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and the pipe are assumed to be in proportion as P is to m, the impulse
of the water against the base will be to the residual impulse as p +
is to p; for the impulse is distributed equally over all the material of
the water as well as the pipe, and only the fluid reacts on the base.
But now let us assume a very small orifice m in the base BA ;
through this, nevertheless, water is considered to flow very freely;
thus we understand that a particle of water will be ejected through the
small orifice m during the impulse; however, the quantity of that
water cannot be determined, for it depends upon the rigidity of the
material AP receiving the impulse: indeed, if that material is very
rigid, a greater pressure is to be substituted for the impetus, but lasting
for less time; for example, let the same impetus be considered for two
different cases: moreover, in one let the pressure be quadrupled, in
the other let the duration of the pressure be quadrupled, which can
happen when the material is more rigid in the former case than in the
latter; thus, approximately double the quantity will flow out in the
impulse of the lesser pressure and greater duration than in the other
case. In this way the rigidities of materials can be explored: but
they can be found as well from sound.

TWELFTH CHAPTER

Which shows the Statics of Moving Fluids,
which I call Hydraulico-Statics

§1. Among those who gave measurements of the pressure of fluids
existing within vessels, few have gone beyond the common rules of
Hydrostatics which we showed in Chapter IT; nevertheless, there are
many other rules which pertain to the appropriately named Hydro-
statics, such as whenever a centrifugal force or the force of inertia is
united with the action of gravity, each of which we discussed in the pre-
ceding chapter; dead forces of this type can be devised and combined in
infinitely many other ways. But these are not the things which seem
to me to be most desirable, since it is not difficult to give general rules
for this procedure. I desire, rather, [to treat] the statics of fluids
which are moved within vessels in a progressive motion, such as of
water flowing through conduits to leaping fountains: indeed, this is
of multiple use, and it has not been treated by anyone, or, if some
people can be said to have made mention of it, it was not at all
properly explained by them; indeed, those who have spoken about
the pressure of water flowing through aqueducts and the strength
required of the latter for sustaining that pressure did not hand down
any laws other than those for extended fluids with no motion.

§2. It is singular in this Aydraulico-statics that the pressure of water
cannot be defined unless the motion has been known correctly, which
is the reason that this doctrine escaped notice for so long; indeed, up
to now Authors were hardly anxious to investigate the motion of
water, and they estimated velocities almost everywhere from the
height of the water alone; however, although the motion often tends
so quickly toward this velocity that the accelerations clearly cannot
be distinguished by observation, and all the motion seems to be
generated in an instant; nevertheless, it is of interest to understand
these accelerations correctly, because otherwise the pressures of the
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flowing water often cannot be defined, and on that account I esti-
mated that it is a matter of greatest moment to consider those changes,
however nstantaneous, from the beginning of motion up to a given
limit with all care, and to confirm them by experiments, which I did
at different places in this treatise, but especially in Chapter ITI.

§3. If the motion could be defined everywhere, it would be easy
to develop the most general statics in moving fluids: indeed, if one
assumes an orifice which is infinitely small in that very place at which
the pressure of the water is desired, one will seek to learn first at what
velocity the water would erupt through that tiny orifice and to what
height that velocity would be due; moreover, one understands that
the pressure which is sought is proportional to this very height.

From this principle the pressure is to be sought which the hori-
zontal plate LQ in Fig. 43 sustains if it has not been perforated. In-
deed, since it has been shown by us in the second corollary of §31,
Chapter VIII, that, if the orifice H is infinitely small in proportion
to the orifices M and W, and the ratio of these orifices M and JV is
indicated by « and y, then the height due to the velocity of the water
aa(LB) — yy(NQ)

ae + yy
that the pressure of the water against the nonperforated plate LQ is
proportional to this very height. We gave the same proof in another
way in §19 of the cited chapter. Hence it follows that it can occur
that the section LQ experiences no pressure, however great the height

erupting through H will be

, we will thence judge

of the water above it may be, as for example when y = oV LB/NQ ;
indeed, the pressure can even be changed into suction.

