. u. Physik, 12 (1814).

Fig.12.14. Double refraction
in jelly produced by induration.
From D. Brewster, Phil. Trans., 1816

Fig. 12.15. Studying mechanical
deformations by means of polarized light.

bility?

Teacher. 1 want all of you to check this
at home. Compare slices of ice of dif-
ferent thickness. To make ice more
clear polish it with your fingers.
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IV. WAVE THEORIES
1. Chromatic polarization

In 1814, Young suggested that Biot’s experiments could be explained through inter-
ference of the ordinary and extraordinary waves. He was unaware then that light
waves polarized in perpendicular directions cannot interfere. This was demonstrated
by Augustin Fresnel and Francois Arago in 1816. In the two-slit experiment, they
placed two crystals before the slits and found that the interference fringes appeared
when the two beams were polarized in the same direction and disappeared when they

were polarized in perpendicular directions. Thus, they discovered a new condition of

coherence: two independent rays which are polarized in perpendicular directions can-
not interfere. They also found that two rays polarized perpendicularly to one another
could interfere if they originate from the same polarized ray and are reduced to the
same plane. Fresnel expressed a light wave by a vector whose length represented the
amplitude of light vibrations and the angle this vector formed with a selected axis
displayed the phase of these vibrations. He inferred from the experiments on inter-
ference that the light vector must be perpendicular to the direction of propagation of
light, or, in other words, that light wave is transversal. Mathematically, it means that
an arbitrary light vector can be resolved into two (not three!) components that are
perpendicular to one another and to the direction of propagation of light. For
instance, let P be a polaroid with the
axis of polarization x, (Fig.12.17),
and the incident light wave have the
amplitude A and is polarized in the
direction k, which forms an angle o
with the direction X, Then, accord-

ing to Fresnel, this wave can be
replaced with a sum of two waves of
the same amplitude but polarized in
perpendicular directions. If x is one
of these directions, y being the other,
the polaroid will transmit light of the
amplitude a=Acoso.. By squaring
both sides of this equation we obtain
Malus’ law, because A2.and a? are
the intensities Iy and I of, respectively, incident and emergent light.

Fig.12.17. Wave explanation of chromatic
polarization of light.

Colors of crystalline plates result, according to Fresnel, from an interference of two
polarized waves that originated from the same polarized wave, acquired perpendicu-
lar.polarizations and a path difference when passing a plate, and finally were reduced
to the same plane of polarization in an analyzer. For instance, let P (Fig. 12.16) be a
uniaxial crystal of the thickness d cut parallel to its optic axis O, and let x and y be
the respective directions of polarization in this crystal of the ordinary and extraordi-
nary rays. Let the incident wave be of the amplitude A and polarized at the angle o
to the axis X. When entering the crystal the incident light is divided in two waves
whose vibrations are directed along the axes.x and y and can be expressed as
Xp=acoswt and yy=bsinwt, where a=Acosa and b=Asina. These waves travel along
the same direction O but with different velocities v,=c/n, and v,=c/n,. As the result,
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when exiting the crystal the two waves will have the phase difference

= 2ﬂd(no - ne)
A

and the projections of the light vector on the two axes will be, for instance, x=acosmt
and y=bcos(wt—0). To find the trajectory of the end of this vector we have to elimi-
nate time from our equations, which can be done as follows:

0 (12.3)

y=b(coswtcos® +sinwtsind); (12.4)
cosmt=x/a; (12.5)
sinwtsin®=y/b - xcos6/a; (12.6)

Square both sides of equation (12.5) and multiply them by sin26:

cos2mtsin?0 = x2sin20/a2; (12.7)

After squaring both sides of equation (12.6) and adding to equation (12.7) we obtain
2

2 2
X—2+%——XXCOSO= sin*@ (12.8)
a
This is an ellipse ABCD (Fig. 12.18), the shape and orientation of which depend on
the phase difference 6 .
For instance, if 6=(2m+1)n/2, we have

2 2
il (12.9) <=
a~ b |

This is an ellipse A’B’C’D’ with its axes b
oriented along x and y, and with its semi-
axes a and b representing the amplitudes :
of vibrations. A rotation of the ellipse a =X
will thus mean a change in the amplitude B’
(and intensity) of emergent light. Such B
polarization is called elliptical. If a=b,
we have a circular polarization.

If O=mn (m=0, 1, 2,...), we have

C c

b
y=% '; X; (12.10) Fig.12.18. Elliptical polarization.of light..

which is the equation of a straight line. This means that after exiting the plate light
remains linearly polarized.

Dorothy I understand the math but not the physical meaning of this

elliptical (or circular) polarization. Does it mean that we see colored
ellipses?

Teacher. No. Imagine we can slow down optical vibrations so much

T

math is
a friend !

discussion
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that we are able to watch the end of the optical vector. If light is lin-
early polarized, it will move back and forth along the same line; if
light is circularly polarized, it will move along a circumference, either
clockwise or counterclockwise.

