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INTRODUCTION

The question of the relationships between physics and mathematics is as old as 
philosophy. In his Physics and his Posterior analytics Aristotle fixed the framework 
for discussions on the relations and distinctions between physics and mathematics 
as well as the nature of the mixed sciences right up to the Renaissance and well 
into the seventeenth century. It could even be argued that the basic impulse toward 
the mathematization of natural philosophy in the seventeenth century owes less to 
the “platonism” of Galileo and others invoked by Koyré than to the long tradition 
of discussions on the mixed sciences. These discussions tended to extend the use 
of mathematics to domains beyond those considered by Aristotle as the “more 
physical among the mathematical sciences”,1 that is, Astronomy, Optics and 
Harmonics. Mechanics was to be added following the Renaissance recovery of the 
Pseudo-Aristotelian Mechanical problems.2 Without concern for what Aristotle 
‘really meant’, or for the fact that his physics was not mathematical, philosophers 
offered different interpretations of his views on mixed sciences, some stressing the 
incompatibility of physics and mathematics, others pointing to their compatibility 
using examples taken from the mixed sciences. Renaissance discussions of the 
mixed sciences thus contributed to extending the latter’s domain beyond the three 
canonical fields.3 John Dee, for example, in his “Mathematical Preface” to the 
English translation of Euclid’s Elements of geometry of 1570, insisted on the 
usefulness of mathematics for just about every domain of knowledge. And the 
seventeenth century saw the publication of many essays on the “usefulness of 
mathematics” running from the empirical Robert Boyle to the mathematical Isaac 
Barrow, followed at the turn of the century with essays by Fontenelle and John 
Arbuthnot.4 Boyle’s subtitle explicitly suggested that “the Empire of Man may 
be promoted by the naturalist’s skill in Mathematicks (as well pure, as mixed)”,5 
while for Barrow, the usual distinction between mathematics and the mixed 
sciences was artificial because mathematical objects “are at the same time 
both intelligible and sensible in a different respect”. Thus, he considered that 
“mathematics, as it is vulgarly taken and called, is co-extended and made equal 
with physics itself”.6

Barrow was not alone in entertaining this view. For John Wallis, for example, 
who worked on mechanics (a mixed science par excellence), it was obvious that 
physics was intimately related to mathematics. In the course of a discussion with 
Oldenburg, Wallis noted that he was surprised to learn that “the Society [’s members] 
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in their present disquisitions have rather an Eye to the physical causes of motion, 
& the principles thereof, than to the mathematical Rules of it”. He then commented 
that he considered his hypothesis on motion to be

indeed of the Physical Laws of Motion, but Mathematically demonstrated. For I 
do not take the physical & Mathematical Hypothesis to contradict one another at 
all. But what is Physically performed is Mathematically measured. And there is 
no other way to determine the Physical Laws of Motion exactly, but by applying 
the mathematical measures & proportions to them.7 

For Wallis the physics of motion was mathematical and he could simply not 
understand what Oldenburg meant by separating them or even giving the impression 
of opposing them. And Huygens, whose Orologium oscillatorium published in 
1673 gave new examples of the geometrization of natural philosophy, was still 
complaining to the Marquis de l’Hôpital in December 1692 that:

We find so few occasions to apply geometry to physics that I often find that 
surprising. For this, with mechanical inventions, is what merits most of our 
attention; otherwise, as Seneca said somewhere, we lose our intelligence in 
playing with futile calculations.8

Huygens thus makes explicit the relation between mathematics, mechanics and 
practical utility that is often present in the tradition of the mixed sciences.

Finally, Newton himself, who followed Barrow’s lectures and succeeded him in 
the Lucasian Chair at Cambridge University, made clear the continuity between the 
mixed sciences and natural philosophy in his Optical Lectures of 1670–72 when he 
said about the use of mathematics that

just as astronomy, geography, navigation, optics and mechanics are held 
to be mathematical sciences, though they deal with ... physical things, so 
although colours belong to physics, nevertheless scientific knowledge of 
them must be considered mathematical, in that they are treated through 
mathematical reasoning.9

Whereas discourses concerning the mathematization10 of nature have been largely 
discussed, following Koyré’s lead, through the lens of Platonic philosophical 
influences, the above considerations suggest that a more fruitful approach would 
be to see this process as the extension to other fields of the tradition of the mixed 
science.11 As recent work has shown, this process had important repercussions on 
the transformation of the disciplinary boundaries between mathematics and natural 
philosophy in the seventeenth century.12 But here, I would like to concentrate on what 
could be called the long term unintended consequences of the use of mathematics 
in physics, which have received scant attention from historians of science.13 It is 
thus the effects rather than the causes (or reasons) of the mathematization of physics 
that I want to follow in this paper. 

My starting point will be the publication of Newton’s Principia which marks, 
conceptually, a radical departure from the then dominant tradition of a mechanical 
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philosophy that explained phenomena, most often qualitatively, by contact forces. 
I will defend the thesis that by taking the mathematical route to natural philosophy, 
Newton initiated, or at least accelerated, a series of social, epistemological and 
even ontological consequences which, over the course of a century, redefined 
the legitimate practice of physics. As we will see, although these consequences 
were indirect and often only confusedly perceived by the actors involved, they 
led finally to the state of affairs we now generally take for granted: that physics 
is mathematical in its formulation. Far from being obvious, this idea was long 
debated in the eighteenth and even in the first half of the nineteenth century as more 
and more domains of physics lent themselves to mathematical formulations. By 
concentrating their attention on the ‘winners’, that is those who have accepted the 
mathematical conception of natural philosophy and physics, historians have not 
analysed the resistances to mathematization. In a recent book, for example, John 
Henry wrote that after the publication of the Principia, readers “took for granted 
the validity of mathematics for understanding the working of the world” and that 
“although his book met with some fierce criticism, not a murmur was raised against 
it in this regard”.14 As we will see, this was far from being the case but to recover 
these murmurs, one must look at actors who are now unknown precisely because 
they rejected the mathematization of physics and were thus excluded from the field 
(and its history) as it evolved in the eighteenth and nineteenth centuries. And it may 
be significant that only medicine and iatrochemistry have been examined as cases of 
resistance to mathematization, as if there could be little such resistance in physics 
after Newton’s Principia made the power of mathematics ‘obvious’.15

Sketching the elements of a larger research program, this paper will focus 
on the major effects of mathematization mentioned above: (1) social: the use of 
mathematics had the effect of excluding actors from legitimately participating in 
discourses on natural philosophy; and (2) epistemological: the use of mathematics 
in dynamics (as distinct from its use in kinematics) had the effect of transforming 
the very meaning of the term ‘explanation’ as it was used by philosophers in 
the seventeenth century. A third unintended consequence of the progress of 
mathematization, which we will only broach in the last section, was ontological: 
by its ever greater abstract treatment of phenomena, mathematization led to the 
vanishing of substances. Not only Cartesian vortices but also the luminiferous ether 
were dissolved in the acid of mathematics, and I have suggested elsewhere that the 
same process was at work in the transformation of the concepts of mass and light 
(photons and wave–particle duality).16

A QUESTION OF SCALE

To observe this ongoing process of mathematization one cannot limit oneself to a 
micro-analysis of a given situation and must, on the contrary, combine a local and 
a global perspective in order to find the directions taken by these transformations. 
As Duhem stated in another context: 
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whoever casts a brief glance at the waves striking a beach does not see the 
tide mount; but under the superficial to-and-fro motion, another movement 
is produced, deeper, slower, imperceptible to the casual observer; it is a 
progressive movement continuing steadily in the same direction and by virtue 
of it the sea constantly rises.17

This paper will try to describe the rising tide of the mathematization of physics by 
calling attention to its largely unintended social, epistemological and ontological 
consequences. But before beginning our enquiry, it will be useful to avoid 
misunderstandings by saying a word about our methodology. 