§4. Similarly, the pressure of the water against the section LQ is
obtained if, for instance, the latter is perforated by an orifice of finite
size in proportion to the two remaining [orifices]. For if the section
is perforated by an infinitely small orifice with respect to that which
exists at H, the water cannot but erupt at a common velocity through
either one. And since this velocity is known (from §30, Chapter
VIII) for the orifice H, the velocity is also obtained at which the water
must erupt through the tiny orifice which we conceive, and thus we
know the pressure of the water. For example, let the orifices M,
H, and VN be equal to one another, and also let the height BL have a
ratio to the height LQ as 10 is to 3, and the pressure against the plate
LQ will be one-tenth of what it is with the orifices A and N closed off.

Finally, if one should desire the pressure of the water in another
location, he will simply add the height by which the section LQ
exceeds that point to the height of the thrust through the orifice H.
The same method serves for determining water pressures in the rest
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of the vessels which we treated in Chapter VIII. But all these
matters differ from those which pertain to the motion of fluids through
conduits, because the water, on account of the infinite size of the
vessels assumed by us, is as if at rest in cavities, and nevertheless it
exerts a far different pressure from what is otherwise customary.
Moreover, in conduits the water changes its pressure more, the greater
the velocity at which it flows through, and it exerts almost all its
customary pressure if that velocity is very small.

This is so whenever the velocities of fluids can be determined by the
methods presented by us just above. But the matter must be handled
by a singular method when the water flows through conduits, and I
comprehend this doctrine especially under the title of Aydraulico-
statics. Here, not so much can the pressure be defined from the
velocity as, reciprocally, the velocity from the pressure, if a small
orifice is made in the walls of the conduit. And in the present
chapter T decided to treat especially that Aydraulico-statics, the appli-
cation of which is very broad.

ProBLEM

§5. The very wide vessel ACEB (Fig. 72), with the cylindrical and
horizontal pipe ED attached, is to be kept constantly full of water;

Ficure 72

and at the extremity of the pipe let there be the orifice 0 emitting
water at a uniform velocity; the pressure of the water against the
walls of the pipe ED is sought.
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Sorution. Let the height of the aqueous surface AB above the
orifice 0 be a; the velocity of the water flowing out at o, if one excludes
the first instants of flow, will have to be considered uniform and equal

to V'a, because we assume the vessel to be kept constantly full; and,
with the ratio of the arcas of the pipe and its orifice assumed equal to

7—1, the velocity of the water in the pipe will be —n—a . But if the entire
1

base FD were missing, the ultimate velocity of the water in the pipe

itself would be V/a, which is greater than —n—a . Therefore, the water

in the pipe tends to greater motion, but its pressure is impeded by the
added base FD. By this pressure and repressure the water is com-
pressed, which very compression is confined by the walls of the pipe,
and hence these sustain a like pressure. Thus it appears that the
pressure of the walls is proportional to the acceleration, or the incre-
ment of velocity which the water would receive if the entire obstacle
to motion would vanish in an instant so that [the water] might be
ejected immediately into the air.

Therefore, the problem is now changed into this: if during the
flow of water through o the pipe ED were broken at ¢d at an instant,
one secks the magnitude of the acceleration the volume element achd
would thence be about to obtain; indeed, the particle ac taken at the
walls of the pipe will sense that much pressure from the water flowing
through. To this end the vessel ABEcdC is to be considered, and with
regard to it the acceleration of an aqueous particle close to efflux is to

be found, if this would have the velocity %l. We handled that

matter very generally in §3, Chapter V. Nevertheless, because the
calculation is short in this particular case, we will here again subject
the motion in the shortened vessel ABE¢dC to evaluation.

Let the velocity in the pipe Ed, which [velocity] is now to be con-
sidered as variable, be v; let the area of the pipe, as before, be n, the
length Ec = ¢; let the length of the aqueous particle ae, infinitely
small and about to flow out, be indicated by dr. There will be an
equal volume element at E entering the pipe at the same instant that
the other, acdb, is ejected; moreover, while the volume element at
E, the mass of which is n dx, enters the pipe, it acquires the velocity v
and the live force nvo dx, which entire live force was generated anew;
indeed, the volume element at E, not yet having entered the pipe,
had no motion on account of the infinite size of the vessel AE; to this
live force, nvv dx, is to be added the increment of live force which the
water at £b receives while the volume element ad flows out, namely,
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oncy dv; the sum is due to the actual descent of the volume element

n dx through the height BE or a; therefore, one obtains nov dx +
v dy a — vy

aney dv = na dx, or — = .
dx 2¢

Moreover, in all motion the increment of velocity dv is proportional

to the pressure multiplied by the differential time, which here is —;
v
therefore, in our case the pressure which the volume element ad ex-

