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Principles of the motion of fluids∗

Leonhard Euler

(Dated: April 30, 2008)

Here are treated the elements of the theory of the motion of fluids in general, the whole matter being reduced to
this: given a mass of fluid, either free or confined in vessels, upon which an arbitrary motion is impressed, and
which in turn is acted upon by arbitrary forces, to determine the motion carrying forward each particle, and at
the same time to ascertain the pressure exerted by each part, acting on it as well as on the sides of the vessel.
At first in this memoir, before undertaking the investigation of these effects of the forces, the Most Famous
Author1 carefully evaluates all the possible motions which can actually take place in the fluid. Indeed, even
if the individual particles of the fluid are free from each other, motions in which the particles interpenetrate
are nevertheless excluded, since we are dealing with fluids that do not permit any compression into a narrower
volume. Thus it is clear that an arbitrary small portion of fluid cannot receive a motion other than the one which
constantly conserves the same volume; even though meanwhile the shape is changed in any way. It would hold
indeed, as long as no elementary portion would be compressed at any time into a smaller volume; furthermore2

if the portion expanded into a larger volume, the continuity of the particles was violated, these were dispersed
and no longer clinged together, such a motion would no longer pertain to the science of the motion of fluids;
but individual droplets would separately perform their motion. Therefore, this case being excluded, the motion
of the fluids must be restricted by this rule that each small portion must retain for ever the same volume; and
this principle restricts the general expressions of motion for elements of the fluid. Plainly, considering an
arbitrary small portion of the fluid, its individual points have to be carried by such a motion that, when at a
moment of time they arrive at the next location, till then they occupy a volume equal to the previous one; thus
if, as usual, the motion of a point is decomposed parallel to fixed orthogonal directions, it is necessary that
a certain established relation hold between these three velocities, which the Author has determined in the first part.

In the second part the author proceeds to the determination of the motion of a fluid produced by arbitrary forces,
in which matter the whole investigation reduces to this that the pressure with which the parts of the fluid at each
point act upon one another shall be ascertained; which pressure is denoted most conveniently, as customary for
water, by a certain height; this is to be understood thus, that the each element of the fluid sustains a pressure the
same as if were pressed by a heavy column of the same fluid, whose height is equal to that amount. Thus, in such
way in each point of the fluid the height referring to the state of the pressure will be given; since it is not equal
to the one in the neighbourhood, it will perturb the motion of the elements. But this pressure depends as well on
the forces acting on each element of the fluid, as on those, acting in the whole mass; thus, by the given forces, the
pressure in each point and thereupon the acceleration of each element – or its retardation – can be assigned for the
motion, all which determinations are expressed by the author through differential formulae. But, in fact, the full
development of these formulas mostly involves the greatest difficulties. But nevertheless this whole theory has
been reduced to pure analysis, and what remains to be completed in it depends solely upon subsequent progress
in Analysis. Thus it is far from true that purely analytic researches are of no use in applied mathematics; rather,
important additions in pure analysis are now required.

I. FIRST PART

1. Since liquid substances differ from solid ones by the
fact that their particles are mutually independent of each other,

∗This is an English adaptation by Walter Pauls of Euler’s
memoir ‘Principia motus fluidorum’ (Euler, 1756–1757). Up-
dated versions of the translation may become available at
www.oca.eu/etc7/EE250/texts/euler1761eng.pdf. For
a detailed presentation of Euler’s fluid dynamics papers, cf. Truesdell, 1954,
which has also been helpful for this translation. Euler’s work is discussed
in the perspective of eighteenth century fluid dynamics research by Darrigol
and Frisch, 2008. The help of O. Darrigol, U. Frisch, G. Grimberg and
G. Mikhailov is also acknowledged.
Explanatory footnotes and references have been supplied where necessary;
Euler’s memoir had neither footnotes nor a list of references.
1Summaries, which at that time were not placed at the beginning of the corre-
sponding paper, were published under the responsibility of the Academy; the
presence of the words “Most Famous Author”, rather common at the time,
cannot be taken as evidence that Euler usually referred to himself in this way.
2In the original, we find “verum quoniam”; the litteral translation “since in-
deed” does not seem logically consistent.