John. How do we discover that a light is polarized elliptically or circu-
larly? Can we use a polaroid or an Iceland spar?

Teacher. Let us have an analyzer whose direction of polarization makes
an angle o' with the axis x. The two waves will produce along this
direction vibrations with amplitudes a'=acosa’' and b'=bsina’ and
phase difference 6. Their sum will have the amplitude A', and the
intensity of emergent light will be I'=A"2 such that

A=2"2+b"2 - 2abcosh; (12.11)

Thus, for an elliptically polarized light if we rotate the analyzer, chang-
ing the angle o', the total intensity will change between a non-zero
minimum and a maximum. If light is circularly polarized, the ampli-
tude of the emergent light will not change during the rotation. Thus,
a circularly polarized light can be confused with natural light, while
an elliptical polarization can be perceived as a partial linear polariza-
tion. One can avoid this confusion by transforming an elliptically
polarized light into a linearly polarized light. To achieve this we have
to change the phase difference by (4m+1)x/2, which corresponds to
the path difference of (m+1/4)A. To achieve this, we need a crystal
plate of such a thickness d that

(np-ng)d=(m+1/4)A; (12.12)

The thinnest of such plates (m=0) is called a quarter-wave plate.

Michael. How does this theory explain colors of mica?

Teacher. For a plate of a constant thickness the phase difference 6
depends only on the wavelength A. For each position of the analyzer,
light of different colors will have different amplitudes, which will
result in one color dominating over others.

Mary. If we keep the analyzer steady and rotate the plate in its own
plane, neither the phase difference 6 nor the angle o' change. If so,
why does the field of view change its brightness?

Teacher. Keeping these two factors permanent removes the coloration.
However, the rotation of the plate is equivalent to a rotation of the
axes x and y, which produces the same effect as a rotation of the
ellipse in Fig. 12.18: the projections of the ellipse’ s semi-axes
change, and so does the intensity of transmitted light.

Ruth. We see that a linearly polarized light is quite an ordinary phe-
nomenon because it is produced at every reflection of light by a
smooth surface. Where can we find an elliptically polarized light?

Teacher. Fresnel discovered in 1817 that when a linearly polarized light
experiences two consecutive internal reflections at Brewster's angle it
becomes circularly polarized when the plane of incidence forms an
angle of 45° with the plane of polarization. A circularly polarized light
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can be also obtained from a linearly polarized light transmitted
through a quarter-wave plate whose direction of polarization makes
45° with the axes of the crystal. Light reflected by metals acquires an
elliptical polarization.

2. Double refraction

Like Huygens, Fresnel’s connected the variation of the velocity of light in different
directions inside a crystal with a change of elasticity of the ether. His problem was
more difficult, however, for he had to account for both uniaxial and biaxial crystals.
To model the distribution of velocities of light in a crystal, Fresnel used the ellipsoid
of elasticity with three unequal perpendicular
principal axes. For every direction of inci-
dent light there are two refracted waves with
different velocities (Fig. 12.19). To deter-
mine them, it is necessary to draw a plane
through the center of the ellipsoid perpendic-
ularly to the direction of propagation of light: <
this plane cuts the ellipsoid along an ellipse,
~ whose axes give the directions of polarization
of the two waves and the magnitudes of their
velocities. Among all elliptical sections two
are circular, and the perpendiculars to their
planes are the optical axes of the crystal. In
an uniaxial crystal the two optical axes coin-
cide. The electromagnetic theory of light did not change the essence of this theory, it
only gave a different cause for changing the velocity of light in different directions:
different elasticity was replaced with different dielectric constant of the material.

Fig. 12.19, Wave model of double refraction.

Thus to explain chromatic polarization and double refraction Fresnel assumed a com-
plete transversality of light waves. This idea initially occurred to him in 1816 after
the discovery of the non-interference of light polarized in perpendicular planes.
However, it took Fresnel five years to adopt this concept because he could not over-
come two difficulties in establishing a mechanical foundation for such a theory
(optics was thought of then as a part of mechanics). First, it was known that mechan-
ical waves when crossing a boundary of two media produce both longitudinal and
transversal refracted waves. Secondly, the ether was treated then as a fluid, but a
fluid could not transmit transversal waves. Thus, Fresnel had to attribute to the ether
the properties of a solid body. The idea was perceived as wild, and even such cham-
pions of the wave theory as Young and Arago refused to adopt it. Fresnel’s alterna-
tive consisted of either adopting transversal light waves together with the solid ether,
or abandoning a comprehensive quantitative explanation of chromatic polarization
and double refraction. He opted for the former. Later, electromagnetic waves
replaced the mechanical ones, but the core of Fresnel’s theory - the transversality of
light waves - remained intact.

history
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