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12.4 THE D’ALEMBERT-LAGRANGE
ForRMULATION OF MEcHANICS

Jean-Baptiste le Rond d’Alembert was a remarkable savant—almost a man born out
of his time, who possessed a deep understanding of technical and foundational issues. v
In subjects as diverse as the fundamental theorem of algebra, the metaphysics of the N
calculus, the nature of functions and the principles of mechanics he displayed an

acute critical sense, grasping issues that would only become the focus of study much
later. These gifts were evident carly in his career in his seminal Treatise on Dynamics
(1743). This book was an investigation of the constrained interaction of bodies: the
collision of spheres, the motion of pendula, the movement of bodies as they slide past
each other, and various other connected systems. Many of the problems would today
be studied as part of engineering mechanics. His basic conception was that of a ‘hard
body.” Such a body is impenetrable and non-deformable. Assume a small hard sphere
hits a wall with a velocity that is perpendicular to the wall. When the sphere hits the
wall all motion ceases. The closest modern approximation to d’Alembert’s conception
is that of a perfectly inelastic body, although it must be emphasized that d’Alembert’s

itself that for this to happen we must

point of view was different from the modern one. D’Alembert thought in a Cartesian reasoned from Ew\mm%wlnﬂwvn mwﬁoomwwwmﬁw\oﬁmﬁwm equal to (mu + MU) /(M + m).
way of hard bodies as geometrical solids in motion, whose laws of interaction could be pavemlu iM. ics we would analyse this collision using what are known as
determined by deductive reasoning from a priori postulates or principles. (Hankins , In nwomma: ynam d that in the collision very large forces act for a very short
(1970) documents the importance of Cartesian philosophy in d’Alembert’s scientific ; E%.Em?a m.oRmm. Itis mmmmﬂamo,ahr ese forces and using Newton’s second law we are
thought.) In this conception dynamics is very similar to geometry, where the proper- . period of c%m. Hwﬁmmwwh mm of velocity that result in the collision. In modern dynam-
ties of the objects under study are derivable from a few postulates that are believed to _ ableto calculate t ¢ change: ition of forces or accelerations and is
b ily tru ics d’Alembert’s principle involves a decomposition 4 thind e, By coing imulive

€ necessaruly true, : . .. > third laws. usin S
Central to d’Alembert’s dynamics was a principle that he enunciated at the begin- vm&nm_@ a statement noﬁg.ﬂ: 8 ZMM.,MMM HMMM:MM Mms produce a W_Nmnos%o&mob of
ning of the Treatise and which in various later forms became known as ‘d’Alembert’s moHSm. n the :Woa_ma: wswwﬁmvmw MMW d am%mm&nmwi like the one d’Alembert originally
principle.” (The account which follows is based on (Fraser 1985).) In its original and velocities that looks mM, Alembert’s point of view was very different. From the outset
most basic form the principle may be illustrated by the example of a hard particle wﬁam.mi&. E.osﬁaw ision of the two bodies he used a decomposition involving
that strikes a wall obliquely with velocity u (Fig. 12.1). We must determine the velo- _ n .Em m:ma.a._m of the noEEo:mo and the entire interaction is analysed using the
city of the particle following impact, Decompose u into two components v and w, 7 V finite <m._0nEMm. MTM.M Mmm z%uacHMm.NmmEEwnob|m:m%oim d by a priori reasoning—
being the post-impact velocity and w being the velocity that is lost’ in the collision. | ‘onception of a har d <_u&m t if the bodies were animated by the motions they lose
D’Alembert’s principle asserts that if the particle were animated by the lost velocity that mmEEu.B:B would su
alone then equilibrium would subsist, From this condition it follows that w must be in the noz_m_wub. involving forces that act continuously and in which the motion is
the component of u that is perpendicular to the wall. Hence v is the component of 1 F. examp. om involving lysed the system in a way that has some similarities to
that is parallel to the wall, and the collision problem is solved. | ‘ontinuous, @Eaﬁ_umﬂ analyse ses ﬁmm out by Newton in the opening proposition
Assume now that two hard bodies m and M approach each other with velocities u the model of ~ﬁ“§w:ﬂ%ﬂwamwmww& on is understood to consist of a succession
and U along the line joining their centres, It i necessary to find the velocities after Omw,oow OH.E ot the Frincipia. ach impulse arises in an interaction of hard bodies or
impact. We write u = v + (i — v)and U=V + (U — V), where v and V are the of discrete :dm.:bmmm m EEQH Qn..mcwwm: terms of finite velocities and infinitesimal
post-impact velocities of m and M. The quantities 4, v and u — v are the impressed, ‘ mcﬁmmmm..ﬂrm interaction is %mwn:ﬂ Mgoaosm ate governed by Alembert’s principle.
actual and ‘lost’ motions of the body rm; a similar decomposition holds for M. Because  velocity increments Mﬁuoﬁo_uﬁ ¢ ow tment of continuous forces is the tenth problem
vand V are followed unchanged v must equal V. In addition, the application of the >mn_m.ﬁ%xm~w_u_mwwm d JHMMW MM M@MMH“ of d’Alembert’s theory come into play—the
‘s BT > 0 atise. Here a e . .