Over the past thirty years, the social history of science has developed, in 
part, on the basis of a strong reaction to what was perceived as a ‘whiggish’ and 
anachronistic view of the development of science and has tended to make very 
detailed examinations of episodes that were precisely delimited in space and time. 
This microscopic view has greatly enlarged our understanding but it has also had 
the consequences of focusing attention almost exclusively on actors’ categories and 
of dissolving any analytical (conceptual) category forged for making sense of 
the longue durée. Another aspect of these developments has been the tendency to 
limit the analysis of events to an understanding of their immediate context and to 
inquire only into the reasons the actors may have had to do what they did. Though 
these questions are perfectly legitimate and very interesting in themselves, they 
do not cover the whole range of possible questions that an historian of science 
may wish to ask of his sources. 

In this paper, I will for instance not address the question of what precisely ‘natural 
philosophy’ meant in Newton’s days, or why different actors came to believe that 
natural philosophy should be mathematical.18 As noted above, I wish to examine the 
unintended consequences of this choice, irrespective of the reasons various actors 
may have had in making it. For it is plain that actors’ intentions and programs do 
not always square with the consequences of their actions. In fact, many sociologists 
would tend to think that most effects result from the unintended consequences of 
action.19 And because this question is not only local but in a sense global, since 
these effects were not instantaneous but had repercussions over a long period of 
time, we do need categories that transcend those used by the actors at a given time 
and place. In the seventeenth and eighteenth centuries, for example, the French 
used the words ‘physique’ and ‘physicien’ where the British still used ‘natural 
philosophy’ and ‘natural philosopher’. And though for Newton ‘natural philosophy’ 
may have been about God,20 it, as we shall see below, did not stop his Continental 
readers from viewing his work as part of ‘physique’ or ‘geometry’ and, therefore, 
from putting God aside. Thus, for present purposes, I will use the two words 
interchangeably since the focus of our attention is not the meaning of those words 
at a given time and place (a meaning that in fact changed over time and place) but 
rather the reaction of various actors to the use of mathematics for understanding 
inanimate matter, whatever the name that was attributed to a given domain at a 
given time or place (physics, mechanics, dynamics, hydrodynamics, electricity, 
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magnetism, etc., are all domains that in the course of time came to be included in the 
term ‘physics’).21 And what has been said of ‘physics’ also applies to ‘mathematics’: 
its content obviously changed over time as well, being essentially geometry and 
proportion theory in the seventeenth century, calculus and differential equations 
in the eighteenth century, and then vectors, tensors and matrices in the nineteenth 
and twentieth centuries, to name only a few of the new tools used in physics at 
different times. The term ‘mathematics’ thus covers them all. In others words, the 
analytical categories used in historical inquiry can differ from the categories used 
by the historical actors for they depend on the nature of the questions framed. By 
being attentive to the scale (micro-, meso-, macro- in space as well as in time) at 
which a question is raised and by not confusing analytical categories with actors’ 
categories and by not automatically transferring concepts or terms used at one level 
to another, one could more easily eschew artificial debates22 about ‘whiggishness’ 
or anachronism.23 This does not mean that the actors’ categories are not important 
but that they are not sufficient for constructing historical narratives in the longue 
durée. And only such an approach covering a period roughly from 1700 to 1900 
can make visible the social, epistemological and ontological consequences of 
the mathematization of physics.

MATHEMATIZATION AND EXCLUSION

Three weeks before the publication of Newton’s Principia, Fatio de Duilliers, then 
in London, wrote to Huygens that some members of the Royal Society thought that 
“since the meditations [of Newton] all physics has been changed”.24 

Notwithstanding the fact that Fatio saw “physique” where his colleagues saw 
‘natural philosophy’, his letter clearly suggests that there was already a feeling 
that the publication of the Principia was somehow revolutionary. One thing is 
certain: it launched a new phase in the ancient debate over the nature of the relations 
between physics and mathematics. Though Galileo preceded Newton in applying 
geometry to free fall, he did not concern himself with the efficient cause of that 
fall and left that aspect outside his mathematics. The counter-intuitive effects of 
the mathematization of physical phenomena only began to be perceived with the 
development of dynamics, that is, the mathematization of the concept of force, 
as the cause of change in the state of motion.25 Though discussions concerning 
the social and epistemological consequences of the Newtonian approach were 
(though implicitly) often discussed in the same texts, I will treat them separately. 
In this section, I will concentrate on the threat that many practitioners saw in the 
ever-growing use of mathematics for their legitimate participation in discussions on 
matters of natural philosophy. It must be remembered that Descartes’s physics and 
cosmology as exposed in his Principles of philosophy were essentially qualitative, 
a “mathematical physics without mathematics” to use Mouy’s expression,26 and 
were easily accessible to all those who liked to discuss natural phenomena in a 
simple and literary manner. As we shall see, they thus sensed, often confusedly, the 
threat that advanced mathematics posed to them, felt excluded from the discussion, 
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and reacted accordingly.
In 1710, for instance, a Prague correspondent, reporting to the Journal de 

Trévoux on a recent book by the Count of Herberstein, noted with approbation that, 
according to the Count, one could abuse the use of mathematics in physics and that 
“some of our contemporaries push algebra, the science of curves, the search for 
centripetal and centrifugal forces to refinements that are not far from useless”.27 
The Count and his correspondent may have had in mind the work of Pierre 
Varignon who, from 1699 on, published a series of papers in the Mémoires of 
the French Academy of Science using Leibniz’s calculus to find the properties 
of central forces, thus translating (and generalizing) some of Newton’s results 
in the language of analysis, without inquiring into or even commenting on the 
mechanical cause of gravitation.28

The Journal de Trévoux, like the Journal des savants, the Mercure de France, 
the Journal encyclopédique and the Bibliothèque universelle in France, or the 
Gentleman’s magazine in England, was expressly targeted at a large audience of 
learned people interested in literary and scientific matters pursued as a stimulating 
source of discussion but not as a full time and systematic endeavour as performed, 
for example, by the members of the French Academy of Science.29 The negative 
reactions of many members of this audience toward the use of mathematics in 
physics is, as we shall see, a sign that they did not consider themselves as outsiders 
to the discussions and that during the eighteenth century a boundary was slowly 
being established between those who were technically competent to discuss 
physical problems and those who were accustomed to explaining the ‘causes’ 
of phenomena in verbal terms.30 Hence, mathematics was a threat to all those 
readers of magazines and members of provincial academies who were unfamiliar 
with precise mathematical formulations of physical problems and who preferred 
clear mechanical ideas to precise calculations based on what they considered as 
“metaphysical forces”. While most of Newton’s critics simply pointed out the 
absurdity of an attraction in a vacuum, one of the strongest disciples of the vortex 
theory of planetary motion, Privat de Molières, went further in trying to show the 
mathematical compatibility of the vortex theory with Kepler laws. Before him, 
Leibniz and Jean Bernoulli, among many other less well-known individuals, had 
also tried their hand, without success, at this problem.31 In trying to combine a 
mathematical approach and a physical one based on contact action through a vortex, 
Privat de Molières was forced to make a compromise. Perhaps desperate to arrive at 
conclusive results, he noted in his 1733 memoir to the Paris Academy that natural 
phenomena are only “à peu près”, that is, not very precise, so that there is no point in 
trying, like Newton, to reduce them to geometrical precision:

However it will happen that it is only approximately that the points of the vortex 
will have this force which depends on the square of the distance and thus the 
area they span will also be only approximately as the time; but this will simply 
be more in conformity with the astronomical observations; thus the mechanical 
forces of the vortex give us the astronomical laws as they are in effect with 
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a better precision than the purely metaphysical forces of Newton which give 
those laws with too much geometrical precision.32

