
Module 8 
Maxwell’s analogies 
 

27/02/17 1 

Elaboration of the molecular-vortex model 67

Figure 3.1. Vortices and idle-wheel particles. (Redrawn from Maxwell,
"Physical Lines," Plate VIII, opposite p. 488; cf. Figure 2.2.)

cal difficulties with the model and the need to extend the range of the
theory were accommodated by the single step of introducing the small
particles, and this provided a strong sense of mutual reinforcement. The
rhetorical order is, however, interesting for its own sake: Maxwell pre-
sented himself as mechanical engineer of the magnetoelectric medium,
first looking to mechanical problems, and only later noticing the elec-
tromagnetic significance of the solutions to those problems.

Having thus, as mechanical engineer of the medium, introduced the
small particles to function as idle wheels, Maxwell noticed that in a
region of homogeneous magnetic field, where adjacent vortices would
have equal to* and hence equal surface velocities, the particles making up
the cell walls would behave as ordinary idle wheels, rotating but undergo-
ing no spatial translation (Figure 3.2a); on the other hand, in a region of
inhomogeneous magnetic field, adjacent vortices would have slightly
diiferent surface velocities, giving rise to translational motions of the
idle-wheel particles (Figure 3.2b). (Maxwell was able to cite mechanical
engineering precedent for this kind of situation: "In Siemens's governor
for steam-engines, we find idle wheels whose centres are capable of
motion"; today, one can point to ball bearings as an even more vivid
analogue of Maxwell's layers of movable idle wheels.20) Defining a
vector p, q, r - which we denote by i - to be the net flux density of idle-
wheel particles, averaged over a pseudodifferential volume containing
many vortices, Maxwell calculated, on a purely kinematic basis (given
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Introduction 

•  Maxwell’s equations – Physics’ Holy Grail 



•  How do they look in Maxwell´s originals? 
•  What models did he have in mind?

•  Which formalism did he use?

•  How was the development that led to Maxwell’s equations?



Department of Science Education 

In order to obtain physical ideas without adopting a 
physical theory we must make ourselves familiar with the 
existence of physical analogies. By a physical analogy I 
mean that partial similarity between the laws of one 
science and those of another which makes each of them 
illustrate the other. Thus all the mathematical sciences 
are founded on relations between physical laws and laws 
of numbers, so that the aim of exact science is to reduce 
the problems of nature to the determination of 
quantities by operations with numbers.

On Faraday’s Lines of Force (Maxwell, 1855) 
Role of [formal] analogies 
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By the method which I adopt, I hope to render it evident 
that I am not attempting to establish any physical theory 
of a science in which I have hardly made a single 
experiment, and that the limit of my design is to show 
how, by a strict application of the ideas and methods of 
Faraday, the connexion of the very different orders of 
phenomena which he has discovered may be clearly 
placed before the mathematical mind.

On Faraday’s Lines of Force (Maxwell, 1855) 
No experiment / Place before the mathematical mind 
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[…] we might find a line passing through any point of space 
representing the direction of the force acting on a positively 
electrified particle or on an elementary north pole.

[…] but we should still require some method of indicating the 
intensity of the force at any point. If we consider these curves not 
as mere lines, but as fine tubes of variable section carrying an 
incompressible fluid, then we may make the velocity vary 
according to any given law, by regulating the section of the tube, 
and in this way we might represent the intensity of the force.

 



146 Feltlikninger for fluider

2. Strøm gjennom rørinnsnevring. Vi betrakter stasjonær tidsuavhengig strøm
av usammentrykkbar (inkompressibel) væske. Siden det m̊a g̊a like mye væske gjen-
nom snittflaten ved B som ved A, m̊a strømhastigheten ved B (UB) være større enn
ved A (UA). Det betyr at en partikkel som flyter med feltet fra A til B opplever en
hastighetsøkning, alts̊a en akselerasjon fra A til B selv om feltet er tidsuavhengig. Lo-
kalakselerasjonen ∂v/∂t = 0, men den konvektive akselerasjonen v · ∇v > 0 i dette
feltet.

Figur 10.3: Figuren illustrerer hvordan en fluidpartikkel akselererer idet den flyter gjen-
nom rørinnsnevringen selv om hastighetsfeltet er stasjonært.

xA BUA
UB

10.4 Likninger for massebevarelse

I et strømfelt er det flere fundamentale fysiske betingelser som m̊a være oppfylt. Siden
masse ikke kan skapes eller ødelegges m̊a for eksempel massen være bevart. Vi lar p̊a
vanlig m̊ate strømhastigheten i feltet betegnes med strømvektoren

v = v(r, t)

som viser at strømvektoren er en funksjon av posisjonen r og tiden t. P̊a tilsvarende
m̊ate er massetettheten i feltet beskrevet ved

ρ = ρ(r, t).

Enhetene i SI-systemet for ρ er kg/m3 og for v m/s. Massestrømmen per tidsenhet ut
gjennom en lukket flate σ er da gitt ved integralet

∫

σ
ρv · n dσ

hvor n er normalvektoren til flateelementet dσ. Massestrømmen f̊ar derved enheten
kg/s. Dersom massestrømmen er positiv strømmer det netto masse ut gjennom flaten,

vA ⋅SA = vB ⋅SB = const.

F ∝ v

F ∝ 1
S

On Faraday’s Lines of Force (Maxwell, 1855) 
Intensity of the force 

5 
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Any portion of the fluid moving through the resisting medium is 
directly opposed by a retarding force proportional to its velocity.

[…] all the points at which the pressure is equal to a given 
pressure p will lie on a certain surface which we may call the 
surface (p) of equal pressure.

 



140  Maxwell 

(a) 

Fl G. 4.1. Some of Maxwell's geometrical grids: (a) compression and dilation lines of a glass 
triangle (Maxwell 1850: 68), (b) lines of surface bending (Maxwell 1854b: 99), (c) electric 
lines of force and equipotentials (Maxwell [1854]: 252, used by permission of Cambridge 

University Press), (d) idem for a two-plate condensor (Maxwell 1873a: plate 12). 

140  Maxwell 

(a) 

Fl G. 4.1. Some of Maxwell's geometrical grids: (a) compression and dilation lines of a glass 
triangle (Maxwell 1850: 68), (b) lines of surface bending (Maxwell 1854b: 99), (c) electric 
lines of force and equipotentials (Maxwell [1854]: 252, used by permission of Cambridge 

University Press), (d) idem for a two-plate condensor (Maxwell 1873a: plate 12). Maxwell’s geometrical representations in Darrigol (2000, p. 140)

On Faraday’s Lines of Force (Maxwell, 1855) 
Fluid motion in resisting medium 

6 
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If the velocity be represented by v, then the resistance will be a 
force equal to kv acting on unit of volume of the fluid in a 
direction contrary to that of motion. In order, therefore, that the 
velocity may be kept up, there must be a greater pressure behind 
any portion of the fluid than there is in front of it, so that the 
difference of pressures may neutralise the effect of the resistance. 

On Faraday’s Lines of Force (Maxwell, 1855) 
Fluid motion in resisting medium 
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Unit point source 
Unity of volume flows 
out of every spherical 
surface surrounding the 
point in unit of time 
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it are the same in both distributions, the pressure at the surface in the third
distribution would be zero, and all the sources within the surface would
vanish, by (15).

Then by (16) the pressure at every point in the third distribution must
be zero; but this is the difference of the pressures in the two former cases,
and therefore these cases are the same, and there is only one distribution of
pressure possible.

(18) Let us next determine the pressure at any point of an infinite body
of fluid in the centre of which a unit source is placed, the pressure at an
infinite distance from the source being supposed to be zero.

