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Rudolf Clausius and the road to entropy

William H. Cropper
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(Received 14 November 1985; accepted for publication 21 January 1986)

That Rudolf Clausius invented the entropy concept is well known, but less familiar is the
argument that served as his inspiration. This paper traces the development of Clausius’
“transformation theory” of heat, which finally persuaded him to define the measure of

transformation equivalence he called entropy.

Most of the fundamental concepts of classical thermody-
namics were developed during the middle fifty years of the
nineteenth century. The story begins with the work of Sadi
Carnot on heat engines, published in 1824. Carnot showed
theoretically, and in some rather rough calculations, that
the efficiency (work output compared to heat input) of any
heat engine operated in a reversible, cyclic mode had a
maximum value and was dependent only on the engine’s
operating temperatures. Carnot died in 1832 when he was
thirty-six, and for reasons which will probably never be
more than half understood, his scientific work almost died
with him. His memoir was first ignored and then nearly lost
for almost twenty-five years.

Carnot’s work was resurrected by two second-genera-
tion thermodynamicists, Rudolf Clausius and William
Thomson (later Lord Kelvin), who were born (in 1822
and 1824) almost at the same time as Carnot’s revolution-
ary memoir; they were, so to speak, Carnot’s scientific pro-
geny. Both Clausius and Thomson were profoundly in-
fluenced by Carnot’s analysis. The Carnot heat-engine
efficiency principle was Thomson’s main inspiration in his
lengthy search for an acceptable absolute temperature
scale. First Clausius (in 1850), and then Thomson (inde-
pendently, in 1851), modified Carnot’s approach to permit
the description of noncyclic processes, a crucial step in the
history of thermodynamics because it necessitated the in-
vention of a state variable to represent energy. Then, begin-
ning with a simple extension of Carnot’s fundamental cy-
clic device, Clausius developed his ‘“‘transformation
theory” which led finally to the entropy concept.

Clausius finally concluded in 1865 that thermodynamics
should be based on two concepts, energy and entropy. This
was just the clue needed by a third-generation thermodyna-
micist, Willard Gibbs, who developed the Clausius energy-
entropy picture into an equilibrium theory of vast scope.
Clausius’ last words on the subject of thermodynamics, the
famous energy and entropy rules,

The energy of the universe is constant,

The entropy of the universe tends to a maximum,
were Gibbs’ first words in his great 1875 monograph on the
principles of equilibrium.

A full account of Clausius’ role in the development of
classical thermodynamics would require more space than
we have in one paper. There is room for just one chapter
from the Clausius book, the one that tells what is probably
the most important, and at the same time least understood,
part of the Clausius story, his development of the entropy
concept.

Clausius initiated this work in a lengthy paper on heat
theory published in 1854." As before in his contributions to
heat theory, he began his analysis with Carnot’s heat-en-
gine theory modified to assume that heat could undergo
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two kinds of “‘transformations.” With Carnot, he postulat-
ed that heat could drop from a high temperature to a low
temperature in what we shall call a “transmission transfor-
mation” (this is not Clausius’ terminology). Contrary to
Carnot, however, he also assumed that heat could be con-
verted to work in a “conversion transformation.” Clausius
was impressed by the fact that both kinds of transforma-
tions had two possible directions, one “natural” and the
other “unnatural” (again, this is not Clausius’ terminol-
ogy). In the natural direction, a transformation could pro-
ceed by itself, spontaneously and unaided, while the un-
natural direction was not possible at all uniess forced by
some outside influence.

The natural direction for the conversion transformation
could be seen in James Joule’s many observations of heat
produced from work. Clausius saw the unnatural direction
for the conversion transformation in the production of
work from heat, a transformation which never took place
by itself, but always had to be forced somehow in heat-
engine operation. The natural direction for the transmis-
sion transformation was clearly the direct conduction of
heat from a high temperature to a low temperature. The
unnatural direction was the opposite transport from a low
temperature to a high temperature, which was impossible
as a spontaneous process; if such heat transport occurred at
all, it had to be forced.