Privat de Molières thus clearly preferred the “à peu près” of vortex theory to the 
artificial geometrical precision of Newton’s “metaphysical forces”. His critique of 
the excessive precision implicit in Newton’s mathematization was well received by 
the permanent secretary of the Academy, Fontenelle who, in his annual summary 
of the activity of the Académie Royale des Sciences called attention to Molières’s 
argument that, applied to phenomena, physical principles did not have geometrical 
precision: “M. l’Abbé de Molières astutely criticizes Newton on his extreme 
precision; physical principles are not so precise when we come to apply them 
to phenomena.”33

This notion that nature does not suffer too much precision, was reminiscent of 
Aristotle who noted in the Metaphysics that “the minute accuracy of mathematics 
is not to be demanded in all cases, but only in the case of things which have no 
matter. Hence its method is not that of natural science”.34 This idea was still alive 
in the eighteenth century. The abbé Nollet, for example, explained to his audiences 
that “it is dangerous for a physicist to develop too great a taste for geometry” since 
in physics “one never finds either precision or certainty”.35 This was to take a road 
opposite to Newton’s, who explicitly stated in his “Preface to the Reader” that “errors 
do not come from the art but from those who practise the arts”; and that “if anyone 
could work with the greatest exactness”, he could develop an exact mechanic.36 For 
only if nature is exact can it be understood through mathematics.

An excellent example of the growing difficulties attending those who, in the 
middle of the eighteenth century, wanted to contribute to the discussions on the 
nature of physical phenomena without using a mathematical approach is offered 
by the writings of Cadwallader Colden (1688–1776). A colonial administrator 
and politician, he had studied medicine in London before migrating to America 
where he had a successful career, becoming Lieutenant Governor of New York in 
1761. A friend of Benjamin Franklin, he also had scientific and literary ambitions 
and corresponded with many well-known figures of his time. His major book, The 
history of the five Indian nations depending on the Province of New York, was 
published in 1727 and frequently reprinted. In 1745, he published in New York An 
explication of the first causes of action in matter: and of the cause of gravitation. 
He sent copies to his London friend Peter Collinson, a Fellow of the Royal Society 
of London, who gave one to the Society and distributed the rest across Europe 
using his correspondence network.37 

The interest shown in the book by a cultivated public is suggested by its being 
reprinted in London the year after and by the publication in 1748 of a partial Dutch 
translation printed in Leipzig and Hamburg.38 Colden also published an expanded 
edition of his views in London in 1751 under the new title, Principles of action in 
matter, the gravitation of bodies and the motion of the planets, explained of those 
principles. A French translation was published that same year in Paris.39 Extracts 
also appeared in the Gentleman’s magazine.40
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Probably conscious that his theories of matter and gravity would be perceived as 
those of a dilettante, he insisted that he had been “constantly employed in business” 
and so “could not pursue his studies other ways than by way of amusement”.41 In 
a letter to Collinson, Colden even mentioned that “times are very improper for the 
speculations in which I employ my thoughts” since “we are all in great hurry in 
preparing to attack the French Settlements in Canada”.42 More importantly, Colden 
insisted in his essay that “with a competent skill in astronomy, equations may be 
formed for the motion of the planets, without any aid of the conic sections, or any 
other knowledge, besides the common rules of arithmetic and trigonometry”.43 
Clearly distancing himself from the mathematical treatment of gravitation by 
geometers, he insisted he “had more in view to convey his conceptions clearly to 
others, than to elegance in style; or the pomp of a demonstrative method”.44 Despite 
the interest shown in his ideas on the cause of gravity, however, Colden attracted 
no disciple other than his son. In view of this, the fact that someone of Leonhard 
Euler’s stature took the time to “mercilessly pull the book to pieces”, to use the 
words of Colden’s biographer, is a significant indication that the frontier separating 
insiders from outsiders (the first thus becoming the ‘expert’ or ‘professional’, 
the latter the ‘amateur’ or ‘dilettante’), was still not clearly defined in the middle 
of the eighteenth century.45 

Euler had obtained a copy of the book from the Reverend Caspar Wetstein, a 
member of Benjamin Franklin’s and Peter Collinson’s circles. Euler’s comments are 
contained in his letter to Wetstein where he noted that “the American philosopher” 
had little knowledge “of the principles of motion” and this “entirely disqualifies the 
author from establishing the true Forces requisite to the motion of the planets from 
whatever cause he may attempt to derive them”.46 Euler’s reaction is particularly 
interesting for he was among those who believed in the existence of a fluid whose 
pressure could explain gravitation. But as he wrote to Le Sage, who had also tried 
his hand at a mechanical model of gravitation, “the theory of fluid movement is 
not enough studied yet to produce a complete explanation”.47 In other words, a 
mechanical explanation of gravity had to take, even for Euler, a mathematical form, 
in his case through the laws of hydrodynamics.48 Though it was intuitive, verbal 
physics was thus no longer a legitimate way of providing a physical explanation 
when it was inconsistent with the mathematical laws of physics.

In excluding Colden as “a man who has not entirely devoted himself to the study 
of [the cause of gravity]” and who ignored “the first principles of hydrostaticks”,49 
Euler made plain that the price of entry into the club of legitimate practitioners 
was an adequate knowledge of mathematics. As the frontier delimiting the field 
of activity became better defined, contributors who proposed new explanations 
of phenomena that did not take the field’s implicit rules into account were met 
with silence or dismissed without further argumentation as being beside the point 
(and outside the field). The historical dynamic of the creation of these boundaries, 
constitutive of scientific fields, varies of course with domains and the nature of the 
tools used to investigate objects. Whereas mathematics helped define the boundaries 
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of rational mechanics (and later electricity and magnetism), in other fields, like 
chemistry for example, the sophistication and cost of instruments and reagents 
played a more important role than mathematics in defining the ‘cost of entry’ to 
the field. Once the boundaries were well defined and the gate keepers controlled 
access to the legitimate places of publication, outsiders could make their voices 
heard only in books or in magazines of general interest. Thus, Colden could still 
ask his friend Collinson to try to have his answer to Euler presented to the Royal 
Society (Collinson had told him that “Pro-Euler remarks were read before the 
Royal Society”), but having failed to have his views printed in the Philosophical 
transactions of the Royal Society, he was reduced to urging him to do his best to 
have them appear in the Gentleman’s magazine.50 

THE RISE OF A PRIVATE SCIENCE

For some, the critical stand toward the use of advanced mathematics in physics 
was related to their conviction that science had to be accessible to a wide circle 
of people. As noted by Shapin, “Boyle repeatedly remarked upon the relative 
inacessibility of mathematics”, the use of which restricts “the potential size of 
the audience”.51 In 1690, at a time when he was still trying to explain gravity by 
mechanical means, Varignon also noted that treating physics through geometry 
makes the former unintelligible to those untrained in the latter. Asking himself 
rhetorically if one could understand the mysteries of nature without the help of 
geometry, he concluded that the only thing he could do to help the general reader 
was to provide a general plan of his treatise without giving the details of his 
demonstrations. His Nouvelles conjectures sur la pesanteur were thus preceded by 
a Discours sur la pesanteur with a different pagination.52 

For the Jesuit Louis-Bertrand Castel, for example, who was part of the editorial 
board of the Journal de Trévoux from 1720 to 1745, science had to be accessible to 
the common man and thus not only higher mathematics but fancy experimentations 
were to be excluded from proper scientific methods. One could read in his Journal, 
probably under his pen, that “the experiments capable of perfecting physics, ought 
to be easy to make and to repeat at any time, and almost by everyone”.53 His Vrai 
système de physique de M. Isaac Newton printed in 1743 was subtitled “à la portée 
du commun des physiciens”, that is, accessible to the common physicist.54 On 
Newton’s prism experiments he noted, no doubt with some exaggeration, that 
“in order to make these experiments on the refraction of light correctly one 
must be a millionaire”.55 In his comment on Castel’s Traité de la pesanteur 
published in 1724, the abbé de Saint-Pierre already insisted that it was important 
to make discoveries accessible to the common reader; the thing was difficult, he 
conceded, but necessary.56 As late as the 1770s, we still find echo of this demand 
for ‘democratic’ apparatuses in Priestley’s complaint that Lavoisier’s instruments 
were too costly and too delicate to constitute a norm for chemical proof.57 The 
‘privatization’ of science thus took many roads, reaching new limits today with 
the construction of a single accelerator capable of producing the most esoteric 
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kind of elementary particles.58 
Castel was not alone in criticizing the inaccessibility of mathematical physics. 