The fluid will flow out from the centre symmetrically, and since unity of
volume flows out of every spherical surface surrounding the point in unit of
time, the velocity at z distance r from the source will be

1

JcThe rate of decrease of pressure is therefore hv or -—2, and since the
4TH

pressure = 0 when r is infinite, the actual pressure at any point will be
h

^ 4tirr'

The pressure is therefore inversely proportional to the distance from the
source.

It is evident that the pressure due to a unit sink will be negative and

equal to — -— .

If we have a source formed by the coalition of S unit sources, then the
kSresulting pressure will be j p = - ^ , so that the pressure at a given distance

varies as the resistance and number of sources conjointly.

(19) If a number of sources and sinks coexist in, the fluid, then in order
to determine the resultant pressure we have only to add the pressures which
each source or sink produces. For by (15) this will be a solution of the
problem, and by (17) it will be the only one. By this method we can
determine the pressures due to any distribution of sources* as by the method
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it are the same in both distributions, the pressure at the surface in the third
distribution would be zero, and all the sources within the surface would
vanish, by (15).

Then by (16) the pressure at every point in the third distribution must
be zero; but this is the difference of the pressures in the two former cases,
and therefore these cases are the same, and there is only one distribution of
pressure possible.

(18) Let us next determine the pressure at any point of an infinite body
of fluid in the centre of which a unit source is placed, the pressure at an
infinite distance from the source being supposed to be zero.

The fluid will flow out from the centre symmetrically, and since unity of
volume flows out of every spherical surface surrounding the point in unit of
time, the velocity at z distance r from the source will be

1

JcThe rate of decrease of pressure is therefore hv or -—2, and since the
4TH

pressure = 0 when r is infinite, the actual pressure at any point will be
h

^ 4tirr'

The pressure is therefore inversely proportional to the distance from the
source.

It is evident that the pressure due to a unit sink will be negative and

equal to — -— .

If we have a source formed by the coalition of S unit sources, then the
kSresulting pressure will be j p = - ^ , so that the pressure at a given distance

varies as the resistance and number of sources conjointly.

(19) If a number of sources and sinks coexist in, the fluid, then in order
to determine the resultant pressure we have only to add the pressures which
each source or sink produces. For by (15) this will be a solution of the
problem, and by (17) it will be the only one. By this method we can
determine the pressures due to any distribution of sources* as by the method
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If we have a source formed by the coalition of S unit sources, then the
kSresulting pressure will be j p = - ^ , so that the pressure at a given distance
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For S unit sources
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it are the same in both distributions, the pressure at the surface in the third
distribution would be zero, and all the sources within the surface would
vanish, by (15).

Then by (16) the pressure at every point in the third distribution must
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and therefore these cases are the same, and there is only one distribution of
pressure possible.
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volume flows out of every spherical surface surrounding the point in unit of
time, the velocity at z distance r from the source will be
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JcThe rate of decrease of pressure is therefore hv or -—2, and since the
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pressure = 0 when r is infinite, the actual pressure at any point will be
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The pressure is therefore inversely proportional to the distance from the
source.

It is evident that the pressure due to a unit sink will be negative and

equal to — -— .

If we have a source formed by the coalition of S unit sources, then the
kSresulting pressure will be j p = - ^ , so that the pressure at a given distance

varies as the resistance and number of sources conjointly.

(19) If a number of sources and sinks coexist in, the fluid, then in order
to determine the resultant pressure we have only to add the pressures which
each source or sink produces. For by (15) this will be a solution of the
problem, and by (17) it will be the only one. By this method we can
determine the pressures due to any distribution of sources* as by the method
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Does this seem 
familiar to you?
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Velocity is analogous to E field



Pressure is analogous to Potential



Number of unit sources (+ sources, – sinks) is analogous to Charge

On Faraday’s Lines of Force (Maxwell, 1855) 
Analogy between imaginary fluid and electrostatics 
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it are the same in both distributions, the pressure at the surface in the third
distribution would be zero, and all the sources within the surface would
vanish, by (15).

Then by (16) the pressure at every point in the third distribution must
be zero; but this is the difference of the pressures in the two former cases,
and therefore these cases are the same, and there is only one distribution of
pressure possible.
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pressure = 0 when r is infinite, the actual pressure at any point will be
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The pressure is therefore inversely proportional to the distance from the
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It is evident that the pressure due to a unit sink will be negative and

equal to — -— .

If we have a source formed by the coalition of S unit sources, then the
kSresulting pressure will be j p = - ^ , so that the pressure at a given distance

varies as the resistance and number of sources conjointly.
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to determine the resultant pressure we have only to add the pressures which
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problem, and by (17) it will be the only one. By this method we can
determine the pressures due to any distribution of sources* as by the method

Downloaded from Cambridge Library Collection by IP 130.225.98.206 on Mon Jul 13 11:20:08 BST 2015.
http://dx.doi.org/10.1017/CBO9780511698095.011

Cambridge Library Collection © Cambridge University Press, 2015

ON FARADAY S LINES OF FORCE. 167
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The substance here treated must not be assumed to 
possess any of the properties of ordinary fluids 
except those of freedom of motion and resistance to 
compression. It is not even a hypothetical fluid 
which is introduced to explain actual phenomena. 
It is merely a collection of imaginary properties 
which may be employed for establishing certain 
theorems in pure mathematics in a way more 
intelligible to many minds and more applicable to 
physical problems than that in which algebraic 
symbols alone are used. 

On Faraday’s Lines of Force (Maxwell, 1855) 
It is not a fluid! 

9 
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Questions for discussion (Maxwell 1855) 

10 

- Maxwell talks about an elementary south pole floating in 
space, how does he do this, as his own equations are the ones 
that link magnetism and electricity together?  
 
- I found it quite hard to follow Maxwell's reasoning without any 
drawing from number (6) in his 1855 paper. 
 
- Maxwell mentions in his 1855 paper, that the theory we are 
presenting should not be committed to any other theory in 
physics, is this a reference to the failed attempts of 
understanding electrodynamics through mechanics? 
 
- Did Faraday make explicit arguments for his method or was it 
just a method which Maxwell deduced from Faraday's papers? 
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Let us now suppose that the phenomena of magnetism 
depend on the existence of a tension in the direction of 
the lines of force;

 

[…] what mechanical explanation can we give of this 
inequality of pressures in a medium? 

On Physical Lines of Force (Maxwell, 1861-62) 
Mechanical explanation 
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The explanation which ”most readily” occurs to the mind is 
that the excess of pressure in the equatorial direction arises 
from the centrifugal force of vortices in the medium having 
their axes in directions parallel to the lines of force. 



XVI.] Atmospheric Electricity. 225

optic experiment makes this not a hypothesis but a demon-
strated conclusion*. Thus a rifle-bullet keeps its point fore-
most; Foucault's gyroscope finds the earth's axis of palpable
rotation; and the magnetic needle shows that more subtle
rotatory movement in matter of the earth, which we call ter-
restrial magnetism : all by one and the same dynamical action.

291. It is often asked, are we to fall back on facts and pheno-
mena, and give up all idea of penetrating that mystery which
hangs round the ultimate nature of matter ? This is a question
that must be answered by the metaphysician, and it does not be-
long to the domain of Natural Philosophy. But it does seem that
the marvellous train of discovery, unparalleled in the history
of experimental science, which the last years of the world has
seen to emanate from experiments within these walls, must
lead to a stage of knowledge, in which laws of inorganic nature
will be understood in this sense—that one will be known as
essentially connected with all, and in which unity of plan
through an inexhaustibly varied execution, will be recognised
as a universally manifested result of creative wisdom.

292. [Postscript, with diagram, communicated to the Philoso-
phical Magazine in 1861; but now first published.]

