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But this is not the case with the other bright bands. The
brightest band of the second order, for instance, corresponds
to a division of the wave AI'G- into three arcs, the extreme

rays of which differ by one-half a wave-length ;
the effects

produced by two of these arcs annul each other. Consequent-
ly, this band receives light from only one-third of the incident

wave-front, while even the effect produced by this third is

somewhat diminished by the fact that there is a difference of

one-half a wave-length between the rays from its edges. A
similar process of reasoning shows that the middle of the

bright band of the third order is illuminated by only one-fifth

of the wave-front AI'G, the light of this one-fifth being still

further diminished by opposition of phase in its extreme

rays.

[Here are omitted six pages, including a geometrical discussion

of the general relations between size of aperture (or obstacle), dis-

tance of screen, distance of luminous point, etc.]

56. I have just explained the general relations between the

size of any particular fringe and the respective distances of the

obstacle from the luminous point and from the micrometer.
As we have seen, these laws may be derived from theory quite

independently of any knowledge of the integral which at each

point represents the resultant of all the secondary waves
;
but

in order to find the absolute size of these fringes, it is essential

that we compute this resultant, for the positions of maxima and
minima of intensity can be determined only by a comparison
of the different values of this resultant, or at least by knowing
the function which represents it.

In order to do this, we propose to apply to the principle of

Huygens the method which we have already explained for com-

puting the resultant of any number of trains of waves when
their intensities and relative positions [phases'] are given.

APPLICATION OF THEORY OF INTERFERENCE TO HUYGENS'S
PRINCIPLE

57. Let the waves from any luminous point be partly inter-

cepted by an opaque body AG. To begin with, we shall sup-

pose that this screen is so large that no light comes around the

edge G, so that we need consider only that part of the wave
which lies to the left of the point A. Let DB represent the
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plane upon which are received the shadow and its fringes. The
problem then is to find the intensity .of the light at any point
P in this plane.

If from C as centre and with a radius CA we describe the
circle AMI, it will represent the light- wave at the instant it

is partly intercepted by the opaque body.
It is from this position of the wave that I

have computed the resultant of the sec-

ondary waves sent to the point P.. If we
consider the wave in an earlier position,

say A'MT, i.t then becomes necessary to

calculate the effect of the obstacle on each
of the secondary waves arising from the
arc A'MT

; and if we consider the wave
in a later position, say A"M"I", it becomes

necessary to first determine the intensities

of its various points, for they are no longer
equal, having been changed by the inter-

position of the screen. In this case the

computation is vastly more complicated,
possibly quite impracticable. If, however,
we consider the wave at the instant it

Fig. 19

reaches A, the process is simple ;
for then all parts of the wave

have the same intensity. Not only so, but none of the second-

ary waves are now affected by the opaque screen. However
numerous the subdivisions into which we may consider these

elementary waves divided, it is evident that the number will

be the same for each, since they are transmitted freely in all

directions. And, therefore, we need only consider the axes of

these pencils of split rays?, e., the straight lines drawn from
the various points on the wave AMI to the point P. The dif-

ferences of length in these direct rays are the differences of

path traversed by the elementary or partial resultants meeting
at P.*

In order to compute the total effect, I refer these partial re-

sultants to the wave emitted by the point M on the straight line

CP, and to another wave displaced a quarter of a wave-length
with reference to the preceding. This is the process already

employed (p. 101) in the general solution of the interference

*
[Afoot-note is here omitted.']
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problem. We shall consider only a section of the wave made
by a plane perpendicular to the edge of the screen, and shall

indicate by dz an element, nn', of the primary wave, and by z its

distance from the point M. These, as I have shown, suffice to

determine the position and the relative intensities of the bright
and dark bands. The distance nS included between the wave
AMI and the tangential arc, EMF, described about the point P

as centre is | = ^ where.a and b are, as before, the distances
ab

CA and AB. If we denote the wave-length by X, we have for
the component in question, referred to the wave leaving the

point M, the following expression

dz cos
(
TT -

) ;

\ abX J
'

while for the other component,* referred to a wave displaced a

quarter of a wave-length from the first, we have

If, now, we take the sum of all similar components of all the
other elements, we shall have

rdz cos ,
+ and rdz siriJ ab\ I J ab\

Hence the intensity of the vibration at P resulting from all

these small disturbances is

The intensity of the sensation, being proportional to the

square of the speeds of the particles, is

This is what I have called the intensity of the light in order to
conform to ordinary usage, while reserving the expression in-

tensity of vibration to designate the speed of an ether particle

during its oscillation.

*
[ TJiese expressions for amplitude follow directly from sec. 40, when in the

ke a.
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general expressionfor velocity we make ao, a'=dz, and c=^- .]