Diderot, who was also on good terms with Castel,59 distanced himself from his 
friend d’Alembert on this very question of the usefulness of mathematics in the 
natural sciences, first in his Lettre sur les aveugles of 1749 and two years later in 
De l’interprétation de la nature.60 

Diderot’s opposition to the use of higher mathematics in physics was also related 
to its exclusionary effects since this language could not be understood by the lay 
reader. He was convinced that the most abstruse book of natural philosophy, namely 
Newton’s Principia, could in the space of a month have been made clear by its 
author, who in this way would have saved three years of labour spent by a thousand 
good-spirited fellows interested in understanding his discoveries. For Diderot it was 
important to make philosophy popular and to raise the people to the level attained by 
the philosophers. And to those who did not believe that it was possible to make all 
knowledge accessible to the multitude, he answered that they simply ignored what 
could be achieved using a good method and a long habit of work.61 

This ideal of a ‘public science’ could only lead to a rejection of the use of 
advanced mathematics in physics, the understanding of which necessitated years of 
training. This philosophy of science was of course consistent with the existence of a 
social space of discussion that was easily accessible to the enlightened public of the 
literary and scientific magazines of the times. On the other hand, the extensive use of 
“transcendental” mathematics, to use Diderot’s term, led directly to a closed space 
accessible only to those with the appropriate training in mathematics. Experimental 
physics was more easily accessible to what was called “the public” and Diderot 
had a clear preference for it though he was not uncritical of public demonstrations 
he considered superficial.62 The members of the French Academy of Science for 
instance appreciated the fact that Nollet’s Leçons de physique expérimentale made 
that science “accessible to a larger number of persons” than the more technical 
geometrical treatises.63 

Although excluded from the mathematized sectors of physics, amateurs still 
thought they could legitimately comment on experimental matters. In 1769, for 
example, a reader of the Journal encyclopédique wrote a comment on a report of 
one of Nollet’s experiments, asserting that despite all the respect he had for the 
Academy and Nollet’s expertise, everyone in matters of physics “has conserved 
the right to propose his own opinion”.64 It was this very “right to an opinion” 
without having the proper prior training that the mathematization of physics 
was putting into question.

Reacting to Diderot but also to Buffon, D’Alembert clearly stated his views 
about the central role of mathematics in physics. In the introductory lines of his 
“Research on the precession of the equinoxes” of 1749, he wrote that, enlightened 
by the observation of nature, the esprit de système can suggest the causes of 
the phenomena but that “it is left to calculations to confirm, so to speak, the 
existence of these causes by determining exactly the effects they can produce 
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and by comparing those effects to those discovered by experiment”.65 And in the 
concluding paragraphs he affirmed that

it is not sufficient for a system to satisfy the phenomena only in a vague and 
general manner, or to provide plausible explanations of some of them: the 
details and the precise calculations are the touchstone; only they can tell if one 
must adopt, reject, or modify an hypothesis.66 

Calculations were for d’Alembert the final arbiter and if they confirmed 
Newtonian attraction, for example, then every one would have to live with it 
(geometers as well as metaphysicians) even at the price of having to admit a new 
property of matter or of having to abandon a clearer idea of the virtue by which 
bodies attract each other as well as collide into one another. Though he was conscious 
of the possible excesses of the use of mathematics in physics,67 it remained that 
for him, all things considered, calculation had precedence over “clear and distinct” 
mechanical ideas that were not confirmed by calculations. 

D’Alembert went even further by believing that progress in the methods of 
calculations could lead to the progress of physics. For despite the tremendous 
difficulty of calculating the interactions between planets gravitating according to 
Newton’s laws, he noted that “the continuous perfection which analysis attains 
day after day” gave reason to be optimistic that a solution to the problem would 
come.68 Commenting on Newton’s contribution to the difficult problem of the 
motion of the Moon, he observed that “fortunately” the “calcul analytique” had 
developed since Newton and had become more general and more practical (“plus 
commode”) and thus offered the possibility of perfecting the work begun by “the 
great philosopher”.69 He also often insisted on the difficulty and time-consuming 
work of these calculations, thus suggesting that they could hardly be done by any 
dilettante and that only those who had tried their hand at such calculations could 
really understand them; the others had to content themselves with a superficial 
view (“idée légère”) of these things.70 Thus, and paralleling the “rise of public 
science” analysed by Larry Stewart,71 mathematics contributed to the rise of a 
“private science”, accessible only to the adequately trained. The outsiders, having 
to content themselves with a superficial understanding of what was really going 
on, could no longer be considered legitimate active participants and contributors 
to a now esoteric (as opposed to exoteric) field of knowledge. For d’Alembert, 
the era of verbal (or literary) physics was over; at least in matters concerning 
the Newtonian world system.

The growing exclusion of non-geometers from legitimate participation in 
discussions of physical problems is also clear in a letter of Clairault to Euler in 
1749, in which he wrote, in the context of the debate over the shape of the Earth, 
that one should despise the objections coming from “newtoniens non-géomètres” 
and resist the temptation to answer them.72 This dominating attitude contrasts 
with that of the astronomer Edmond Halley who, a century before, had written to 
Newton, then busy writing his Principia, that “philosophers without mathematics” 
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were “by much the greater number” in the Royal Society.73 In his Dictionnaire 
de physique, published in 1761, Paulian had also taken notice of the fact that 
it was now impossible “to become a physicist without a minimum knowledge 
of mathematics”.74

THE RESENTMENT OF THE EXCLUDED

Though the mathematical way to physics represented first and foremost by Newton’s 
Principia was largely accepted by those mid-eighteenth-century géomètres who 
devoted themselves to extending its applications to terrestrial and astronomical 
phenomena, there was still a vocal group of people who were more interested in 
verbal explanations than in mathematical calculations. For them, less talented or 
less interested in investing long hours in abstruse mathematical calculations, the 
legitimacy of their verbal contributions to physics was threatened by views like 
those put forward by d’Alembert and they did not leave the stage without protest 
even after 1750. Massière, for example, may have perceived himself as such an 
outsider, for he admitted writing on a scientific subject without being a savant. In 
1759, he published his critical reflections on the system of attraction, a 400-page 
book which, he admitted, “owes its existence only to the boredom and idleness of 
the countryside”.75 Though he had not read the Principia but used Voltaire’s and 
’sGravesande’s books on Newtonian physics as a substitute, he was nonetheless 
shocked by what he found: “I saw that this part of Newton’s philosophy [on the 
movement of the planets] consisted only in calculations; and it seemed to me that 
this was not the trade of a philosopher.”76 Having noted that Newtonians calculate 
everything, he added: “for me, who am not a calculator, I must admit that I felt 
myself revolted against this new kind of philosophy.”77

The ubiquity of geometry and equations in many physics treatises provoked 
Massières into asking if there was not some affectation in this manner of 
philosophizing on the part of their authors. And like Colden before him, he told his 
readers that “any man who knows what are right angles, obtuse angles and acute 
angles can understand the essential part” of his book and that he himself did not 
know enough algebra “to speak the language of the savants”.78 Declaring, following 
many others, the Newtonian conception of gravitation to be “occult”, he echoed 
Castel’s view, observing ironically that “to make the answer acceptable, there was 
only to add to it some calculations”.79 