Mr Balfour Stewart, Director of the Kew Meteorological
Observatory, has, since the commencement of the present year
(1861), brought into regular and satisfactory operation the self-
recording atmospheric electrometer with water-dropping collec-
tor, described in the preceding abstract: a specimen of the
results is exhibited in the accompanying photographic curves.
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* See " Dynamical Illustrations of the Magnetic and the Helicoidal Eotatory
Effects of Transparent Bodies on Polarized Light." By Prof. W. Thomson.—
Proceedings of the Royal Society, June 12, 1856.
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460 ON PHYSICAL LINES OF FORCE.

We shall always mark by an arrow-head the direction in which we must
look in order to see the vortices rotating in the
direction of the hands of a watch. The arrow-head lg* *
will then indicate the northward direction in the
magnetic field, that is, the direction in which that
end of a magnet which points to the north would
set itself in the field.

Now let A be the end of a magnet which
points north. Since it repels the north ends of
other magnets, the lines of force will be directed lg* *

from A outwards in all directions. On the north I
side the line AD will be in the same direction with ^X -

s B >CD<

the lines of the magnetic field, and the velocity of &
the vortices will be increased. On the south side
the line AC will be in the opposite direction, and
the velocity of the vortices will be diminished, so
that the lines of force are more powerful on the
north side of A than on the south side.

We have seen that the mechanical effect of the
vortices is to produce a tension along their axes,
so that the resultant effect on A will be to pull
it more powerfully towards D than towards C; that is, A will tend to move
to the north.

Let B in fig. 2 represent a south pole. The lines of force belonging to B
will tend towards B, and we shall find that the lines of force are rendered
stronger towards E than towards F, so that the effect in this case is to urge B
towards the south.

It appears therefore that, on the hypothesis of molecular vortices, our first
term gives a mechanical explanation of the force acting on a north or south
pole in the magnetic field.

We now proceed to examine the second term,

Here cf + fF + y* is the square of the intensity at any part of the field, and
[i is the magnetic inductive capacity at the same place. Any body therefore
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458 ON PHYSICAL LINES OF FORCE.

If we write

then

= vl, fi = vm, and y = vn,

(2).

PROP. III.—To find the resultant force on an element of the medium,
arising from the variation of internal stress.

We have in general, for the force in the direction of x per unit of volume
by the law of equilibrium of stresses*,

„ d d d , .

In this case the expression may be written
(d(/JLa) da dpx da da

Remembering that a j ~ + i8-^ + y -X = oT~ (a2 + )82 + y2), this becomesX = oT~

da 1 [da dy\ dp1

The expressions for the forces parallel to the axes of y and % may be written
down from analogy.

Rankine's Applied Mechanics, Art. 116.
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In a circular vortex, revolving with uniform angular velocity, if the pressure at the 
axis is p0 that at the circumference will be              , where   is the density and v 
the velocity at the circumference. […] A medium of this kind, filled with 
molecular vortices having their axes parallel, differs from an ordinary fluid in 
having different pressures in different directions.

456 ON PHYSICAL LINES OF FORCE.

PROP. I.—If in two fluid systems geometrically similar the velocities and
densities at corresponding points are proportional, then the differences of pres-
sure at corresponding points due to the motion will vary in the duplicate ratio
of the velocities and the simple ratio of the densities.

Let I be the ratio of the linear dimensions, m that of the velocities,
n that of the densities, and p that of the pressures due to the motion. Then
the ratio of the masses of corresponding portions will be Pn, and the ratio of
the velocities acquired in traversing similar parts of the systems will be m;
so that Pmn is the ratio of the momenta acquired by similar portions in
traversing similar parts of their paths.

The ratio of the surfaces is Z2, that of the forces acting on them is l2p,

and that of the times during which they act is — ; so that the ratio of the

impulse of the forces is —, and we have nowr m

l*mn = -—,m
or m2n =p ;

that is, the ratio of the pressures due to the motion (p) is compounded of
the ratio of the densities (n) and the duplicate ratio of the velocities (m2), and
does not depend on the linear dimensions of the moving systems.

In a circular vortex, revolving with uniform angular velocity, if the
pressure at the axis is p09 that at the circumference will be Pi^Po + ipv2, where
p is the density and v the velocity at the circumference. The mean pressure
parallel to the axis will be

If a number of such vortices were placed together side by side with their
axes parallel, they would form a medium in which there would be a pressure
p2 parallel to the axes, and a pressure px in any perpendicular direction. If the
vortices are circular, and have uniform angular velocity and density throughout,
then

If the vortices are not circular, and if the angular velocity and the density
are not uniform, but vary according to the same law for all the vortices,
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Law of equilibrium of stresses
Rankine’s Applied Mechanics 

Amount of magnetic matter A body is urged towards 
places of stronger 
magnetic intensity 

ON PHYSICAL LINES OF FORCE. 461

placed in the field will be urged towards places of stronger magnetic intensity
with a force depending partly on its own capacity for magnetic induction, and
partly on the rate at which the square of the intensity increases.

If the body be placed in a fluid medium, then the medium, as well as the
body, will be urged towards places of greater intensity, so that its hydrostatic
pressure will be increased in that direction. The resultant effect on a body
placed in the medium will be the difference of the actions on the body and
on the portion of the medium which it displaces, so that the body will tend
to or from places of greatest magnetic intensity, according as it has a greater
or less capacity for magnetic induction than the surrounding medium.

In fig. 4 the lines of force are represented as converging and becoming
more powerful towards the right, so that the magnetic tension at B is stronger
than at A, and the body AB will be urged to the right. If the capacity for
magnetic induction is greater in the body than in the surrounding medium, it
will move to the right, but if less it will move to the left.

Fig. 4, Fig. 5.

\ \

We may suppose in this case that the lines of force are converging to a
magnetic pole, either north or south, on the right hand.

In fig. 5 the lines of force are represented as vertical, and becoming more
numerous towards the right. I t may be shewn that if the force increases
towards the right, the lines of force will be curved towards the right. The
effect of the magnetic tensions will then be to draw any body towards the right
with a force depending on the excess of its inductive capacity over that of the
surrounding medium.

We may suppose that in this figure the lines of force are those surrounding
an electric current perpendicular to the plane of the paper and on the right
hand of the figure.

These two illustrations will shew the mechanical effect on a paramagnetic
or diamagnetic body placed in a field of varying magnetic force, whether the
increase of force takes place along the lines or transverse to them. The form
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We shall always mark by an arrow-head the direction in which we must
look in order to see the vortices rotating in the
direction of the hands of a watch. The arrow-head lg* *
will then indicate the northward direction in the
magnetic field, that is, the direction in which that
end of a magnet which points to the north would
set itself in the field.

Now let A be the end of a magnet which
points north. Since it repels the north ends of
other magnets, the lines of force will be directed lg* *

from A outwards in all directions. On the north I
side the line AD will be in the same direction with ^X -

s B >CD<

the lines of the magnetic field, and the velocity of &
the vortices will be increased. On the south side
the line AC will be in the opposite direction, and
the velocity of the vortices will be diminished, so
that the lines of force are more powerful on the
north side of A than on the south side.

We have seen that the mechanical effect of the
vortices is to produce a tension along their axes,
so that the resultant effect on A will be to pull
it more powerfully towards D than towards C; that is, A will tend to move
to the north.

Let B in fig. 2 represent a south pole. The lines of force belonging to B
will tend towards B, and we shall find that the lines of force are rendered
stronger towards E than towards F, so that the effect in this case is to urge B
towards the south.

It appears therefore that, on the hypothesis of molecular vortices, our first
term gives a mechanical explanation of the force acting on a north or south
pole in the magnetic field.