Clausius took this reasoning one very significant step
further. He saw that in heat-engine operation the two kinds
of heat transformations occurred at the same time. In each
cycle of operation, the transmission transformation took
place in its natural direction (heat dropped from a high to a
low temperature), while the conversion transformation
proceeded in its unnatural direction (heat converted to
work). It was as if the transmission transformation was
driving the conversion transformation in its unnatural di-
rection. Moreover, if the heat engine was reversible, the
conversion transformation could be run in its natural direc-
tion (work converted to heat) and made to drive the trans-
mission transformation in its unnatural direction (heat
raised from a low to a high temperature).

To formulate these ideas, Clausius pictured heat sup-
plied from and to heat reservoirs and visualized some ac-
tive medium or device, which we shall call the *“‘system,”
communicating among the reservoirs and making possible
the two kinds of transformations. In his various discussions
of heat theory, Clausius sometimes took the viewpoint of
the reservoirs, and other times he emphasized the system.
These conceptual switches were a perennial source of con-
fusion to Clausius’ critics.

Clausius started his 1854 paper by introducing a special
elaboration of the cyclic process Carnot had invented.
Clausius’ cycle was a six-stage, reversible, cyclic process
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Fig. 1. The four expansion and two compression steps of the Clausius
cycle, displayed in a pressure-volume plot. The diagram shows what hap-
pens to the system in one turn of the cycle.

involving four expansion steps and two compression steps
in the following sequence:

Step 1, an isothermal expansion at the temperature ¢ (ex-
pressed, say, on the centigrade scale) in which the heat @
was supplied to the system from the reservoir K.

Step 2, an adiabatic expansion in which the temperature
decreased from ¢ to ¢,.

Step 3, an isothermal expansion at z, in which the heat Q,
was supplied to the system from the reservoir X,.

Step 4, an adiabatic expansion in which the temperature
decreased further from ¢, to ¢,.

Step 5, an isothermal compression at ¢, in which heat Q,
was supplied to a reservoir K.

Step 6, an adiabatic compression in which the tempera-
ture increased from ¢, back to ¢.

Figure 1 shows how the cycle affects the pressure and vol-
ume of the system, and in Fig. 2 the heats Q and Q, are seen
coming from, or going to, the reservoirs X, X, and K.

Clausius designed his cycle so it caused an amount of
heat Q to undergo a conversion transformation, and at the
same time it put the heat Q, through a transmission trans-
formation between the temperatures ¢, and ¢,. Clausius
demonstrated the conversion transformation by returning
to an equation he had introduced in his 1850 paper,>

dQ =dU + APdb. (1)
G FROM K Q2 FROM K2
AT ¢ AT t2
SYSTEM |——=AW=0

Q2 TO Ky
AT t4

Fig. 2. The effect of one turn of the Clausius cycle displayed in a diagram
which shows the heats Q and Q, coming from the reservoirs K and K, at
the temperatures ¢ and 2,, and the heat @, going to the reservoir K, at 7,.
The heat Q is converted to the work W.
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The quantity dQ represented a small amount of heat sup-
plied to, or lost from, the system; P and v were the system’s
pressure and specific volume; 4 was a factor which
changed the mechanical units required by Pdv into the
thermal units required by dQ (the value of 4 had been
accurately determined by Joule in the 1840’s).

In 1854, Clausius’ understanding of the term dU in Eq.
(1) was incomplete. He could prove that U was a state
variable, dependent only on the state-determining vari-
ables v and ¢, but the physical meaning of the function was
not entirely clear. He read Eq. (1) to mean that the heat dQ
supplied to a system could either become ““sensible heat”
once it had entered the system, that is, its effect could be
measured on a thermometer, or it could be converted into
work. He recognized two kinds of work, that performed
internally (against intramolecular or intermolecular forces
in the modern interpretation) and that done externally,
against an applied pressure. The term APdv in Eq. (1) ob-
viously evaluated the latter, so Clausius concluded that dU
calculated two things, changes in the “sensible heat” and
the amount of internal work done, if any.