. . . . vdy . .
periences is proportional to the quantity T that is, to the quantity

a—w
2¢
. . o a a
But at that instant at which the pipe is broken, v = —, or v = —;
n nn
. . . . . a—uw
therefore, this value is to be substituted in the expression P
¢

. . . nm — 1
which thus is transformed into

a. And this is the quantity to

which the pressure of the water against the portion ac of the pipe is
proportional, whatever area the pipe may have, or by whatever
orifice its base may be perforated. Therefore, if in a particular case
the pressure of the water would be known, it would be understood at
the same time in all remaining [cases]: but, indeed, we have this
[pressure] when the orifice is infinitely small or # is infinitely large
with respect to unity: for then it is evident from itself that the water
exerts its entire pressure, which conforms to the total height a, and
this pressure we will designate by a; but when # is infinite, unity
vanishes with respect to the number nz, and the quantity to which the

. . a . .
pressure is proportional becomes e Therefore, if we wish to know
¢

in general how great the pressure is when 7 is any number whatever,
the following analogy must be used. If the pressure a conforms

. a . .
to the quantity o what then will be the pressure for the quantity

nn — 1 . .
Py a? And thus the desired pressure is found equal to
nn — 1
. E.L
m Q

§6. CoroLLARY I. Because the letter ¢ vanishes from the calcula-
tion, it follows that all portions of the pipe, those which are nearer to
the vessel AG as well as those which are more remote, are pressed
equally by the water flowing through, and certainly less than the
elements of the base CG, and the difference is the greater, the larger is
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the orifice o; and, further, the walls of the pipe do not sustain any
pressure if in the latter the entire barrier #D is missing, so that the
water flows out from a full orifice.

§7. CororLLARY 2. If the pipe is perforated somewhere by a very
small orifice that is necessarily in some ratio to the orifice o, the
water will spring forth at the velocity by which it could ascend to the

height m—%—;a ifonly no foreign hindrances were interfering. Indeed,

nna — a
m

this will be the height of the thrust in Fig. 73, or in = But

B

FIGurE 73

if the small tube gm is attached, vertical or even inclined in some way,
connecting with the horizontal pipe, but so, nevertheless, that the ex-
tremity of the inserted tube does not project into the cavity of the
horizontal pipe lest the water flowing past strike against that extremity,
the vertical height gh of the water standing in the inserted tube will

nna — a . . :
also be equal to ———; and it is not necessary in this latter case
nn

that the tube gm be very narrow.

ScHOLIUM

§8. Therefore, this theory can be confirmed very easily by experi-
ment, and this will be of more importance because up to this time no
one has defined equilibria of this sort, the use of which is very widely
evident, because by the same method the pressure of water flowing
through conduits can be obtained very generally for aqueducts in-
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clined in any way whatever, curved, of varied area, and at any
velocity of water whatever; then, as well, because not only this
[theory] of pressures, but the entire theory of motions besides, which
we gave above, is confirmed by experiments of this sort, because they
prove that the accelerations of the water were defined correctly by us.
But one must take care in the experiment that the horizontal pipe is
very smooth on the interior, perfectly cylindrical and horizontal, and
that it is wide enough so that no noticeable decrement of motion can
arise from the adhesion of the water to the walls of the pipe; let the
vessel itself be very wide and be kept full continuously. Also one
must observe how great is the characteristic of elevating standing
water in the glass tube gm, which characteristic pertains to all capillary
or rather narrow tubes; for this elevation is to be subtracted from the
height gh; or, rather, a pipe of equal thickness is to be assumed with
the orifice 0 blocked off, the point m is to be noted, and then, with the
water allowed to flow, the point £ is also to be noted; moreover,
according to the theory the descent will be mh = nin a = nin (EB).
Finally, one must pay attention as well to the stream of water
flowing out at o, for its contraction also causes the water in the hori-