We now proceed to examine the second term,

Here cf + fF + y* is the square of the intensity at any part of the field, and
[i is the magnetic inductive capacity at the same place. Any body therefore
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We have as yet given no answers to the questions, “How are these vortices set 
in rotation?” and “Why are they arranged according to the known laws of lines 
of force about magnets and currents?”

I have found great difficulty in conceiving of the existence of vortices in a 
medium, side by side, revolving in the same direction about parallel axes. The 
contiguous portions of consecutive vortices must be moving in opposite 
directions; and it is difficult to understand how the motion of one part of the 
medium can coexist with, and even produce, an opposite motion of a part in 
contact with it.

The only conception which has at all aided me in conceiving of this kind of 
motion is that of the vortices being separated by a layer of particles, revolving 
each on its own axis in the opposite direction to that of the vortices, so that the 
contiguous surfaces of the particles and of the vortices have the same motion.




On Physical Lines of Force (Maxwell, 1861-62) 
How are the vortices set in rotation? 
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In mechanism, when two wheels are intended to revolve in 
the same direction, a wheel is placed between them so as to 
be in gear with both, and this wheel is called an “idle wheel”. 150  Maxwell 

FIG. 4.4. Maxwell's cells and idle wheels (Maxwell 1861: 488 for (a) with mistakes in the 
arrows from the MCP reprint; Siegel 1991: 69 for (b), used by permission of Cambridge 

University Press). 

FIG. 4.5. Tangential actions of four idle wheels on a cell. 

is a torque acting on each cell. For example, the torque around Oz is proportional 
to a,T, — a,,T, (see Fig. 4.5). According to a well-known theorem of dynamics, this 
torque must be equal to the time derivative of the angular momentum of the cell, 
which is proportional to ,uH. According to the equality of action and reaction, the 
force T must be equal and opposite to the tangential action of the cell on the par-
ticles. Maxwell interpreted the latter action as the electromotive force E of magnetic 
origin acting on the current. In sum, the curl of E is found to be proportional to the 
time derivative of ,uH. The condition that the work of the force E on the particles 
should be globally equal to the decrease of the kinetic energy of the cells determines 
the coefficient. The final equation of motion is 

a, VxE = uH  
at ' 

(4.9) 

Elaboration of the molecular-vortex model 67

Figure 3.1. Vortices and idle-wheel particles. (Redrawn from Maxwell,
"Physical Lines," Plate VIII, opposite p. 488; cf. Figure 2.2.)

cal difficulties with the model and the need to extend the range of the
theory were accommodated by the single step of introducing the small
particles, and this provided a strong sense of mutual reinforcement. The
rhetorical order is, however, interesting for its own sake: Maxwell pre-
sented himself as mechanical engineer of the magnetoelectric medium,
first looking to mechanical problems, and only later noticing the elec-
tromagnetic significance of the solutions to those problems.

Having thus, as mechanical engineer of the medium, introduced the
small particles to function as idle wheels, Maxwell noticed that in a
region of homogeneous magnetic field, where adjacent vortices would
have equal to* and hence equal surface velocities, the particles making up
the cell walls would behave as ordinary idle wheels, rotating but undergo-
ing no spatial translation (Figure 3.2a); on the other hand, in a region of
inhomogeneous magnetic field, adjacent vortices would have slightly
diiferent surface velocities, giving rise to translational motions of the
idle-wheel particles (Figure 3.2b). (Maxwell was able to cite mechanical
engineering precedent for this kind of situation: "In Siemens's governor
for steam-engines, we find idle wheels whose centres are capable of
motion"; today, one can point to ball bearings as an even more vivid
analogue of Maxwell's layers of movable idle wheels.20) Defining a
vector p, q, r - which we denote by i - to be the net flux density of idle-
wheel particles, averaged over a pseudodifferential volume containing
many vortices, Maxwell calculated, on a purely kinematic basis (given

Illustrations from Siegel (1991) and Darrigol (2000) 

Electric current 

On Physical Lines of Force (Maxwell, 1861-62) 
Idle wheels 
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Explaining induced currents (Basil Mahon, 2003) 

{Jobs}1074jw/makeup/c07.3d

Figure 2a. Switch open

* All cells and idle wheels stationary

* No currents

* No magnetic fields

Figure 2b. Switch first closed

* AB current flows from left to right

* PQ current flows from right to left

* Cells below AB rotate clockwise, causing a magnetic field pointing away
from the viewer

* Cells between AB and PQ rotate anticlockwise, causing a magnetic
field pointing towards the viewer (in three dimensions, a circular field
envelopes AB)

* Cells above PQ still stationary

THE MAN WHO CHANGED EVERYTHING
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Figure 2d. Switch opened again

* AB current stops

* Cells in rows above and below AB stop rotating

* PQ current flows from left to right

* The current will slow, then stop; the situation will then be as in Figure 2a

Figure 2c. Shortly after switch closed

* PQ current slows, then stops

* Cells above PQ start to rotate anticlockwise, and by the time the current
stops are rotating at the same rate as those in the row below PQ

SPINNING CELLS

101
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The conception of a particle having its motion 
connected with that of a vortex by perfect rolling 
contact may appear somewhat awkward. […] It is, 
however, a mode of connexion which is 
mechanically conceivable, and easily investigated, 
and it serves to bring out the actual mechanical 
connexions between the known electromagnetic 
phenomena; so that I venture to say that anyone who 
understands the provisional and temporary nature of 
this hypothesis, will find himself rather helped than 
hindered by i t in his search after the true 
interpretation of the phenomena.  

An ”akward” hypothesis… 
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What happened to the models? 

Dynamical Theory of the EM field (1865) and Treatise on 
Electricity and Magnetism (1873): Abstract field concept 

“Maxwell striped away all the imagery of the (vortices) 
model until all that remained was the mathematics. The 
mathematics was the model.” (Raymond Flood) 

“Maxwell's turn away from mechanical models was one of 
the precipitating events in the decline of the mechanical 
worldview and the transition to the more abstract 
physical formalisms of the 20th century.” (Daniel Siegel) 
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20(!) Maxwell´s equations (1865) 
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Treatise on Electricity and Magnetism - Maxwell (1873) 
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236 GENERAL EQUATIONS. [61 7.

617.] We may therefore adopt, as a definition of 2T, that it
is the vector-potential of the electric current, standing in the same
relation to the electric current that the scalar potential stands to
the matter of which it is the potential, and obtained by a similar
process of integration, which may be thus described.—

From a given point let a vector be drawn, representing in mag-
nitude and direction a given element of an electric current, divided
by the numerical value of the distance of the element from the
given point. Let this be done for every element of the electric
current. The resultant of all the vectors thus found is the poten-
tial of the whole current. Since the current is a vector quantity,
its potential is also a vector. See Art. 422.

When the distribution of electric currents is given, there is one,
and only one, distribution of the values of 21, such that 21 is every-
where finite and continuous, and satisfies the equations

and vanishes at an infinite distance from the electric system. This
value is that given by equations (5), which may be written

Quaternion Expressions for the Electromagnetic Equations.

618.] In this treatise we have endeavoured to avoid any process
demanding from the reader a knowledge of the Calculus of Qua-
ternions. At the same time we have not scrupled to introduce the
idea of a vector when it was necessary to do so. When we have
had occasion to denote a vector by a symbol, we have used a
German letter, the number of different vectors being so great that
Hamilton's favourite symbols would have been exhausted at once.
Whenever therefore, a German letter is used it denotes a Hamil-
tonian vector, and indicates not only its magnitude but its direction.
The constituents of a vector are denoted by Roman or Greek letters.

The principal vectors which we have to consider are :—
Symbol of „ ... ,Vector. Constituents.