The Comte de Lacépède, who presented himself as a member of the Academies of 
Dijon, Toulouse, Rome and many others, was also keen to ridicule attraction when 
he wrote that, though a “sensitive attraction” may seem obscure,

following the example of the great Newton, I will envelop my hypothesis within 
geometric and algebraic veils to make it invisible to the eyes and criticisms of 
the uninitiated. If someone object to this obscurity, I will cite M. d’Alembert and 
others who modestly admit that there are propositions in the masterpiece of the 
English philosopher that stop even the most gifted geometers.80 
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Citing d’Alembert was deliberately ironic for, as we have seen, he was strongly 
opposed to the physics of the “à peu près”. And as late as 1826, for example, in 
an attempt to explain gravitation in mechanical terms, J. Mangin, member of the 
Philomatic Society of Verdun, could still write: 

I know that all the analytical calculations of the defenders of this system [of 
attraction] are able to frighten many readers but it remains nonetheless true 
that all these calculations are only based on suppositions since the physical 
cause of attraction is unknown.81 

About ten years later, Antoine-Louis Guénard Demonville tried in vain to have 
his papers on the true system of the world accepted by the French Academy of 
Science. Frustrated, he directed his venom at Denis-Siméon Poisson, denouncing the 
dictatorship of mathematics. As he wrote in the Preface to his book: 

M. Poisson is a mathematical monomaniac who will admit no new truth if 
he cannot find it already sketched in one of his axioms of algebra ... under 
how many mistakes will he not try to suffocate us in emptying his magazine 
of formulas!82 

When mathematics came to be applied to other fields such as architecture and 
the design of bridges and buildings, there were also strong reactions. In 1805, for 
example, the French architect Charles-Francois Viel even published a pamphlet 
titled De l’impuissance des mathématiques pour assurer la solidité des bâtimens. 
For him, the abuse of mathematics simply led to ill-constructed bridges that could 
not withstand the test of time like those that had been constructed by the ancients, 
who had never used sophisticated calculations to build their marvels.83 And as we 
shall see below, even Faraday looked upon the mathematization of electricity and 
magnetism with a sceptical eye. 

All these adverse and often aggressive reactions (and many others could be 
cited84) clearly show that there was real resentment from those who used to see 
themselves as part of an open intellectual space in which they exchanged views 
on matters of natural philosophy. Putting too much mathematics into physics 
thus restrained not only potential readers, as Boyle observed, but also potential 
contributors. In this process, the boundaries of what was a relatively open public 
space of discussion were slowly redefined in such a way that potential readers were 
increasingly limited to potential contributors, that is, to those with the appropriate 
training. In other words, mathematization contributed to the formation of a relatively 
autonomous scientific field, with its control of access mechanisms.85 

We still find an echo of the debates on the importance of mathematics in physics 
in Jean-Baptiste Biot’s Introduction to his Traité de physique expérimentale et 
mathématique of 1816, where he wrote that:

Many people, in France and elsewhere, believe that Physics must be presented 
in a purely experimental form, without any algebraic apparatus. The English, 
so eminent in this science, think we use too much calculation and complicate 
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it with our formulas instead of clarifying it. Many of them, who are very 
skilled and very exact, believe that the precision that we think we approach 
[using calculations] is purely ideal, since it goes infinitely beyond the limits to 
which these experiments are inevitably subjected. This question is fundamental 
and merits to be debated.86

He then went on to offer a detailed and strong twelve-page defence of the usefulness 
of mathematics in physics to which we will return below. 

isol at ing far aday

Though mathematics came to dominate rational mechanics, it must be emphasized, 
as the time span covered here suggests, that the process was indeed very slow. 
Moreover, the mathematization of other fields like electricity or magnetism also 
had exclusionary effects which were again met with negative reactions.87 Up to the 
middle of the nineteenth century, the study of heat, electricity and magnetism was 
relatively accessible to empirically- or qualitatively-minded people of the kind who 
liked to debate the nature of gravitation in the seventeenth and eighteenth centuries. 
They were then, though only for a limited time, protected from the recondite 
language of mathematics. In fact, the difference in the level of mathematical 
codification between gravitation and electricity in the mid-eighteenth century 
certainly explains in part the success of Benjamin Franklin as compared to the failure 
of his friend Colden, who occupied a similar social position and had a comparable 
intellectual training but chose to attack a field already dominated by geometers, 
instead of devoting himself to simpler empirical phenomena. 

In 1831, the young James David Forbes, who two years later would become 
Professor of Natural Philosophy at the University of Edinburgh, had already 
understood that “in the present state of Science, a liberal basis of mathematical 
knowledge is indispensable to [the] successful prosecution [of the physical 
sciences]”.88 At the time of his nomination, he confessed to his mentor William 
Whewell that

any doubt as to the propriety of viewing mixed mathematics as belonging 
to a natural philosophy class is at this moment peculiarly untenable: for the 
whole progress of general physics is happily so fast tending to a subjection 
to mathematical laws of that department of science, that in no very long time 
magnetism, electricity and light may be expected to be as fully the objects of 
dynamical reasoning as gravitation is at this present time.89 

Mathematics was still making headway in physics and Forbes’s teaching would 
prepare students accordingly.

Twenty years later, when Maxwell sent his paper “On Faradays’s lines of forces” 
to the eponymous natural philosopher, the level of mathematics was already 
high and Faraday admitted to Maxwell that “I was at first almost frightened 
when I saw such mathematical force made to bear upon the subject and then 



WHAT DID MATHEMATICS DO TO PHYSICS?   ·  397 

wondered to see that the subject stood it so well”.90 Writing again eight months 
later he asked Maxwell:

There is one thing I would be glad to ask you. When a mathematician engaged 
in investigating physical actions and results has arrived at his conclusions, 
may they be not expressed in common language as fully, clearly, and definitely 
as in mathematical formulae?91

Recalling that Faraday fashioned himself as a natural philosopher92 and that he 
never used any mathematics for arriving at his fundamental discoveries, we can 
understand his uneasiness when confronted with Maxwell’s formidable treatment 
of his intuitions. Like many of those who in the eighteenth century protested 
against the use of advanced mathematics in physics, Faraday, a lecturer at the 
Royal Institution, was accustomed to presenting his work to the public through 
experiments and images and he must have felt the exclusionary effect of Maxwell’s 
advanced mathematics. In his paper “On the conservation of force”, in which he 
suggested that gravitation must be explained by lines of force or by an ether, he 
was clearly on the defensive when he noted that “it may be supposed that one who 
has little or no mathematical knowledge should hardly assume a right to judge of 
the generality and force” of the principle of gravitation. But his answer was that 
mathematics “cannot of itself introduce the knowledge of any new principle”.93 
Criticizing Faraday for misunderstanding the concept of potential energy, Ernst 
Brücke noted that “it is a long time since such a far reaching physical question has 
been touched upon wholly without the aid of mathematical apparatus — without 
the assistance of those wonder-working symbols whose brief rhetoric speaks more 
convincingly to the mind than the tongue of Cicero or Demosthenes”.94 

The central place of mathematics in physics had been explicitly stated by 
Maxwell just a year before Faraday expressed his views on the issue. In his 
inaugural lecture at Aberdeen in November 1856, Maxwell insisted that for 
him “natural philosophy is and ought to be mathematics, that is, the science in 
which laws relating to quantity are treated according to the principles of accurate 
reasoning”, a conviction he repeated word for word four years later in his inaugural 
lecture at King’s College.95