zontal pipe to flow through at a velocity less than —n—d. I treated that

contraction and the method of preventing it in Chapter IV. But
although it can happen with these inconveniences that no noticeable
error remains in the experiment, nevertheless, if we wish to apply
greater accuracy, the quantity of water flowing out in a given time
will have to be discovered by experiment, which [quantity], compared
with the area of the pipe, will give very correctly the velocity of the
water flowing within the pipe, which in the calculation we have set

equal to —7{—1. But if in the experiment it will be found to be less,

such, for example, as is due to the height b, then the pressure of the
water flowing by will be approximately a — b.

§9. Cororrary 3. If the orifice at o is blocked off at first by a
finger, and afterwards the water is allowed to flow, the pressure a at

. . nna — a
the first moment of flow is changed into the pressure ———, but that
nn

change of pressures does not occur in an instant; if, indeed, one is to
speak accurately, it occurs at last after an infinite time, because, as
we saw in Chapter V, the entire velocity of the water, which was
assumed by us in the calculation to correspond to the whole height a,
is never present exactly; nevertheless, it tends toward this velocity
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with an incredible acceleration immediately after the first drops have
been cjected, so that it seems to have acquired the total [velocity], as
much as can be judged by observation, without any noticeable delay,
unless the aqueducts are very long, for then the accelerations of the
water can be discerned clearly by eye, an example of which I gave in
§13, Chapter V. Therefore, in those conduits bearing water to a
leaping fountain from a reservoir located very far away, if the pres-
sures are investigated at some point by experiment in the manner that
I mentioned above, it is found that the pressure is diminished quickly
indeed, neverthieless not in an instant, and it will be possible to
distinguish the differences of the pressures.

But in order to define the force of the water generally, one must
assume for » that velocity which the water has at that same place and
that same instant at which the force is desired, and if this velocity is
known to conform to the height b, the force of the water will be a — b.
Hence, since those things which were offered in Chapter V have
agreed with the present, it will be possible to define what the pressure
will be at any moment.

For these [statements] it is not difficult to anticipate the laws of this
hydraulico-statics if both the shape of the vessel and the velocity of the
water flowing through the conduits are assumed at will as anything
whatever. Indeed, the pressure of the water will always be a — b,
where by a is understood the height due to the velocity at which water
will flow out of an abrupt conduit and vessel kept constantly full after
an infinite time, and by & the height due to the velocity at which the
water actually flows through. It is clearly amazing that this very
simple rule, which nature affects, could remain unknown up to this
time. Therefore, I will now show it more expressly.

ProBLEM

§10. To find the pressure of water flowing at any uniform velocity
whatever through a conduit arbitrarily formed and inclined.

Sorution. Let there be a conduit ACD (Fig. 74), through the ori-
fice o of which water is considered to flow at a uniform velocity due
to the vertical height oS; let the line SN be drawn, and let the in-
finitely wide vessel NMQ P be assumed full of water right up to NP,
from which the conduit draws its water perpetually and equally; I
assume these things accordingly in order that a cause be present, or a
uniform propelling force, which propels the water at a given velocity
or maintains an equal flow of water. And without this hypothesis
our problem would be indeterminate, because the same velocity in
the same conduit pertaining to any instant can be generated in in-
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finitely many ways, and therefore, in order that a measure of the cause
propelling the water be obtained, uniformity must be assumed in the
motion of the water.

FIGURE 74

Now the pressure of the water is to be defined at CF (or ¢f); and to
this end we will consider again that the conduit is broken at the
section CE (or ¢¢) perpendicular to the conduit, and we will examine
what acceleration or retardation the volume element CEGF (or cegf)
will receive after the first instant of rupture; for this reason we have
to define generally the instantaneous motion through the shortened
vessel NMECAQP (or NMceeAQP). Therefore, let the velocity of the
infinitely small volume element CEGF (or cegf) at that very point of
cutting off be v, and let its mass be dx; the live force of the water moving
in the shortened vessel will be proportional to the quantity sv; hence
we will set it equal to avy, understanding by the letter o some constant
quantity which depends upon the areas of the suddenly broken con-
duit; however, its precise determination is not required here. Let it be