The radius vector of a point p % y %
The electromagnetic momentum at a point 21 F G II
The magnetic induction £3 a § c

The (total) electric current g u v 10
The electric displacement 2) f g h
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OF PHYSICAL QUANTITIES. 259

I need not say that this is not true, and that mathematicians, in solving

physical problems, are very much aided by a knowledge of the science in which

the problems occur.

At the same time, I think that the progress of science, both in the way of

discovery, and in the way of diflfusion, would be greatly aided if more attention

were paid in a direct way to the classification of quantities.

A most important distinction was drawn by Hamilton when he divided the

quantities with which he had to do into Scalar quantities, which are completely

represented by one numerical quantity, and Vectors, which require three numerical

quantities to define them.

The invention of the calculus of Quaternions is a step towards the know-

ledge of quantities related to space which can only be compared for its impor-

tance, with the invention of triple co-ordinates by Descartes. The ideas of this

calculus, as distinguished from its operations and symbols, are fitted to be of

the greatest use in all parts of science.

We may imagine another step in the advancement of science to be the

invention of a method, equally appropriate, of conceiving dynamical quantities.

As our conceptions of physical science are rendered more vivid by substituting

for the mere numerical ideas of Cartesian mathematics the geometrical ideas of

Hamiltonian mathematics, so in the higher sciences the ideas might receive a

still higher development if they could be expressed in language as appropriate

to dynamics as Hamilton's is to geometry.

Another advantage of such a classification is, that it guides us in the use

of the four rules of arithmetic. We know that we must not apply the rules

of addition or subtraction unless the quantities are of the same kind. In certain

cases we may multiply or divide one quantity by another, but in other cases

the result of the process is of no intellectual value.

It has been pointed out by Professor Rankine that the physical quantity

called Energy or Work can be conceived as the product of two factors in many
different ways.

MU
The dimensions of this quantity are —jip , where L, M, and T represent

the concrete units of length, time, and mass. If we divide the energy into two
factors, one of which contains D, both factors will be scalars. If, on the other

hand, both factors contain L, they will be both vectors. The energy itself is

always a scalar quantity.

33—2

619-] QUATERNION EXPRESSIONS. 237

Symbol of C o n s t i t u e n t g ,
Vector.

The electromotive force @ P Q R-
The mechanical force g XYZ
The velocity of a point @ or p x y z
The magnetic force <£) a /3 y
The intensity of magnetization 3 ABC
The current of conduction if p q r
We have also the following scalar functions :—•

The electric potential *.
The magnetic potential (where it exists) 12.
The electric density e.
The density of magnetic ' matter' m.

Besides these we have the following quantities, indicating physical
properties of the medium at each point:—

C, the conductivity for electric currents.
K, the dielectric inductive capacity.
jtx, the magnetic inductive capacity.

These quantities are, in isotropic media, mere scalar functions
of p, but in general they are linear and vector operators on the
vector functions to which they are applied. K and fx are certainly
always self-conjugate, and G is probably so also.

619.] The equations (A) of magnetic induction, of which the
first is> dH dG

a = -= =-- J
cly ch

may now be written ?g _ y y g[
where V is the operator

. d . d 7 d
dx J dy dz

and V indicates that the vector part of the result of this operation
is to be taken.

Since 21 is subject to the condition S V 2[ = 0, V 2[ is a pure
vector, and the symbol V is unnecessary.

The equations (B) of electromotive force, of which the first is
D . ,. dF d*F — cy — bz YT j - »3 dt dx

become @ = F® 33 - S( - V * .
The equations (C) of mechanical force, of which the first is

da
A = cv — ow — e-. m

dx
become
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615.] These may be regarded as the principal relations among
the quantities we have been considering. They may be combined
so as to eliminate some of these quantities, but our object at present
is not to obtain compactness in the mathematical formulae, but
to express every relation of which we have any knowledge. To
eliminate a quantity which expresses a useful idea would be rather
a loss than a gain in this stage of our enquiry.

There is one result, however, which we may obtain by combining
equations (A) and (E), and which is of very great importance.

If we suppose that no magnets exist in the field except in the
form of electric circuits, the distinction which we have hitherto
maintained between the magnetic force and the magnetic induction
vanishes, because it is only in magnetized matter that these quan-
tities differ from each other.

According to Ampere's hypothesis, which will be explained in
Art. 833, the properties of what we call magnetized matter are due
to molecular electric circuits, so that it is only when we regard the
substance in large masses that our theory of magnetization is
applicable, and if our mathematical methods are supposed capable
of taking account of what goes on within the individual molecules,
they will discover nothing but electric circuits, and we shall find
the magnetic force and the magnetic induction everywhere identical.
In order, however, to be able to make use of the electrostatic or of
the electromagnetic system of measurement at pleasure we shall
retain the coefficient ju, remembering that its value is unity in the
electromagnetic system.

616.] The components of the magnetic induction are by equa-
tions (A), Art. 591, dH dG

a — -= =- ,
dy dz

b_dF_ dH
dz dx
dG dF
dx dy

The components of the electric current are by equations (E),
Art. 607, <_ n - dV d$ 1

~ dy dz
da dy

4 TT V = -= / , *.
dz dx Id/3
dx

da
dy
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According to our hypothesis a, b, c are identical with fxa,
respectively. We therefore obtain

If we write

dxdy dy2 dz% dzdx
j_dF dG dH

dx dy dz

2 _ (d

V ~ Uxiand*
we may write equation (1),

Similarly,

If we write

(1)

(2)

(3)

dJ

(4)

* dx dy dz,

', !-
WTJf 1 fffW 7 7 7

H = - i n —dxdydz,
ix JJJ r J

(5)

(6)

where r is the distance of the given point from the element xy z,
and the integrations are to be extended over all space^ then

F= dx

dy (7)

The quantity x disappears from the equations (A), and it is not
related to any physical phenomenon. If we suppose it to be zero
everywhere, / will also be zero everywhere, and equations (5),
omitting the accents, will give the true values of the components
of 21

* The negative sign is employed here in order to make our expressions consistent,
with those in which Quaternions are employed.
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What are quaternions? How are they related to vectors? 
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Analytical representation of direction – Wessel (1798) 

Change in direction should be represented by algebraic symbols 

Problem: direction cannot be changed by algebraic operations except to the opposite 

−1 1

1−1

.(-1) 
means 180º  

How to express 90º? 

i means 90º rotation! 

i

Hint: i2 = -1 

v = a + bi

21 



Multiplication of directed line segments is analogous to real numbers 

The product of two straight lines should be formed from the one factor, in the same way 
as the other from the positive unit line that is set = 1  

v1v2
v2

= v1
1

2 ⋅(−3) = −6
−6
2

= −3
1

−6
−3

= 2
1

real numbers directed lines 
i) The factors and the product are in the same plane as the unit 

ii) The length of the product is the product of the lengths of the factors 

iii) The product must deviate as many degrees from the one factor, as 
the other factor deviates from the unit so that the directional angle of 
the product is the sum of the directional angles of the factors. 

Directed lines can be analytically represented 


v = a + bi v = v cosα + isinα( )

v1v2 = v1 v2 cos(α + β )+ isin(α + β )[ ]
1

v1
v2

v1v2

Analytical representation of direction – Wessel (1798) 
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Analytical representation of direction in 3D – Hamilton (1843) 

Hamilton’s path to quaternions 

A plausible 2D-3D analogy: “it seemed natural” 

Triplet 

 60

interpretado geometricamente como uma linha orientada do espaço (com origem em 

(0,0,0) e extremidade em (x,y,z) ), sendo x,y,z suas “coordenadas retangulares”121, e 

sendo j o representante da direção perpendicular às direções das linhas perpendiculares 

“1” e “i” . Nas palavras do próprio Hamilton: 

 

          “Como 1- , em um sentido bem conhecido, é uma linha perpendicular à linha 1, 

parece natural que deva haver outro imaginário para expressar a linha perpendicular a 

ambas anteriores;...”122  

 

         Na figura.4 ilustramos a identificação entre s, uma linha reta orientada do espaço, 

e um tripleto x+iy+jz, segundo Hamilton. 