lost velocities u — vand U — v to m and M must produce equilibrium. D’Alembert nohnME Mwm hard body, d’Alembert’s principle, and the Leibnizian differential calculus.

Fig. 12.1. D'Alembert's principle.
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We may re-express eq. (12.11) in the form
D = dv +w, (12.12)

 [feq. (12.12) is divided by df and multiplied by m this becomes an equation involving
forces:

F, + B, = ma, (12.13)

9 ; where F, is the applied force acting on m, Fc is the constraint force on 1, and a is
Fig. 12.2. D'Alembert’ the mnnm_m.nmmcu of m. (For convenience here and in what follows we use modern vec-
g embert's problem X. tor notation, although this notation was not used in the eighteenth century.) In this

, formulation d’Alembert’s principle states that equilibrium would subsist if each of
We are given an irregularly shaped object KARQ of mass 1 which is free t i . the bodies n.vm the system were m:ﬂﬁmﬁmm by the .nosmqmma mcHn.ﬂ that is, wrw SEQ&H.;
africtionless plane QR (Fig. 12.2). A body of mass M is situat ee to slide &o.:m . ' forces considered as a set of applied forces acting on the bodies result in a system in

forms the left edge of KARQ. A force mwwm W,MmA .Nm%gmﬁ.n don the curve KQwhich static equilibrium.

The two bodies possess given .EE al <&o&&“~ﬁb ﬁﬂwn mMWmnnMob p Q% ab%n‘imn to QR. Although Lagrange was influenced by d’Alembert, his own development of mech-
by d’Alembert it is assumed that the bodies initially Wommmmm MMMOE gur mﬂoﬁ adopted anics occurred along lines that were significantly different from his older contempor-
right). The problem is to determine the motion of the etem mmqw\wdwﬂ Emco: to the . ary. Physical hypotheses mvosﬂ the Ena.bmﬁm. :uEHn. of mechanical interactions were
n &’ Alembert’s solution the trajectory traced by M s tommeied MM es ~0<<: NA@ ; absent, and any adherence to a geometric-differential form of the n.w_ns_cm was rejec-