Thus, over a period of nearly two centuries, the progressive mathematization of 
various domains of physics had the effect of excluding as legitimate practitioners 
most of the readers (and sometimes contributors) of the scientific and literary 
magazines who used to talk about natural phenomena without using the language 
of mathematics. But as we have seen, they did not leave the place without reacting 
angrily to their progressive marginalization. By the middle of the nineteenth century, 
with the development of energy physics, electrodynamics and thermodynamics, 
a large part of physics had become the esoteric knowledge of a small group of 
students trained by the incumbents of physics chairs then developing in European 
universities and later by the members of physics departments of North American 
universities.96 To quote Bachelard, where Castel and Nollet had “readers”, Biot, 
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Forbes and Maxwell had “students”.97 Combined with a tighter control of access to 
the membership of scientific academies and the emergence of specialized scientific 
disciplinary journals, these institutional settings would now define the boundaries 
of a private sphere where the legitimate practice of the discipline would carry 
on. These developments simultaneously constructed an “outside” where all those 
still interested in “explaining” gravity, squaring the circle or finding a perpetuum 
mobile, could search an audience for their theories without interfering with what 
was going on inside the field. It is significant that the Paris and Berlin Academies 
ruled out such topics in 1775, the Royal Society having done so earlier in 1749.98 
While Copernicus could defend himself against religious critiques of his system by 
claiming that “mathematics is for mathematicians”, mid-nineteenth physicists could 
silence amateurs by claiming that physics is for (mathematical) physicists. 

THE CHANGING MEANING OF ‘EXPLANATION’

In addition to making the access to the practice difficult and time consuming, the 
mathematization of physics also had a more subtle epistemological effect that 
first became perceptible in the debate over the mechanical explanation of gravity. 
Though the debate over that question is now relatively well known,99 the approach 
to this episode has concentrated on the various solutions and models proposed to 
save the validity of a mechanical and plenist cosmology from the mathematical 
objections first put forward by Newton. I believe, however, that the profound 
significance of that debate lies in the fact that it was the very meaning of the term 
‘explanation’ that was at stake in the discussions concerning the legitimacy of 
hypotheses and in the contested interpretations of Newton’s famous “hypothesis 
non fingo”. This episode shows that the evaluation criteria for what was to count 
as an acceptable ‘explanation’ (of gravitation in this case) were shifting towards 
mathematics and away from mechanical explanations.100 Confronted with a 
mathematical formulation of a phenomenon for which there was no mechanical 
explanation,101 more and more actors chose the former even at the price of not 
finding the latter. This was something new. For the whole of the seventeenth 
century and most of the eighteenth, to ‘explain’ a physical phenomenon meant to 
give the physical mechanism involved in its production. Hence, Descartes could 
still reject Galileo’s law of free fall because it was not based on a mechanical 
explanation of gravity.102

The publication of Newton’s Principia marks the beginning of this shift where 
mathematical explanations came to be preferred to mechanical explanations when 
the latter did not conform to calculations. This shift in meaning helps explain the 
strong reactions against what were perceived as “occult” explanations on the part 
of partisans who based their cosmology on contact forces, which in turn implied 
that the universe had to be a plenum (or else constantly bombarded by particles). 
The nature of the shift of meaning implicit in Newton’s approach to physics can 
be compared to the shift Kepler induced when he invented a “celestial physics”, 
which was clearly a contradiction in terms in the context of scholastic natural 
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philosophy wherein astronomy was distinct from physics.103 And in point of fact, 
Maestlin plainly told Kepler that such a notion was contrary to common sense and 
good philosophy.104 Likewise, in stating that since Proposition LII of Book II of his 
Principia proved by geometrical calculations that no plausible vortex movements 
could be made compatible with Kepler’s laws and that all celestial phenomena could 
be understood using the law of universal gravitation, Newton was in practice saying 
that mathematics was replacing verbal formulations as the final arbiter and true 
explanation of phenomena. As Kepler had mixed physics with astronomy, Newton 
had mixed physics with mathematics and thus explained physical phenomena 
mathematically.105 Whereas astronomers got used to the first, natural philosophers 
now had to adapt to the second. 

Like Kepler’s before him, Newton’s category mistake was not long in being 
recognized.106 As is well known, the review of the Principia in the Journal des 
sçavans in 1688 praised the author’s geometry but concluded that to make his work 
“as perfect as it was possible” Newton now had to produce “a physics as exact 
as his mechanics”, which, it was added, could be done only by substituting “true 
motion in place of those he has supposed”.107 In other words, only true mechanical 
contact between the parts of a plenum could be considered a physical explanation, 
whereas Newton had simply posited mathematical forces, which pertains to a 
different order of things, namely geometry, and thus could not constitute a true 
explanation of physical phenomena. 

Though many authors criticized Newton for not giving a physical explanation 
of gravity, they rarely went beyond denouncing him for bringing back “occult 
qualities” or even “miracles”. It is probably the Jesuit Castel who analysed in 
greatest detail what Newton was really doing with his new approach. As a devoted 
Cartesian, he was in fact well placed to see how Newton’s explanations differed 
from those usually given by mechanical philosophers. He not only perceived the 
exclusionary effect of the higher mathematics used by Newtonians, as we have seen, 
but he also clearly pointed to the problematic nature of the explanations that Newton 
offered. And though a Fellow of the Royal Society of London, he was sometimes 
perceived as “moitié fou, moitié sensé”, as Diderot said.108 However, his often 
extreme opposition to Newtonian physics, though perceived as an embarrassment by 
many of his Jesuit colleagues and other less dogmatic followers of the Cartesian way 
in physics,109 constitutes in fact an excellent condensé of what was so disconcerting 
from the point of view of the paradigm of mechanical explanations that defined 
the dominant schemes of perception and evaluation, that is, the scientific habitus110 
of those who reacted to Newton’s Principia. Moreover, as his biographer pointed 
out, Castel probably represents “an historically significant majority opinion”111 of 
those who read the Journal de Trévoux and similar literary journals and who were 
actively interested in the sciences along the lines developed by Descartes in his 
Principia philosophiae, that is, science as a kind of verbal physics based on clear 
and distinct ideas. This is the universe that Castel realized was being threatened 
by Newton and this is why he devoted an entire book to dissecting the logic of the 
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mathematical route to natural philosophy.
Castel not only read the Principia many times, but he seems to have copied it 

in long hand since he could not secure a copy for himself.112 He thus considered 
himself as having understood the book, though he could hardly understand why 
Newton constantly mixed up physics with geometry. His main line of attack was to 
make it plain that physics and geometry do not have the same status. Whereas 
he saw physics as essentially simple and concrete, he considered geometry as 
abstract and often mysterious. But for Newton, Castel says, “to think and to 
calculate, to reason and to calculate, to philosophize and to calculate, are all 
synonymous terms”.113 And it was because Huygens was more a geometer than 
a physicist that he had been seduced by Newtonian physics despite having been 
trained as a Cartesian.114 

Commenting on the nature of Book III of the Principia, Castel noted that what 
Newton gives there as a “system of physics is in reality a system all mathematical”. 
This makes the term ‘physico-mathematical’ entirely appropriate but, he adds, it 
remains to be seen if such a system “can be taken as a true physical system”.115 The 
implicit definition of the term ‘physics’ used here by Castel is one related to the 
idea that physics provides mechanical explanations which should not be confused 
with mathematical explanations, as Castel believed Newton was doing: “I have also 
remarked, he wrote, that this third book is physical only in the sense that the author 
adopts as a physicist the principles he had established as a mathematician”.116 
After having stressed the difference between the physicist and the mathematician, 
he asked how Newton could transform an “abstract” mathematical proposition 
— like the one proved in Book One relating the elliptical movement of a body 
to the existence of a centripetal force declining with the inverse square of the 
distance — into a “concrete reality”.117 If he does it somewhere, he thought, it 
must be in Proposition XIII of Book III (on Kepler’s law of areas). After having 
explained the proposition, he asked, “what is physical in this demonstration or 
in this explanation?” As far as he was concerned, he saw only a “mathematical” 
demonstration and had great difficulty seeing in it a “physical demonstration”. One 
could admit that Proposition XIII links two facts together (the inverse square law 
and the ellipticity) but he insisted that the first does not explain the second, “one is 
not the cause, the reason of the other”.118