At the same time Clausius was developing the interpre-
tation of his function U(v,t), Thomson was inventing a
theory based on an identical function, which he labeled
e(v,t).2 Thomson had a name for his function—*“mechani-
cal energy”—and he understood it to be a measure of the
mechanical effect remaining stored in a system after it ex-
changed heat and work with its surroundings. Thomson
later used the term “intrinsic energy” for his function
e(v,1),* and Helmholtz eventually called it “internal ener-
gy.”® Itis an impressive measure of the subtlety of the ener-
gy concept—and of Thomson’s insight—that Clausius was
not willing to accept Thomson’s energy theory for almost
fifteen years. In 1865 he began calling his function U ener-
gy, and Eq. (1) written

dU =dQ — APdv
became the familiar statement of the First Law of Thermo-
dynamics.®

When (in 1854) Clausius applied his Eq. (1) to his six-
stage cycle, an integrated result was obtained,

fdQ=JdU+Adev, (2)

in which the integration symbol meant adding contribu-
tions for the entire cycle. Taking the viewpoint of the sys-
tem, he evaluated [ dQ as the algebraic sum of the two heat
inputs Q and @, and the heat output Q,,

[d0=0+0.-0.=c

The net work W done in the cycle, a positive quantity in
Clausius’ scheme if done by the system, was obtained from
the integral § Pdv,

dev=W.

Since U was a state variable, dependent only on v and ¢, its
integral around the cyclic path of Clausius’ process was
Zero,

[av=o

Thus the integrated Eq. (2) became
Q=4Ww,
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and this demonstrated the conclusion that Clausius’ cycle
caused the amount of heat Q to undergo a conversion trans-
formation. Since this was a heat-to-work transformation, it
had the unnatural direction.

At the same time, the Clausius cycle permitted the heat
Q, to go through a transmission transformation between
the temperature ¢, and #,. This was the natural direction for
that transformation, and it was seemingly driving the con-
version transformation in its unnatural direction. We shall
represent the conversion transformation of the heat QO
originating at the temperature ¢ with the abbreviated nota-
tion (not used by Clausius),

Qlt] - W,
and the transmission transformation of the heat O, from
the temperature #, to the temperature ¢, with

O,[8] - Os[1].

The entire Clausius cycle is

ol -w
{Qz[tzl - Qz[tI]] (3)

in this representation. Clausius always assumed that his
cycle was reversible, so it could be completely turned
around with no appreciable effects in the surroundings. It
then became

lowt) ~ 0.

Qz[t1] - Qz[tz]

in our abbreviated notation. The conversion transforma-
tion, now proceeding in the natural direction, was driving
the transmission transformation in its unnatural direction.
In the first case, the transmission transformation dominat-
ed (just barely) and provided the driving force that made
the conversion transformation go in its unnatural direc-
tion. In the second case,. the conversion transformation
dominated (just barely) and was driving the transmission
transformation in its unnatural direction.

This theoretical picture suggested to Clausius that the
two transformations were so nearly balanced in his reversi-
ble cycle that either could dominate the other. They were,
in some sense, equivalent to each other. Clausius set out to
construct a quantitative transformation theory which
would follow this lead. His goal was to assess “equivalence
values” for both transformations in his cycle and in other
reversible processes. He hoped that the equivalence values
could then be used to express in a new natural law the

Q/ FROM K‘
AT ¢/

SYSTEM |—=AW=0'-0Q

QTOKl
AT t

Fig. 3. The effect of one turn of the Carnot cycle displayed in a diagram
which shows the heat Q' coming from the reservoir X’ at the temperature
t', and the heat Q going to the reservoir K at 7. The heat Q' — Qis convert-
ed to work W.
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condition of balance, or ‘“‘compensation” as he called it.
Although he could hardly have been aware of it at the time,
Clausius had, in this simple theoretical expectation, started
a line of reasoning as promising as any in the history of
science. It would not be easy for him to appreciate fully the
importance of what he was doing, but he now had all the
theoretical clues he needed to reach the concept of entropy
and its great principle, the Second Law of Thermodynam-
ics.