an infinite number of sides in which the length of cach side W it a Huo~ v%m: with ted m:om.m»:mﬁ (Praser (1983) and Panza (2003) Q@Qo the foundations owhmmésmmm
metric representation of M’s traje ctory corresponds to the physical z mzﬂm - LS m..uo, , H.dmnwwnEom.v hmmnmbmw‘m goal <.<mm ﬁ reduce Smngd#nm to a branch o.m mvwrn.& analysis
M’s motion is understood to be the outcome of a mznnmm&oh\cm &Mcm VQM n SU.EG  in éfnw the mavr.mm_m was @H:.mm:&\ on the derivation m:.& integration of &%ﬁﬁi&
events. The model of a continuous curve as an infinite-sided pol onH.w.ﬁM vﬁmﬁ:n.& equations to ammnz_um.mrm motion of the %.%85. Following his Bm.%oﬁmﬁn& philo-
the solution to represent the left e dge of the body . polygon is also used in m%rwm he mn_movmémm &mmwﬁw Wz& mmoanﬂ.zn Emamm o_m n@@ammmzﬁmd,o: in favour of .m
Althoush d’Alembert’s origi oo . purely analytic approach involving operations, formulas and equations among vari-
ies, he msmvmmmnosm% amﬁwswmwzmww Mﬂmﬂﬂm HH\M_MMMH.M MHMWMM&%OHN %m <m_on_..? ables. In his first nﬁgm&. Ewaow. on the m.lnn&&nw of Eanrman.m bmemmmm Qwamv
effect a decomposition of accelerations. He did so in some of 90 w NMH was used what vm called the wﬂsawﬂm of least action as the starting point for Fm analysis
his treatise involving pendulum motion, and a dopted a similar f € wz.u ems ﬁ.vm of %.m motion of a dynamical system. This principle was an integral variational Jaw
later researches in hydromechanics and theoretical astronomy. A ormu m”o: in his and its application was governed by the calculus of variations, a mathematical subject
m is part of a constrained system of bodies and is mgmmﬁ Mmzﬂm that a .vo% that Lagrange had pioneered in the very same volume. In subsequent investigations
impressed force. At a given instant let dv) be the increment c%ﬁM M mﬂ external , hm.@am.ﬁmm abandoned the least action principle. Instead he combined d’Alembert’s
be imparted to the body by the impressed force if the body wer OMH y that SMcE EEQ@F (in the form involving eq. (12.13)) and what is today called the principle of
the velocity of the body in the next instant, so that dv — y+ W re lree. Let 4 be virtual work to arrive at the fundamental axiom of his presentation of mechanics.
» SO that dv = v v is the actual incre- Thus in his mature theory of mechanics, he used methods and operations derived

ment of velocity experienced by the body. We h. i o ;
vA4dD =yt L= (vt &5”. w, ow ¥. We have the decomposition of velocities _ from the calculus of variations, but he did not develop the subject from an integral

variational principle, as he had done in 1762.

Consider a set of external forces acting on a connected system of bodies, and sup-
pose that the system is in static equilibrium under the action of these forces. Consider
<<rm.n.m w= Q?G —dv is the lost velocity of the body. By d’Alembert’s principle a small virtual velocity or displacement 8r of a given body m of the system. Such a dis-
mmmeuHEE will subsist if each body of the system were subjected to the motion placement is taken to be compatible with the constraints in the system. As beforelet F
dv N dv. In any given problem we now invoke a suitable statical law and obtain be the external or applied force acting on m. The principle of virtual velocities asserts
a relation among —mdv and mdv'"). In the problems d’Alembert considered this pro- _that a general condition for equilibrium of the system is given by the equation

cedure gave rise to a system of differential equations that described the motion of the .
> Boér=
m

v+ D = v+ dv) +w, (12.12)