Castel admitted that Descartes’s vortices were not convincing but he insisted 
that at least “these things are physical”. One could and should modify them to 
bring them closer to the truth, but one could not replace them “by purely ideal 
reasons, abstract and mathematical which have nothing to do with the idea of 
cause, of physical, effective and operative influence”.119 For him, there was not a 
single physical explanation in Newton’s whole work because “physical reasons are 
necessary reasons of entailment, of linkages, of mechanism. In Newton, there is 
none of this kind”.120 And he added, in a cri du coeur: 

In truth, one will permit me to say, with the extreme respect one must have 
for Newton, that there is only geometry in his system and good physics will 
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disappear if we allow him to continue.
I admire his profound geometrical reasoning, but there is not (one must see 

it) a single word of physical reasoning in it all.121 

Commenting on Proposition LI of Book II, which prepares the famous Proposition 
LII in which Newton shows through geometry that the Cartesian vortices are 
incompatible with Kepler’s laws, he noted that “there is no physical idea that 
Newton does not automatically relate to a figure, a geometrical calculation, as if to 
hide the former under the envelope of the latter”.122 Castel repeatedly insisted on 
the distinction to be made between physics and geometry:

Geometry is geometry only through the abstract simplicity of its object. Only 
that makes it certain and demonstrative. The object of physics is much vaster. 
That is what makes it difficult, uncertain and obscure. But this is essential to it: 
one is not a better physicist because one is the best of geometers.123

For Castel, the strategic mistake of the Cartesians had been to accept Newton’s 
mathematical suppositions while trying to refute him. But to do that was to go on 
Newton’s own terrain, where he could not be challenged: 

one must refuse all his principles or accept all their consequences. He is a 
geometer and a consequential one. This is to take him at his best. But, I repeat, 
he is not a physicist. Thus, one must stop him at the first step and show him 
that he makes suppositions, and false suppositions.124 

Toward the end of the book, desperate for the possibility of physics returning to 
the “just notion of things” that still existed in Cartesian philosophy, he confessed 
his conviction that the confusion Newton had brought to physics was due to an 
abuse of geometry: “Will it be believed? It is the too intimate mix of geometry and 
physics which led to total confusion.”125 

Castel had rightly perceived that mathematics was at the core of Newton’s physics 
and that this had led to the conflation of ‘physical’ and ‘mathematical’ explanations. 
He also understood that the second was abstract and the former concrete and 
that the more geometry would come to bear on physics, the more abstract it 
would become. With Newton and his followers, physics was no longer simple, 
natural and easy to understand as Castel thought it should be and it continued to 
“mix” mathematics increasingly with physics without offering those “physical” 
explanations that were the staple of the mechanical world view in which Castel 
had been trained. 

In 1749, only six years after Castel had published his book, d’Alembert 
could close his Introduction aux recherches sur la précession des équinoxes 
with the remark:

I will say nothing here of the explanation of the precession of the equinoxes 
given by the Cartesian vortex. The analysis of this explanation is not in the 
nature of this work and would also be out of season at a time when hypothesis 
and vague conjectures seem at last banished from physics.126
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By explicitly excluding from the purview of his work the kind of mechanical 
explanation that was still seen by many as a legitimate part of physics, d’Alembert 
was suggesting that physicists should resist “the furor to explain everything, 
introduced into physics by Descartes”,127 thus claiming that from now on any 
‘explanation’ had to take a mathematical form. For him, Newton had been the first to 
show “the art of introducing geometry into physics and to form, through the union 
of experience and calculation, an exact, profound, luminous and new science”.128 
By contrast, Castel was saying that the price to pay for such a science was too 
high if it meant the abandonment of physical, that is mechanical, explanations 
of physical phenomena. 

In 1752, only a few seasons after d’Alembert had declared that “vague 
conjectures” were at last banished from physics, some Cartesians tried to provide 
the public with “the best preservative against the seduction of what we nowadays 
call Newtonianism” by printing Fontenelle’s Théorie des tourbillons cartésiens.129 
Echoing Castel’s analysis, the editor wrote in his Preface: 

There is, so to say, two very different worlds; one mathematical, the other 
physical. The mathematical, which we can also call the metaphysical, only 
exists in the ideas of the geometer: he supposes the infinitely small, dots without 
dimensions, lines without width...; as well as vacuum and gravitation. All 
these suppositions are the basis of a calculation which without them could 
not be exact and which without this exactitude could not be demonstrative. 
But nothing of this can be found exactly in nature ... and this is a strange 
illusion to abuse of the abstractions in transposing them in the physical world 
as if they were real beings.130

Thirty years later, in their Physique du monde, De Marivetz and Goussier could 
still complain that the phrase “to calculate a phenomenom” was very improper and 
had been “introduced into physics by people who are better at calculations than at 
explanations”.131 The central role of mathematics in physics was thus still being 
contested and d’Alembert was conscious of the revolution initiated by Newton. In 
his Essai sur les élémens de philosophie, he explained that the generation which 
opposed the revolution, and of which Castel was an outspoken representative, 
finally “died or stayed quiet in the academies” while it was left to a new generation, 
of which he was part, to complete the revolution: 

when the foundations of a revolution are laid it is nearly always in the next 
generation that the revolution is completed, rarely before because the obstacles 
vanish instead of yielding; rarely long after because once the barriers are 
traversed the human spirit develops rapidly until he meets another obstacle 
that forces him to stop again.132

For his generation and the successive ones, the word ‘explanation’ had simply 
acquired a different meaning from the one it had previously held and the controversies 
that had surrounded the existence of vortices and occult qualities were thenceforth 
“out of season”. This new meaning was also closely associated with the redefinition 
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of what it was to do ‘physics’. Living within the Newtonian worldview centred on 
mathematics, d’Alembert “could not read without astonishment, in some authors of 
physics, the explanations given of the variations of the barometer, of snow, hail and 
an infinity of other facts”.133 D’Alembert’s astonishment was just the opposite of 
what had been earlier felt by Castel and other like-minded thinkers. 

dissolving substances in t he acid of mat hemat ics 

For those who promoted the extensive use of mathematics in physics, only that 
language made possible precision and generalization. Though critical of its 
consequences in physics, Diderot clearly understood this process: “the act of 
generalization tends to deprive concepts of their sensible aspects. As generalization 
advances, corporeal spectra vanish; notions move from the imagination to the 
understanding and ideas become purely intellectual.”134 On a more positive note, 
Biot explained in the Introduction to his Traité de physique, that forming equations 
was often the only way of making generalizations: “Could you, for example, 
solve the problems of physics where the volume of liquids is a variable element 
if you had not reduced to formulas the composed laws of their expansion?”135 
Moreover, like d’Alembert before him, he claimed that only through analysis 
can a theory really be tested: 

It is nothing to oppose [to a theory] a few particular phenomena often susceptible 
to diverse interpretations. It is by getting from the formulas the most subtle 
consequences, and the most distanced from the principles, and by testing them 
by experiments that one can really check if a theory is true or false, and if one 
can use it as guide or reject it as a deceiving system.136

In following a method based on analysis and experimentation, that is, in 
combining mathematics and physics, Biot thought he could do away with systems. 
For him, physics calculates more than it explains: “I do not say explain, everything 
can be explained, but calculate, that is, deduce mathematically.”137 Though he claims 
to eschew the word “explain”, which in the context still referred to “mechanical 
explanation”, his demands for mathematical “deduction” and calculation pointed 
in the direction of the changing meaning of the term, as we have discussed in 
the preceding section. For Biot, the logic of the manipulation of symbols helped 
the physicist by guiding his hands to the necessary conclusions. When a law is 
converted into an analytic formula, he says, “the simple play of the algebraic signs 
independently of any figure will suffice to direct you”. Moreover, with such a 
formulation one can know “the abstract elements upon which laws depend, and 
read their influence in the formula, [and] discover the circumstances the most 
favourable to determine them directly”.138