Clausius began his transformation theory by assuming
that equivalence values for either kind of transformation
were proportional to the amount of heat transformed and
also to some function of the temperature or temperatures
involved. For his cycle, the assumptions were

Equivalence value for the

conversion transformation ; = f(¢#)Q, 4)
W-Qlt]

Equivalence value for the

transmission transformation t = F(#,,¢,)0,, (5

Qz[tzl - Qz[tl]
in which f(¢) and F(t,,t;) were functions of the tempera-
tures indicated. These statements were both made for the
transformations proceeding in their natural directions. For
the unnatural directions of both transformations, Clausius
assumed the equivalence values to have the same magni-
tudes but opposite signs,

Equivalence value for the

conversion transformation = — f(¢)Q, (6)
ol - w

Equivalence value for the

transmission transformation} = — F(¢,,t,)(Q>, (N

O:[4] - Q.l1]

For the Clausius cycle (3), the two appropriate equiv-
alence values were given by Egs. (5) and (6). Clausius
wrote his fundamental condition of balance or compensa-
tion by simply setting the sum of these two equivalence
values equal to zero,

F(t,1)0, —f()Q =0. (8)
A similar analysis could be made for another Clausius cy-
cle,

[Q (+'] - ]

Qz[tzl - Qz[tl]

in which a different amount of heat Q’, originating at a
different temperature ¢, was converted. The condition of
compensation in this case was

F(t,t)Q, — f(t"Q'=0.
Combination of this result with Eq. (8) led to an important
property of the function f(¢), that its magnitude was in-
versely proportional to the amount of heat transformed,
that is

@ =r1t"HQ". )]

A simple connection between the two functions of tem-
perature f and F could be derived by applying the equlv-
alence-value analysis to a reversible cycle whose effect is
illustrated in Fig. 3. This was the cycle originally designed
by Carnot to give maximum heat-engine efficiency. It had
heat mput at one temperature (rather than two tempera-
tures, as in Clausius’ cycle). Analysis of Carnot’s cycle

William H. Cropper 1070



with Clausius’ Eq. (1) indicated that the work done for
each turn of the cycle was determined by

AW=Q’—Q,

and therefore that the heat Q' — Q, originating at ¢ ', was
involved in a conversion transformation. At the same time,
the heat Q went through a transmission transformation
from ¢’ to t. In this case, Clausius’ equivalence-value calcu-
lation led to the condition of compensation,

Fu'nH)Q—ft"HQe —9)=0.
Combined with Eq. (9), this became
F(t'n) =f(2) —f(1). (11)

This was another cornerstone of Clausius’ transformation

theory. It showed that a single function, the still undeter-

mined f(¢), sufficed for equivalence-value determinations.
For Clausius’ cycle, Eq. (11) was

F(t2,t1) =f(t1) —f(tz),

and this revised the condition of compensation (8) to

J(t:)Q, — f(1)Q, + (1)@ =0.

The terms in this equation were all of the form + f(¢#)Q,
with Q aheat input to, or output from, the system, and ¢ the
temperature at which the heat entered or left. The terms
were positive for heat inputs and negative for outputs. (We
are taking the viewpoint of the system.) Equation (10) for
the Carnot cycle came out the same way when it was com-
bined with Eq. (11),

fNQ' —f(nQ@=0.

Again an equation was derived with terms of the kind
S(6)@ for heat inputs and outputs. Equivalence-value cal-
culations for other reversible cycles reduced to equations of
exactly the same form.

Clausius’ original technique of requiring compensating
equivalence values for reversible, cyclic processes had now
revealed a simpler, and as it turned out, far more signifi-
cant, pattern. Clausius was able to prove that any reversible
cycle could be represented by a vanishing sum of f(z)Q
terms, with the Qs and s interpreted as explained above.
His general conclusion could be put

(10)

z S(1)Q =0 (reversible, cyclic processes),
for a process with a finite number of steps, or
f f(1)dQ =0 (reversible, cyclic processes), (12)

for a process consisting of an infinite number of steps, each
one involving an infinitesimal heat transfer of amount dQ
at the temperature 2.