 

.  

 

 

 

 

 

 

 

 

 

          Em termos algébricos, tal como fez para a unidade imaginária i, Hamilton  

idealizou j como uma raiz quadrada de -1, ou seja,  j2 = i2 = -1  e em termos de rotações 

no plano, assim como a multiplicação por i2 resulta numa rotação dupla de um “ângulo 

reto no plano xy” , considerou que a multiplicação por j2 resulta numa rotação dupla de 

um “ângulo reto no  plano xz”123.  

                                                 
121 Hamilton [1853], p.43 
          “…so that a numerical triplet took the form x+iy+jz, where I proposed to interpret x,y,z as three 
rectangular co-ordinates, and the triplet itself as denoting a line in space.” 
122Hamilton [1843], p.1 

          “Since 1-  is in a certain well-known sense, a line perpendicular to the line 1, it seemed natural 
that there should be some other imaginary to express a line perpendicular to the former;...” 
123 Hamilton [1853], p.44 
          “…and tried the effect of assuming also j2 =-1, which I interpreted as answering to a rotation 
through two right angles in the plane of xz, as i2 = -1 had corresponded to such a rotation in the plane of 
xy.” 

Since i is in a certain well-known sense, a line 
perpendicular to the line 1, it seemed natural that there 
should be some other imaginary to express a line 
perpendicular to the former. 

1

i

j

… I tried the effect of assuming also j2 = -1, which I 
interpreted as a rotation through two right angles in the 
xz, as i2 = -1 had corresponded to such a rotation in 
the plane xy 

j2 = i2 = -1 x + iy + jz 

Neves (2008)
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Addition of triplets 
 62

� � � � � � � � � �zcjybixajziyxjciba ����� ����� , 

 

e as propriedades foram preservadas125.  

 

          A dificuldade surgiu com a multiplicação de tripletos. Nas palavras do próprio 

Hamilton 

 

          “Chamando a antiga raiz, como os alemães freqüentemente fazem, de i, e a nova 

de j, questionei quais leis deveriam ser assumidas para a multiplicação de a+ib+jc com  

x+iy+jz.”126  

 

          “Parece natural assumir que o produto é (ax-by-cz)+i(ay+bx)+j(az+cx)+ij(bz+cy), 

mas o que fazer com ij? Deveria ser da forma Į+iȕ+jȖ?” 127 

 

           Conforme podemos constatar, Hamilton se depara com um problema algébrico. 

A multiplicação de tripletos num primeiro momento parece não resultar num tripleto128. 

 

           De fato, partindo do pressuposto (algébrico), como pretendia Hamilton, de que a 

multiplicação de tripletos deveria ser associativa, comutativa e distributiva, tal como a 

multiplicação de números imaginários, e que 1ji 22 �  , teremos que 

 

� �� �

� � � � � � � �cybzijcxazjbxayiczbyax
ijcyijbzjcxjazibxiayczjbyiax

jcjzjciyjcxibjzibiyibxajzaiyaxjziyxjciba
22

�������� 
�������� 

�������� ����

 

                                                 
125 Hamilton [1853], p.17 
126 Hamilton [1843], p.1 
          “Calling the old root, as the Germans often do, i, and the new one j, I inquired what laws ought to 
be assumed for multiplying together a+ib+jc and x + iy + jz..” 
127Hamilton [1843], p.2 
           “It was natural to assume that the product  = (ax-by-cz)+i(ay+bx)+j(az+cx)+ij(bz+cy),but what are 
we to do with ij? Shall it be of the form Į+iȕ+jȖ?”  
128 Como já vimos no capítulo.1, Wessel usou argumentações geométricas para tratar das rotações não só 
no plano, mas também no espaço, embora não o tenha feito de forma genérica. Wessel não comenta, mas 
caso tenha tentado generalizar seu método para a realização de rotações no espaço, provavelmente 
encontrou um problema similar ao encontrado por Hamilton, ou seja, como definir uma multiplicação de 
linhas no espaço de modo que o seu produto seja uma linha do espaço? Foi a superação desse impasse, 
como veremos neste capítulo, que resultou na descoberta  dos quatérnios.  

ü   

Multiplication of triplets

 62
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125 Hamilton [1853], p.17 
126 Hamilton [1843], p.1 
          “Calling the old root, as the Germans often do, i, and the new one j, I inquired what laws ought to 
be assumed for multiplying together a+ib+jc and x + iy + jz..” 
127Hamilton [1843], p.2 
           “It was natural to assume that the product  = (ax-by-cz)+i(ay+bx)+j(az+cx)+ij(bz+cy),but what are 
we to do with ij? Shall it be of the form Į+iȕ+jȖ?”  
128 Como já vimos no capítulo.1, Wessel usou argumentações geométricas para tratar das rotações não só 
no plano, mas também no espaço, embora não o tenha feito de forma genérica. Wessel não comenta, mas 
caso tenha tentado generalizar seu método para a realização de rotações no espaço, provavelmente 
encontrou um problema similar ao encontrado por Hamilton, ou seja, como definir uma multiplicação de 
linhas no espaço de modo que o seu produto seja uma linha do espaço? Foi a superação desse impasse, 
como veremos neste capítulo, que resultou na descoberta  dos quatérnios.  

?

But what are we to do with ij? Shall it be of the form α+iβ+jγ? 

1st attempt:  

 64

          Condição.2) Os “raios vetores dos pontos” ''c,''b,''ae'c,'b,'a;c,b,a  devem 

pertencer ao mesmo plano que contém o “semi-eixo positivo dos x”. 

 

          Para efeito de cálculos, isto significa verificar se existe um plano ȕ  que contenha  

o semi-eixo positivo dos x e os raios vetores dos pontos dos fatores e do produto. 

 

          Condição.3) A soma dos ângulos formados pelos raios vetores dos pontos 

'c,'b,'aec,b,a  com o semi-eixo dos x deve ser igual ao ângulo formado pelo raio 

vetor do ponto ''c,''b,''a  com o mesmo semi-eixo, isto é, a soma das inclinações das 

linhas fatores deve ser igual à inclinação da linha produto.  

 

          Para efeito de cálculos, fazendo  21 Į,Į ângulos formado pelos raios vetores dos 

pontos 'c,'b,'aec,b,a  com o semi-eixo dos x  e  ș ângulo formado pelo raio vetor 

do ponto ''c,''b,''a  com o mesmo semi-eixo, isto significa verificar se é verdadeira a 

igualdade 

� � .ștgĮĮtg 21  �  

 

          Passaremos agora a descrever e analisar as conjecturas algébricas de Hamilton 

para o produto ij. 

 

3.2.2.1: 1ij r  

          Hamilton concebe essa conjectura ao observar que o quadrado de ij deve ser igual 

a 1, visto que 1ji 22 �   132.   

 

          De fato, considerando válidas as propriedades associativa e comutativa na 

multiplicação dos tripletos i e j   e  ainda que 1ji 22 �  , segue que 

� � � �� � � � � � � �� � � �� � 111jijjiijijijjiiijijij 222  ��      , 

 

ou seja, ij deve ser igual a ±1.   

 
                                                 
132 Carta de Hamilton para Graves, datada de 17 de outubro de 1843 : “Its square would seem  to be = 1, 
because i2 = j2 = -1; and this might tempt us to take ij = 1 or ij = -1”. 