they can also receive most diverse motions; the motion per-
formed by an arbitrary particle of the fluid is not determined
by the motion of the remaining particles to the point that it
cannot move in any other way. The matter is very different
in solid bodies, which, if they were inflexible, would not un-
dergo any change in their shape; in whatsoever way they be
moved, each of their particles would constantly keep the same
location and distance with respect to other particles; it thus
follows that, the motion of two or, if necessary, three of all the
particles being known, the motion of any other particle can be
defined; furthermore the motion of two or three particles of
such a body cannot be chosen at will, but must be constrained
in such a way that these particles preserve constantly their po-
sitions with respect to each other.1

2. But if, moreover, solid bodies are flexible, the motion
of each particle is less constrained: because of the bending,

1 Here Euler refers to the motion of rigid solid bodies treated previously in
Euler, 1750.
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the distance as well as the relative position of each particle
can be subject to changes. However, the manner itself of the
bending constitutes a certain law which various particles of
such a body have to obey in their motion: certainly what has
to be taken care of is that the parts that experience in their
neighborhood such a strong bending with respect to each other
are neither torn apart from the inside nor penetrate into each
other. Indeed, as we shall see, impenetrability is demanded
for all bodies.
3. In fluid bodies, whose particles are united among them-

selves by no bond, the motion of each particle is much less
restricted: the motion of the remaining particles is not de-
termined from the motion of any number of particles. Even
knowing the motion of one hundred particles, the future mo-
tion permitted to the remaining particles still can vary in in-
finitely many ways. From which it is seen that the motion of
these fluid particles plainly does not depend on the motion of
the remaining ones, unless it be enclosed by these so that it is
constrained to follow them.
4. However, it cannot happen that the motion of all parti-

cles of the fluid suffers no restrictions at all. Furthermore, one
cannot at will invent a motion that is conceived to occur for
each particle. Since, indeed, the particles are impenetrable,
it is immediately clear that a motion cannot be maintained in
which some particles go through other particles and, accord-
ingly, penetrate each other: also, because of this reason such
motion certainly cannot be conceived to occur in the fluid.
Therefore, infinitely many motions must be excluded; after
their determination the remaining ones are grouped together.
It is seen worthwhile to define them more accurately regard-
ing the property which distinguishes them from the previous
ones.
5. But before the motion by which the fluid is agitated at

any place can be defined, it is necessary to see how every mo-
tion, which can definitely be maintained in this fluid, be rec-
ognized: these motions, here, I will call possible, which I will
distinguish from impossible motions which certainly cannot
take place. We must then find what characteristic is appro-
priate to possible motions, separating them from impossible
ones. When this is done, we shall have to determine which
one of all possible motions in a certain case ought actually
to occur. Plainly we must then turn to the forces which act
upon the water, so that the motion appropriate to them may be
determined from the principles of mechanics.
6. Thus, I decided to inquire into the character of the possi-

ble motions, such that no violation of the impenetrability can
occur in the fluid. I shall assume the fluid to be such as never
to permit itself to be forced into a lesser space, nor should its
continuity be interrupted. Once the theory of fluids has been
adjusted to fluids of this nature, it will not be difficult to ex-
tend it also to those fluids whose density is variable and which
do not necessarily require continuity.2
7. If, thus, we consider an arbitrary portion in such a fluid,

2 See the English translation of ”General laws of the motion of fluids” in
these Proceedings.

the motion, by which each of its particles is carried has to be
set up so that at each time they occupy an equal volume. When
this occurs in separate portions, any expansion into a larger
volume, or compression into a smaller volume is prohibited.
And, if we turn attention to this only property, we can have
only such motion that the fluid is not permitted to expand or
compress. Furthermore, what is said here about arbitrary por-
tions of the fluid, has to be understood for each of its elements;
so that the volume of its elements must constantly preserve its
value.
8. Thus, assuming that this condition holds, let an arbi-

trary motion be considered to occur at each point of the fluid;
moreover, given any element of the fluid, consider the brief
translations of each of its boundaries. In this manner the vol-
ume, in which the element is contained after a very short time,
becomes known. From there on, this volume is posed to be
equal to the one occupied previously, and this equation will
prescribe the calculation of the motion, in so far as it will be
possible. Since all elements occupy the same volumes during
all periods of time, no compression of the fluid, nor expansion
can occur; and the motion is arranged in such a way that this
becomes possible.
9. Since we consider not only the velocity3 of the motion