Clausius’ proof of his general conclusion is too lengthy to
fitinto our limited space, but it is important to mention that
the only assumption in the proof was the phenomenologi-
cal “axiom” that heat cannot be transmitted from cold to
hot. In his 1854 paper, Clausius stated his assumption:
“Heat can never pass from a colder to a warmer body with-
out some other change connected therewith, occurring at
the same time.”” Later he simplified his axiom to: “Heat
cannot of itself pass from a colder to a warmer body.”®

Clausius must have quickly recognized that in making
the seemingly formal change in his equivalence-value cal-
culation that led to Eq. (12) he had actually taken a step of

1071 Am. J. Phys., Vol. 54, No. 12, December 1986

considerable mathematical and physical significance. He
was aware of the mathematical fact that vanishing of an
integral (dF, evaluated for a cyclic path determined by the
independent variables x and y, guaranteed that dF was a
differential of a function F(x,y) of x and y. Applied to his
conclusion (12), this theorem told him that the quantity
f(£)dQ was equal to the differential of some function of the
state-determining variables used to define the reversible,
cyclic process, perhaps v and ¢, or Pand v. He had, in other
words, discovered another state function, in addition to the
function U defined and partially interpreted in his 1850
paper.

In this case, however, the interpretation was even more
difficult. Just what the quantity f(#)dQ meant in the phys-
ical problem was anything but clear. The integral (f(¢)dQ
performed in Clausius’ theory as an assessment of transfor-
mation equivalence values, but its broader signficance was
still a mystery. As a skilled theoretician, Clausius was
aware of the dangers of attaching too much physical mean-
ing to quantities which might be found later to be mere
figments of the mathematical argument. He did not offer a
name for the new state function in 1854, nor did he even
give it a symbol.

Sill Clausius felt he could trust his conclusion that
A(1)dQ was the differential of a state function, and from
that mathematical fact he could determine the function
(). Tt will be easier to follow his argument here if we
temporarily use the letter C (for Clausius) to represent his
new state function (Clausius eventually, ten years later,
decided on the letter S). Assuming with Clausius that the
state-determining variables v and ¢ are of interest, we write
his new state function C(v,t) and define its differential
changes

dC=f(t)dQ (reversible processes). (13)
Notice the reversibility stipulation, without it the original
integral statement (12) is not justified, so it must be includ-
ed here.

Since C(v,t) (as we are calling it) was a state function,

" Clausius reasoned in effect, its second derivatives with re-

spect to v and ¢ had to be equivalent:

[i(ég) ] - [i(é_c_)

at dv tJo ov at vde
The two derivatives (dC /dv), and (dC /dt), could be
evaluated by making use of a simple physical statement,’

dQ = Mdv + Ndt, (14)

in which v and ¢ were the specific volume and temperature
of a system. As Truesdell remarks, '° equations like this had
been in use for many years to represent the data of calori-
metry. The equation pictured an amount of heat dQ added
very slowly (in effect, reversibly) to a system, causing
changes dv and dt in the system’s volume and temperature.
The factors M and N, determined by the particular materi-
al present in the system, represented the heat required to
cause one-unit changes in the volume and temperature.
The coefficient M was called the “latent heat of expan-
sion,” and NV was the (constant-volume) heat capacity.
From the “calorimetry equation” (14) Clausius derived

dC = f(¢)dQ = f(¢t)Mdv + f(t)Ndt,

William H. Cropper 1071



and established that
( 9 ) = f(OM,

1)
(%) ~ron
Thus,
[ (&) ] =romno(F),

[5(& )] =ol5),

and equivalence of these expressions for the second deriva-
tives led to a differential equation involving f(¢),

f’(t)M+f(t)(‘9ait4)u =f(,)(z(99_1:’)
or
fow-sol(£) ()}

In his 1850 paper, Clausius had proved that the expression
on the right in the brackets was equivalent to
— A(AP /3t),." Thus the equation for f(¢) reduced to

FUOM= _Af(‘;_f) . (15)

v

t

Clausius regarded f(¢) as a universal function which
could be determined once and for all, most easily with M
and (9P /dt), in Eq. (15) evaluated for the ideal-gas case.
He wrote the ideal gas law in the form

Pv=R(a+1),

with a + ¢ expressing the absolute temperature (Clausius
assumed that the constant @ had a value of about 273 °C),

SO
(‘9_”) —R /. (16)
a ).