2nd attempt:  

 65

          Para testar essa conjectura algébrica, Hamilton considera uma multiplicação 

particular: a de um tripleto por ele próprio (isto é, o quadrado de um tripleto): 

 

� �� � � � � � � �.bc2ijac2jab2icbajcibajciba 222 ����� ����   

 

          Trocando ij por 1r , obtém  

 

� � � � � � � �.ac2jab2ibc2cbajciba 2222 ��r�� ��   

 

          Hamilton não mostra os detalhes, mas conclui que essa multiplicação (além de ser 

particular) não satisfaz a lei dos módulos (Condição.1), e por isso resolve abandoná-la. 

Vejamos como ele justifica sua conclusão. 

 

          “mas nem mesmo assumindo isto ( 1ij r ) teremos a soma dos quadrados dos 

coeficientes de 1, i e j no produto = ao produto das somas dos correspondentes 

quadrados dos fatores.”133  

 

          De fato, como é fácil de verificar, isto quer dizer que � �� �222222 cbacba ����  

e � � � � � �222222 ac2ab2bc2cba ��r��  são diferentes. Em símbolos,  

 

� �� � � � � � � �222222222222 ac2ab2bc2cbacbacba ��r��z���� . 

        

3.2.2.2: 0ij   

          Hamilton concebe essa conjectura ao observar que a condição.1 é satisfeita nessa 

mesma multiplicação (quadrado de um tripleto) caso despreze o termo � �bc2ij 134.  

 

 

                                                 
133  Id.  “but with neither assumption shall we have the sum of the squares of the coefficients of 1, i, and j 
in the product = to the product of the corresponding sums of squares in the factors”. 
134 As conjecturas ij = ±1 e ij = 0, significam admitir que ij possa ser um tripleto, possibilidade que foi 
comprovadamente descartada por Kenneth O. May em 1966. A prova é basicamente a seguinte: se 
supomos que  existem Į, ȕ e Ȗ reais tais que ij= Į+iȕ+jȖ e multiplicamos essa igualdade por i, obteremos  
-j= iĮ-ȕ+ijȖ. Substituindo a primeira igualdade na segunda, obteremos -j= iĮ-ȕ+(Į+iȕ+jȖ)Ȗ, ou seja,                   
0 = (ĮȖ-ȕ)+i(Į+ȕ+Ȗ)+j(Ȗ2+1), que é impossível pois Ȗ2+1=0 não possui solução real.   

3rd attempt:  

 68

          O próprio Hamilton revelou, sem justificar, que considerou a hipótese ij = 0 

“estranha e desconfortável”136.  

  

3.2.2.3: kjiij  �  

          Hamilton observa que poderia fazer o termo estranho � �bc2ij  desaparecer do 

produto anterior caso considerasse a “suposição menos radical” ij = -ji = k.137 

 

          Sem justificar (provavelmente baseado em suas pesquisas anteriores sobre o que 

ele chamou de “sets of numbers”, e que em termos atuais chamaríamos de uma n-upla), 

Hamilton declara que tinha seus motivos para não estranhar a suposição ij =-ji 138, 

embora ela significasse admitir a possibilidade de se criar uma teoria que contrariasse a 

propriedade comutativa da multiplicação, uma idéia nova para sua época (ainda que já 

existissem nessa época as geometrias não-euclidianas, uma teoria que também surgiu da 

negação de um axioma de uma teoria milenar, a geometria euclidiana). 

 

          Para testar essa conjectura, Hamilton considera a multiplicação de dois tripletos 

com as mesmas coordenadas retangulares b e c, ou seja, um produto mais geral, porém 

ainda particular. Vejamos o que ele obtém: 

 

� �� � � � � �
� � � �
� � � � .cxajbxaicbax

ijbcijbccxajbxaicbax
jibcijbccxajbxaicbaxjcibxjciba

22

22

22

������ 

�������� 

�������� ����

 

 

          Como no caso anterior, Hamilton observa que aqui também o produto é um 

tripleto e que as condições 1 ,2 e 3  são satisfeitas139. Vejamos. 

                                                 
136 Hamilton [1843], p.2 
          “Behold me therefore tempted for a moment to fancy that ij = 0. But this seemed odd and 
uncomfortable…”. 
137 Carta de Hamilton para Graves: “I perceived that the same suppression of the term which was de trop 
might be attained by assuming what seemed to me less harsh, namely that ji = -ij”. 
138 Hamilton [1853],p.45 
          “…the supposition for which may old speculations on sets had prepared me…” 
139 Carta de Hamilton para Graves:  

          “the two factor lines in one common plane with the unit line” 

          “and ax-b2 -c2, (a+x)b, (a+x)c are easily found to be the correct coordinates of the product-point, in 
the sense that the rotation from the unit line to the radius vector of a, b, c, being added in its own plane to 
the rotation from the same unit-line to the radius vector of the other factor-point x, b, c, conducts to the 

Analytical representation of direction in 3D – Hamilton (1843) 

Details in Hankins (1980, p. 295-300) 
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 74

          De fato isto ocorre, pois 

11.1j.iijk      e � �� � 111i.ij)ij(iij.ijk 222 � ��� � �  . 

          A partir dessa interpretação geométrica para i,j e k, Hamilton conclui que a 

“forma trinomial” ou “tripleto imaginário” kzjyix ��  pode ser interpretado 

geometricamente como uma linha orientada (com origem em (0,0,0) e extremidade no 

ponto (x,y,z) )  no espaço ou um ponto de coordenadas retangulares x,y,z  do espaço e, 

consequentemente, que “...o produto de duas linhas no espaço poderia ser expresso por 

um quatérnio...”146.  

         Na figura.8 ilustramos a identificação de uma linha orientada s e um quatérnio 

ix+jy+kz. 

 

 

 

 

 

 

 
3.2.2.4.2: Multiplicação de Quatérnios do Tipo ix + jy + kz 
          Uma vez decidido sobre a natureza de k e admitindo a associatividade, Hamilton 

conclui que ik = iij = (-1)j = -j, kj = ijj = i(-1) = -i, e assim como ij = -ji, deveria ser 

verdade que ki = j e jk = i. 147 

 

 

 

 

                                                 
146 Hamilton [1853], p.47 
          “…instead of representing a line by a triplet of the form x+iy+jz, we should agree to represent it by 
this other trinomial form, ix+jy+kz, we should then be able to express the desired product of two lines in 
space by a quaternions…” 
147 Hamilton [1843], p.3. 
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          A tábua completa da multiplicação das unidades imaginárias i,j,k seria então: 

 i j k 

i -1 k -j 

j -k -1 i 

k j -i -1 

          Vejamos agora como obter o produto de duas linhas do espaço tri-dimensional via 

quatérnios: 

� �� �
� � � � � � � �

� � '.'kz''jy''ix'zz'yy'xx

'yx'xyk'xz'zxj'zy'yzi'zz'yy'xx...
'zzk'kjzy'kizx'jkyz'yyj'jiyx'ikxz'ijxy'xxi'kz'jy'ixkzjyix

''z''y''x

222

������ 

���������  
�������� ����

���
	���
	���
	
 

          Apesar de Hamilton ter conseguido definir uma multiplicação algébrica de linhas 

do espaço (consideradas como quatérnios) que obedece a condição.1, tal multiplicação 

só  resulta numa linha do espaço quando 0'zz'yy'xx  �� . Essa observação já nos dá 

indícios de que a interpretação geométrica dessa multiplicação, via rotações no espaço, 

não deve ser simples. Mesmo fugindo do objetivo deste capítulo, já concluído com o 

surgimento dos quatérnios, vejamos quais foram as considerações iniciais de Hamilton 

neste sentido.   