system. 0. (12.14)
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WMWMHMHHMMW MAMMMMAMMHM mmmwmwmmw_ MM“MM& MMW m%ﬁﬁ& MO be in equilibrium Varignon and Antoine wmnm.br among others. F_Sv mwﬁjonE initiated the study of
By d’Alembert’s principle the given system 2oz_m be WM: a .;“.;U c=ma (eq. (12.13) the mmn.o:a ‘EOZSP m._b.a Em <<on. became the basis for further researches by Euler.
animated by F,, where this force is now understood as a M@ﬁh i dms if mmnv m wer . (For histories Wm elasticity in the mem.ndﬁ.w century see qgmm&mc 1960) and (Szabo
within the connected system. By the princi . ex .oa.bm orce acting on ,, 1977). The subject of strength of materials is explored by Timoshenko (1953).)
y the principle of virtual velocities we have , It is important to note that research on elasticity was carried out without the gen-
M F.-6r =0, eral theoretical perspective that is provided today by the concept of elastic stress. This
p concept, which underlies such basic modern formulas as the stress—strain relation
which we may, using eq. (12.13), express as , and the flexure formula, only emerged explicitly in the 1820s in the Az.ﬁmzmw of Claude
Navier and Augustin Cauchy. Although one can discern in the earlier work some of
M ma - 8r = M F, - br. (e the elements that enter into the modern concept of stress, the essential idea—that of
m m : cutting a body by an arbitrary plane and considering forces per unit area acting across
Eq. (12.16) is a statem : I . . this plane—was absent.
wMWMﬁ for vhmmgﬂw%m HM%MMWM WMMHM”WM principle of virtual work and is the starting The divide that separates the modern theory and that of the eighteenth century
Beginning with eq. (12.16), Lagrange derived a system of differential ) _ is illustrated by the @wozma of elastic bending. Oo:mﬁﬁ the mo;&.acb today of .ﬁ:m
describe the motion of the system. Using the constraints, one reduces th mmcm:n.im. - formula mo.n the demﬁm moment of a beam. O.Ew begins by assuming that a.rﬂ.m ©a
of the system to the specification of n ‘generalized” <mmmm2mm e mmnzmm_o: , wac:& axis running through the beam .9& nﬁ%ﬂ. stretches nor .nobﬁwnﬁm. in bend-
system consists of n bodies moving freely then m = 3n and Hr@or mﬂd&.& ﬁmﬁ AW_ the ing. We apply &m.BnEmJ\ stress .wd&v@m and consider at an wzuﬁmax point of ﬁvm
Cartesian coordinates of the bodies.) Each of these variables is m“mm ond et M 3n , vm.mE a nnomm-mmnzob& plane cutting transversely Qﬁ.bmcq& axis. Elastic m@mmmmm dis-
others, and each is a function of time. A system with suitably smo ﬂm ent o 9.0 ; tributed over the section are assumed to act across it. Calculation of their q.:oEmE
then described by the m differential equations S y oth constraints is about the line that lies in the section, is perpendicular to the plane of bending, and
, passes through the neutral axis leads to the flexure formula, M = SI/c, where M is
49T 3T ; the bending moment, I is the moment of area of the section about the line, c is the
(1217) distance of the outermost unit of area of the section from the line, and S is the stress
Here §; denotes the time derivati ) . . _at this outermost area.
?osm as the kinetic m:mamwmﬁ“m MWMM HMHMMMDMHWS,)MH MMMMM WHMM%M:Em_mecﬂm In the problem of fracture eighteenth-century researchers obtained results that
potential, although these terms were not used by Lagrange. Eq. (12.17) anMﬂMm Mb the can be readily interpreted w.d .85: of modern formulas and theory. Typically they
in later dynamics as the Lagrangian equations of motion. ’ ownl , assumed that the beam was joined transversely to a wall and that the rupture occurred
at the joining with the wall. Here the physical situation directly concentrated attention
on the plane of fracture—something of concrete significance and no mere analytical
abstraction. The conception then current of the loaded beam as comprised of longit-
udinal fibres in tension is readily understood today in terms of stresses acting across
12.5 STATICS OF ELASsTIC BODIES ,  this plane.
By contrast, in the problem of elastic bending researchers were much slower to
: . ; develop an analysis that connected the phenomenon in question to the internal struc-
“”WMMMMMMWMMH%NHMM wwmpwmmw_umwwwmﬂ Ma a Hmz_umwnnﬁ of interest in the , ture of the beam. Here g.ﬁ.m was nothing .5 the physical situation that identified for
one attempted to determine the BBQ.HM:E Tond ﬁm M Fw nt mmwm.ozm:._ of ?.mn:.qm H %DB&.E.S study any mmH.SnEmﬁ nHomm.mwoﬁ_omm_ plane. In all of Eno_u mmm.doz:._ s sem-
dimensions can sustain without breaki d that a beam of given material and - inal writings on the elastica the central idea of stress fails to receive clear identification
wes cantlevered & 1 ut breaking. Typically it was assumed that the beam ( and development.
problem of &momm nMM:MEmmMMM %MM MMMMMMMMMWMHOM W_mno .&.cmm to the wall. In the , E&ozm.: a general theory did not emerge in the eighteenth century, .\%ﬁm were
by a rod or lamina in equilibrium when mﬁ@.mnhﬂo mﬁmgwﬂswzw the shape assumed: \ many partial 32.:? and Eomﬂ&& md&.%mom. of particular problems. ém EE consider
of the elastica, where the elastic rod was trea Mmm Emmmux mEM. %Hnwm. In the example __ one such result in some detail: the derivation by m”EmH. of the buckling formula for
were assumed £o act at the ends of the rod and fo ca ﬁmpm _nma< asa _:._.9 the forces. a wom‘&& 8.755. (An account of mﬁmmm Ew..::m is given by Fraser A.Goov.v m&ﬂ
The first problem had been considered by Gali use the rod to bend into a curve: . obtained this result as a corollary to his analysis of the elastica. We are given an elastic
nsidered by Galileo and had attracted the attention of  lamina oriented vertically, in which the ends A and B are pinned and forces P and —P