He could evaluate the factor M for an ideal gas by writing
the calorimetry equation ( 14) for an isothermal expansion,
dQ = Madv

and then assuming, as Mayer and others had before him,'?
that when an ideal gas expanded isothermally all the heat it
absorbed was converted to work, that is,

(constant T),

dQ =APdv (constant T).
For an ideal gas, then,
M=AP. (17

When the two results (16) and (17) were substituted in
Eq. (15) the f(¢)-determining equation became

Af' (1)P= — Af(t)R /v.
Substituting
P=R(a+1/v

from the ideal-gas equation finally whittled the f(¢) equa-
tion to just

fli=—fy/(a+1)
or
dinf= —dln(a +1).
Integration of the last equation produced a usable expres-

1072 Am. J. Phys., Vol. 54, No. 12, December 1986

sion for f(¢):
f(t) = (constant)/(a + t),
so Eq. (13) became
dC = (constant)dQ /(a +t) - (reversible processes).

The constant factor, mathematically a constant of integra-
tion, simply determined the scale which measured C. The
constant’s value was arbitrary; Clausius chose a value of a
unity and wrote

dC=dQ/(a+1)

Clausius represented the absolute temperature a + ¢ with
T, and his final expression for the differential of his func-
tion was

dC=dQ /T (reversible processes), (18)

a familiar expression when our Cis replaced by Clausius’ S.

Even though the name and the symbol were missing in
his 1854 memoir, Clausius had formulated in that paper
rudiments of the theory of the concept he would eventually
call entropy. Clausius was aware in 1854, however, that the
theoretical picture he had created of the new concept was
limited in several important ways. The differentials calcu-
lated according to the prescription (18) could so far be
used only to set the condition (12), which was in turn rath-
er severely limited to cyclic and reversible processes. The
condition of reversibility had originally been invented by
Carnot to define an ideal mode of heat-engine operation,
ideal in the sense that it gave maximum efficiency. Reversi-
bility was essential in Clausius’ analysis because it permit-
ted him to assert that his two kinds of heat transformation
compensated each other. Carnot had also been the first to
recognize the theoretical importance of cyclic processes; he
had used his famous four-stage gas cycle in some of his
most far-reaching arguments. Here, too, Clausius followed
Carnot’s lead; his theory began with a six-stage cycle, pat-
terned after Carnot’s, and was finally generalized in Eq.
(12) to cyclic processes of any kind.

Clausius had done wonderful things with Carnot’s theo-
retical style. One can imagine that if Carnot had lived long-
er (he would have been fifty-four in 1850), and if he had
recognized the fact that heat could be transformed by con-
version as well as by transmission, he might have reasoned
much as Clausius did in 1850 and 1854. In the two papers,
Clausius had done what Carnot demanded; and then in the
1854 paper he began to move beyond Carnot, into the more
realistic realm of irreversible processes which were not of
the ideal, reversible kind. Clausius showed, in a proof
which is too lengthy to cover here, that the integral f dQ /
T, which vanished for cyclic, reversible processes, always
had negative values for cyclic, irreversible processes'?:

(reversible processes).

fa’Q /T =0 (reversible, cyclic processes),

J dQ /T <0 (irreversible, cyclic processes).

Clausius used the letter N to represent the magnitude of his
§dQ /T integral,

N= — f dQ /T (cyclic processes),

and expressed his conclusions
N =0 (reversible, cyclic processes)
N>0 (irreversible, cyclic processes).