 
3.2.2.4.3: Interpretação Geométrica de Hamilton para o 
Produto de Quatérnios do Tipo ix + jy + kz 
          Hamilton afirma que os termos ''kz''jy''ixe'zz'yy'xx �����  do produto, na 

multiplicação � �� �'kz'jy'ixkzjyix ����  anterior possuíam 

“... um significado geométrico muito simples...” 148. 

          Considerando Į  = ângulo entre as linhas, com qddq 180Į0 , e fazendo uso das 

expressões “parte real ou escalar” para o termo 'zz'yy'xx ���  e “parte imaginária ou 

                                                 
148 Hamilton [1853], p.47 
          “…of which the constituents have very simple geometrical significations…” 
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148 Hamilton [1853], p.47 
          “…of which the constituents have very simple geometrical significations…” 
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Modern Vector analysis – Gibbs 

MATHEMATICS 107

nomena of optics must have an electromagnetic origin. But it was
not only in its physical concepts that the Treatise presented novel
ties. In order to put the results in a more compact form than is
possible with the usual Cartesian analysis, Maxwell utilized some
of the ideas of Sir William Rowan Hamilton's calculus of quater
nions, in which attention is focused on the quantity considered
rather than on its components. That it was the critical study of the

quaternionic methods of representing the phenomena of electricity
and magnetism which led him to his vector analysis we have first
hand evidence in Gibbs' own words. This occurs in the draft of a

letter preserved in the "Scientific Correspondence" which he wrote
in 1888 to Dr. Victor Schlegel in reply to one calling his attention
to a certain pertinent publication of Schlegel's. This draft answers
so explicitly several questions which have arisen with regard to
Gibbs' system of vector analysis and its relations to other systems
that it is worth while to reproduce it in its entirety in spite of its

length.

Aug. i, 1888

My dear Dr. Schlegel,
I am glad to hear that you are pleased with my address on Multiple

Algebra. My object in writing it was threefold; to vindicate the value of
the methods of Multiple Algebra, to call attention to the fundamental
importance of Grassmann's work in this field, & lastly, to express my
own ideas on the subject, i.e., to give a brief resume of those notions wh
seem to me fundamental & in the mutual connection wh seems most
natural and fruitful. That I was not acquainted with your work at that
time (or rather that having only seen the first part, I had hastily con
cluded that it contained only geometrical applications) was a matter of
regret to me subsequently when I found that I had made a serious omis
sion.

Your apt characterization of my Vector Analysis in the Fortsch. Math.
suggests that you may be intersd to know the precise relation of that
pamphlet to the work of Ham. & Grass, with respect to its composition.

My first acquaintance with quaternions was in reading Maxwell's
E. & M. where Quaternion notations are considerably used. I became
convinced that to master those subjects, it was necessary for me to com
mence by mastering those methods. At the same time I saw, that al
though the methods were called quaternionic the idea of the quaternion
was quite foreign to the subject. In regard to the products of vectors, I
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saw that there were two important functions (or products) called the
vector part & the scalar part of the product, but that the union of the
two to form what was called the (whole) product did not advance the

theory as an instrument of geom. investigation. Again with respect to
the operator V as applied to a vector I saw that the vector part & the
scalar part of the result represented important operations, but their union
(generally to be separated afterwards) did not seem a valuable idea.
This is indeed only a repetition of my first observation, since the operator
is defined by means of the multiplication of vectors, & a change in the
idea of that multiplication would involve the change in the use to the

operator V •

I therefore began to work out ab initio, the algebra of the two kinds
of multiplication, the three differential operations V applied to a scalar,
& the two operations to a vector, & those functions or rather integrating
operators wh (under certain limitations) are the inverse of the said dif
ferential operators, & wh play the leading roles in many departments of
Math. Phys. To these subjects was added that of lin. vec. functions wh
is also prominent in Maxwell's E. & M.

This I ultimately printed but never published, although I distributed
a good many copies among such persons as I thought might possibly take
an interest in it. My delay & hesitation in this respect was principally due
to difficulty in making up my mind in respect to details of notation,
matters trifling in themselves, but in wh it is undesirable to make un
necessary changes.

My acquaintance with Grassmann's work was also due to the subject
of E. [electricity] & in particular to the note wh he published in Crelle's
Jour, in 1877 calling attention to the fact that the law of the mutual ac

tion of two elements of current wh Clausius had just published had been
given in 1845 by himself. I was the more interested in the subject as I
had myself (before seeing Clausius' work) come to regard the same as

the simplest expression for the mechanical action, & probably for the
same reason as Grassmann, because that law is so very simply expressed
by means of the external product.

At all events I saw that the methods wh I was using, while nearly
those of Hamilton, were almost exactly those of Grassmann. I procured
the two Ed. of the Ausd.2 but I cannot say that I found them easy read
ing. In fact I have never had the perseverance to get through with either
of them, & have perhaps got more ideas from his miscellaneous memoirs
than from those works.

I am not however conscious that Grassmann's writings exerted any
particular influence on my V-A, although I was glad enough in the in

2. The two editions of the Ausdehnungilehre of 1844 and 1862.
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Gibbs to Schlegel (1888) 

Quotation from Crowe (1967) 
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Modern Vector analysis – Heaviside 

Maxwell exhibited his main results in quaternionic form. 
I went to Prof. Tait’s treatise to get information, and to 
learn how to work them. […] But on proceeding to 
apply quaternions to the development of electric 
theory, I found it very inconvenient. Quaternions were 
in their vectorial aspects antiphysical and unnatural […]. 
So I dropped out the quaternion altogether, and kept 
to pure scalars and vectors, using a very simple 
vectorial algebra in my papers from 1883 onwards.  

Heaviside (1893) 

Quotation from Crowe (1967) 
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Department of Science Education 

Questions for discussion 
- He writes and thinks in the notion of vectors and in particular 
vector calculus. And since it's the first time we see this 
notation in this course, I wonder if he was he himself was a 
contributor to these fields or did he simply just employ and 
use existing notation and mathematics? 

- Was the interpretation of the inverse square law as a surface 
of sphere known to Maxwell? Because he includes the 4π in 
various equations, and he doesn't seem to care or take notice 
of this very nice and simple geometric interpretation that is 
sitting right there in front of him. 

- Was he taken seriously as physicist on this subject at the 
time? Because most of the time he seems much more 
interested in the structure than explanations and physical 
reality. His methods and arguments seem to resemble more 
that of a Mathematician than a physicist. 
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Weber’s electrodynamics 
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Weber in 1846:
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Weber’s  force

Credit: André Assis 
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Credit: André Assis 

Weber’s electrodynamics 

Weber’s  force
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Credit: André Assis 

Weber’s electrodynamics 

Properties  of  Weber’s  force
• In the static case (dr/dt = 0 and d2r/dt2 = 0) we return to the

laws of Coulomb and Gauss.
• Action and reaction. Conservation of linear momentum.
• Force along the straight line connecting the particles.

Conservation of angular momentum.
• It can be derived from a velocity dependent potential

energy:
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Department of Science Education 

Weber-Kohlrausch experiment (1856) 
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The goal was to compare two systems of electrical 
units. The principle was to discharge a Leyden jar (a 
capacitor) that had been storing a known amount of 
electric charge in electrostatic units, and then to see 
how long it took for a unit of electric current, as 
measured in electromagnetic units, to produce the 
same deflection in a galvanometer. The ratio turned 
out to be very close to the measured speed of light. 
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Credit: André Assis 

Weber’s electrodynamics 
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Last chapter of Maxwell´s treatise (1873) 
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End of module feedback 

•  Please go to b.socrative.com (student login)  

•  Enter the HISPHYSKU room 

•  Fill out the short (anonymous) survey 

•  Tak skal du have! 
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