Nearly fifty years later, Maxwell provided a similar analysis of the role played 
by symbolic manipulations in physics. To avoid vagueness, he said, in his inaugural 
lecture at King’s College, London in October 1860, “we must eventually make use of 
that method of expression which, by throwing away every idea but that of quantity, 
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arrives at the utmost limit of distinctness. We cannot express physical facts except in 
a mathematical form”.139 He wanted to teach his students “not only the mathematical 
accuracy of expression of which all physical facts are capable, but the mathematical 
necessity of their interdependence”.140 He believed that

transformation of symbolic expressions is most essential to physical science 
but it is in reality pure mathematics. Everything connected with the original 
[physical] question may be dismissed from the mind during those operations, 
and the mathematician to whom they are referred may be doubtful whether 
his results are to be applied to solid geometry, to hydrostatics or to electricity. 
But as we are engaged in the study of Natural Philosophy we shall endeavour 
to put our calculations into such a form that every step may be capable of 
some physical interpretation, and thus we shall exercise powers far more 
useful than those of mere calculations — the application of principles, and 
the interpretation of results.141

Through his teaching, Maxwell, like all those who before him promoted a 
mathematical physics, was thus contributing to the institutionalization of a practice 
of physics heavily connected with and dependant upon mathematics. But as the 
mathematics (the syntax) became more developed, Maxwell’s wish to give a 
physical interpretation (a semantic) to every step of the calculations, a view strongly 
promoted by Whewell,142 became progressively attenuated in the work of successive 
generations of physicists. Moreover, in addition to making possible abstraction and 
generalization, the manipulation of symbols discussed by Biot and Maxwell were to 
have an important if often undesired and disturbing ontological effect.

Albeit in a cryptic manner, Maxwell seems to have perceived the tendency toward 
more and more abstract kinds of explanations provided in physics when he told 
J. A. Fleming that “the progress of science was indicated by our making our terms 
mean less and less”. By which he meant, according to Fleming in his Recollections 
of Maxwell, that “whereas older physicists talked of electric fluids, caloric, etc., 
we speak simply of electrification, heat, etc and decline to commit ourselves as 
to what electrification, etc., is”.143 As P. M. Harman has shown, Maxwell makes 
a “disjunction between the nature of substances and the framework of dynamical 
principles” and he asserts “the sufficiency of a purely symbolic or functional mode 
of representation”.144 The basis of this formal approach was the use of Lagrangian 
formalism, which as Joseph Larmor explained, allows one “to ignore or leave 
out of account altogether the details of the mechanisms, whatever it is, that is in 
operation in the phenomena under discussion”.145 Thus the use of more general 
and more abstract mathematical formulations played against the tendency to 
conceive matter in substantial terms, the emphasis being put on the relational 
aspects, which for Maxwell were “the most important things to know”.146 In other 
words, the syntactical structure of the theory affected and constrained the semantic 
interpretation of its terms.

The long history of mechanical explanations of gravity provides a good example 
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of the decline of substantialist explanation.147 For in contradiction to what Auguste 
Comte wrote in his Cours de philosophie positive, physicists did not abandon 
lightly their belief in a material medium explaining gravity.148 On the contrary, 
we find numerous attempts over the course of the nineteenth century to provide 
a mechanical explanation that would get rid of action at a distance, an action 
that was in fact, to use Cassirer’s vocabulary, simply a functional explanation of 
gravitational action. Well-known physicists like Faraday, William Thomson, as 
well as many other lesser known figures, like S. Tolver Preston and James Challis, 
filled numerous pages of the Philosophical magazine in the 1860s and 1870s 
with attempts at explaining gravitation mechanically. Interestingly enough, these 
essays, with the exception of Faraday’s, were very mathematical in form, having 
incorporated the new definition of the legitimate physics, but were all unsuccessful 
at providing a coherent mathematical formulation. In 1900, H. A. Lorentz could 
still deem the subject worthwhile, noting that “every physicist knows Le Sage’s 
theory”, which postulated “ultramundane particles” colliding on planets and thus 
providing a mechanical explanation of gravitation.149 However, the crucial point is 
that Lorentz approached the problem through mathematical analysis and concluded 
that a theory based on rapid vibrations of the ether as a cause of gravitation could not 
be accepted. With this verdict, he was again submitting this mechanical explanation 
to the acid test of a coherent mathematical formulation. Thus, at the turn of the 
twentieth century, such undertakings had completely lost their credibility within 
the physics community. Essays on this topic, very often written by engineers, were 
thereafter to be found in books and pamphlets not submitted to the gate keepers 
who limited the access to scientific journals to those who treated the legitimate 
problems of the discipline.150 

Not long after having shown the impossibility of a substantial basis for 
gravitational action, the same Lorentz, commenting on the electromagnetic theory 
of the electron, observed that “by our negation of the existence of material mass, 
the negative electron has lost much of its substantiality”.151 The transformation 
of the concept of mass from Newton’s definition as “quantity of matter” (and thus 
implicitly and intuitively independent of speed), to the electromagnetic and 
then relativistic concept of mass (and inertia) as a function of speed, clearly 
shows the active role mathematics played in this process of abstraction.152 The 
electromagnetic ether, whose original role was to support waves (and explain 
their existence), also vanished after a century of unsuccessful efforts at its 
mathematization.153 And once the central place of mathematics in the physical 
sciences became taken for granted, scientists could start wondering about 
“the unreasonable effectiveness of mathematics in the natural sciences”, to 
use Eugene Wigner’s expression, without bothering any more with the search 
for ‘physical explanations’ which occupied the minds of their eighteenth- and 
nineteenth-century forebears.154



406  ·  YVES GINGRAS 

CONCLUSION

In this paper, I have tried to show that the mathematization of physics had long-term 
social, epistemological and ontological effects on the discipline. A similar 
analysis could be made of the famous debate concerning the non-visualizability 
of quantum mechanical phenomena in the 1920s. One would then see that it was 
strictly analogous to the debate over vortices or the ether, for the disappearance 
of these substances had the effect of making gravitation and light propagation 
hardly anschaulich: their understanding depended essentially on mathematical 
formalisms.155 Thus it is not very surprising that David Bohm, a strong advocate 
of a ‘realist’ (a better word would be ‘substantialist’) interpretation of quantum 
mechanics, wrote in the mid-1980s that “the current emphasis on mathematics has 
gone too far” and that “physics may have taken a wrong direction in giving so much 
emphasis to its formalism”.156 Though Bohm’s views were very marginal at the 
time,157 they remind us, in the end, that the question of the relationship between 
physics and mathematics is still being debated158 and one could fruitfully follow its 
effects in contemporary physics.159 And since there is no reason to think that 
these effects were limited to physics, the framework of analysis suggested here could 
be used to look at the effects of mathematics on other disciplines like chemistry 
and biology. From J. J. Sylvester and A. Cayley in the 1870s, who used advanced 
mathematics to understand molecules and isomers, to the emergence of quantum 
chemistry and mathematical biology, mathematics has had the tendency of 
redirecting the focus of inquiry towards the relational character of the elements, thus 
contributing to the transformation of concepts and practices.160 

But only a more detailed analysis could show that the desubstantialization of 
matter was directly related to the mathematization process itself which distanced the 
meaning of the concepts from their original intuitive referents. Through their formal 
manipulation as mathematical symbols, concepts thus acquired a relational definition 
and lost their original substantial quality while gaining in generality.161
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