William H. Cropper 1072



[Don’t confuse this N with the N used as the temperature
coefficient in the calorimetry Eq. (14).] In general, Clau-
sius concluded, his integral § d@ /T, and therefore N, were
measures of the equivalence values for all transformations
occurring in a cycle. If the cycle was operated reversibly, all
the transformations were balanced or compensated and N
vanished. If the operation of the cycle was irreversible,
some of the transformations were “uncompensated” (e.g.,
direct transmission of heat from hot to cold without a com-
pensating conversion of heat to work) and N assessed the
equivalence values of these uncompensated transforma-
tions.

Clausius had made another valuable addition to Car-
not’s theoretical repertoire in his 1850 and 1854 papers, his
introduction of the state-function concept, embodied in the
two functions Uand (as we are still calling it) C. And it was
the state functions, particularly the second one, which re-
leased Clausius’ theory from its remaining restriction to
the analysis of cyclic processes. The paper in which he
made this final move toward generalization was published
in 1865.'* By the time he wrote this paper, the last of his
nine memoirs on thermodynamics, Clausius had decided
that his theory must center, mathematically and physical-
ly, on the two state functions. He was now willing to accept
the term energy for U, and at long last (as it seems to us,
with all the benefits of hindsight) he had gained enough
confidence in his “C function” to supply a letter and name
for it. For no specified reason, he chose the letter S for the
function and wrote its differential

dS=dQ/T (reversible processes). (19)

Since the quantity was used in dQ /T integrals to calculate
transformation equivalence values, he derived his word for
it from the Greek word “trope,” meaning “transforma-
tion.” The word he proposed was “entropy,” with an “en-"
prefix to make the word a fitting partner for “energy.”

The entropy differential statement (19) could be applied
to any process, cyclic or otherwise, as long as the process
satisfied the reversibility stipulation. Since .5 was a state
function, dSs could be integrated along some reversible
path connecting any two states, call them 1 and 2, and the
value of the integral determined entirely by S evaluated for
the two states,

2
J ds=S8(2) - S(1).
1
Thus the integrated version of Eq. (19) was

2
S(2) - S(1) =f dQ /T (reversible processes).
1

(20)

How could the entropy calculation be made if the pro-
cess connecting the two states was not reversible? This
question was the final and crucial one answered by Clau-
sius in his 1865 paper aimed at generalizing his theory. If it
was to have practical importance, his theory again had to
reach beyond the ideal, unrealistic province of reversible
processes; all real physical and chemical processes were to
some degree irreversible. The versatility and power of
Clausius’ theory permitted him to solve this problem, the
most complicated and subtle he had faced, in the space of
about one page.

Heimagined a cyclic process in which two states, labeled
say 1 and 2, were connected by two processes, one reversi-
ble and the other irreversible. The path of the cycle first
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followed the irreversible path from state 1 to state 2, and
then returned along the reversible path from state 2 back to
state 1. Clausius’ determination of N for this cycle was
straightforward,

2 1
N= _J dQ/T—f dQ/T
1 2"

2 2
_ _f dQ/T+f dQ/T,
1 1"

with { and §, denoting integrations over the irreversible
and reversible parts of the cycle. The second integral could
be evaluated with Eq. (20), so

2
N= —f dQ/T+8(2) —S(1),
1
and the entropy calculation was simply
2
5(2)—S(I)=J dQ/T+ N. @n
1

This was the generalized entropy calculation Clausius
needed. It could be applied to reversible processes, for
which N = 0, or to irreversible processes, for which N> 0.
Theintegral fdQ /T was vitalin both cases. For any reversi-
ble process it was exactly equal to the entropy change; for
any irreversible process, it was always less than the entropy
change,

2
S(2)—-S(1)>f dQ/T. (22)
1

Equation (21) and the inequality (22) stated for Clausius,
and state for us today, the Second Law of Thermodynam-
ics.

Clausius may have the dubious distinction of being the
most forgotten major nineteenth century scientist. Clau-
sius’ equations, some of them written exactly as he ex-
pressed them a century or so earlier, are on display in all
modern thermodynamics texts, and in an astonishing var-
iety of other texts where the methods of theromodynamics
are applied. Yet Clausius himself, even his name, has all but
disappeared. In a typical modern thermodynamics text, we
find his name associated with a single, comparatively mi-
nor equation (the “Clausius-Clapeyron” equation). There
have been no biographies; the known facts of his personal
life fill only a few paragraphs.

What we do have from Clausius is his collected papers.
They havelittle to say about Clausius as a human being, but
they tell us about the other half of his story, his scientific
work. We can read Clausius’ papers and fully appreciate
his place in the beautifully clear line of development of
thermodynamics between 1824 and 1875—from Carnot to
Clausius, and then to Clausius’ greatest successor, Willard
Gibbs. Clausius’ role in this was pivotal. He knew exactly
how to interpret and rebuild Carnot’s message, and then to
express his own conclusions so they could be used by an-
other genius, Gibbs. The grandest theories make their own
vital contributions and then inspire the creation of other
great theories. Clausius’ achievement was of this very rare
kind.

"Rudolf Clausius, “On a Modified Form of the Second Fundamental
Theorem in the Mechanical Theory of Heat,” reprinted as the “Fourth
Memoir” in The Mechanical Theory of Heat, translated by T. Archer
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In the summer of 1985 we ran a workshop for high school physics teachers, sponsored by the
National Science Foundation under its program of Honors Workshops for Pre-College Teachers
of Science and Mathematics. The summer experience consisted of a five-week workshop and a
four-week industrial experience. The teachers had a wide variety of backgrounds and needs,
which were accommodated in the workshop. This paper describes how the workshop was run,
what activities were successful, and where we encountered problems.

L. INTRODUCTION

Recently the United States, after several years of neglect,
has rediscovered the precollege classroom. One of the re-
sults has been the availability of money from the National
Science Foundation to provide honors workshops for pre-
college teachers of science and mathematics. Their basic
goal is to “motivate and increase the capabilities of precol-
lege mathemathics and science teachers and thereby im-
prove the instruction of students.” In the summer of 1985
we ran a workshop for high school physics teachers, under
this program. We provided the teachers an intensive five-
week workshop whiceh carried ten quarter credits of gradu-
ate credit in physics, reviewed selected topics in classical
and contemporary physics, and provided extensive experi-
ence in demonstration and laboratory. The teachers also
participated in a four-week experience working in industry.

There were many features of the workshop which dif-
fered from summer institutes we had run in the past. The
NSF guidelines were for workshops to identify and honor
teachers “‘of proven high quality and performance.” We
proposed not to measure quality by years of experience.
Instead we planned to select some experienced teachers
and some who started to teach physics only recently, either
because of age or reassignment. We hoped to establish a
buddy system between experienced and less experienced
teachers.

We proposed to honor the selected teachers in two ways.
First, we sought to treat them as professionals and to be
very sensitive to what they said they needed to improve the
learning experience for their students. To this end we pro-
posed to establish rapport with them through classroom

1074 Am. J. Phys. 54 (12), December 1986

visits. The purpose of these visits was twofold: to introduce
our staff to the life of a high school teacher so we would be
more sensitive to their specific needs, and to elicit from the
teachers both their general expectations and what they
specifically wanted to learn in the workshop. Topics and
activities in the workshop were planned after these visits.

We also felt that the school districts should honor the
selected teachers. We proposed to see how many school
districts would provide one month’s salary for the profes-
sional development of their teachers, along with $500 of
supply and equipment money to be used at the teacher’s
discretion to implement improvements.

This paper describes how the workshop was planned and
run to meet the broad range of teacher backgrounds and
needs, and how we made midcourse corrections to enhance
the experience of the teachers.

IL. PARTICIPANT SELECTION, TEACHER
SUPPORT AND CREDIT

A brochure was mailed to all physics teachers and high
schools in the state. There was no formal application form;
we asked applicants to prepare an essay about how they
would benefit from the experience and to have letters of
recommendation sent from a student or parent and from a
teacher colleague or principal. Seventy eight applications
were received for the 40 positions. It was difficult to choose
on the basis of the material available to us: each teacher
expressed need eloquently, and the letters of recommenda-
tion said much more about those writing them than about
the teachers. Half of the participants were experienced
physics teachers; the other half were less experienced. We
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