occuring at every points of the fluid but also its direction, both
aspects are most conveniently handled, if the motion of each
point is decomposed along fixed directions. Moreover, this de-
composition is usually carried out with respect to two or three
directions:4 the former is appropriate for the decomposition,
if the motion of all points is completed in the same plane; but
if their motion is not contained in the same plane, it is ap-
propriate to decompose the motion following three fixed axes.
Because the latter case is more difficult to treat, it is more con-
venient to begin the investigation of possible motions with the
former case; once this has been done, the latter case will be
easily completed.
10. First I will assign to the fluid two dimensions in such

a way that all of its particles are now not only found with
certainty in the same plane, but also their motion is performed
in it. Let this plane be represented in the plane of the table
(Fig. 1), let an arbitrary point l of the fluid be considered,
its position being denoted by orthogonal coordinates AL =
x and Ll = y. The motion is decomposed following these
directions, giving a velocity lm = u parallel to the axis AL
and ln = v parallel to the other axis AB: so that the true future
velocity of this point is =

√

(uu + vv), and its direction with
respect to the axis AL is inclined by an angle with the tangent
v
u .
11. Since the state of the motion, presented in a way which

suits the each point of the fluid, is supposed to evolve, the
velocities u and v will depend on the position l of the point
and will therefore be functions of the coordinates x and y.

3 Meaning here the absolute value of the velocity.
4 Depending on the dimension: Euler treats both the two- and the three-

dimensional cases.
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Thus, we put upon a differentiation

du = Ldx + ldy and dv = Mdx + mdy,

which differential formulas, since they are complete,5 satisfy
furthermore dL

dy
= dl

dx
and dM

dy
= dm

dx
. Here it is to note that

in such expression dL

dy
, the differential of L itself or dL, is

understood to be obtained from the variability with respect
to y; in similar manner in the expression dl/dx, for dl the
differential of l itself has to be taken, which arises if we take
x to vary.
12. Thus, it is in order to be cautious and not to take in

such fractional expressions dL

dy
, dl

dx
, dM

dy
, and dm

dx
the numera-

tors dL, dl, dM, and dm as denoting the complete differentials
of the functions L, l, M and m; but constantly they designate
such differentials that are obtained from the variation of only
one coordinate, obviously the one, whose differential is repre-
sented in the denominator; thus, such expressions will always
represent finite and well defined quantities. Furthermore, in
the same way are understood L= du

dx
, l = du

dy
, M= dv

dx
and

m = dv
dy

; which notation of ratios has been used for the first
time by the most enlightened Fontaine,6 and I will also apply
it here, since it gives a non negligible advantage of calculation.
13. Since du = Ldx+ldy and dv = Mdx+mdy, here it is

appropriate to assign a pair of velocities to the point which is
at an infinitely small distance from the point l; if the distance
of such a point from the point l parallel to the axis AL is dx,
and parallel to the axis AB is dy, then the velocity of this point

5 Exact differentials.
6 A paper “Sur le calcul intégral” containing the notation df

dx
for the partial

derivative of f with respect to x was presented by Alexis Fontaine des
Bertins to the Paris Academy of Sciences in 1738, but it was published
only a quarter of a century later (Fontaine, 1764). Nevertheless, Fontaine’s
paper was widely known among mathematicians from the beginning of
the 1740s, and, particularly, was discussed in the correspondence between
Euler, Daniel Bernoulli and Clairaut; cf. Euler, 1980: 65–246.

parallel to the axis AL will be u+Ldx+ ldy; furthermore, the
velocity parallel to the other axis AB is v+Mdx+mdy. Thus,
during the infinitely short time dt this point will be carried
parallel to the direction of the axis AL the distance dt(u +
Ldx + ldy) and parallel to the direction of the other axis AB
the distance dt(v + Mdx + mdy).
14. Having noted these things, let us consider a triangular

element lmn of water, and let us seek the location into which
it is carried by the motion during the time dt. Let lm be the
side parallel to the axis AL and let ln be the side parallel to
the axis AB: let us also put lm = dx and ln = dy; or let the
coordinates of the point m be x+dx and y; the coordinates of
the point n be x and y + dy. It is plain, since we do not define
the relation between the differentials dx and dy, which can be
taken negative as well as positive, that in thought the whole
mass of fluid may be divided into elements of this sort, so that
what we determine for one in general will extend equally to
all.
15. To find out how far the element lmn is carried during

the time dt due to the local motion, we search for the points
p, q and r, to which its vertices, or the points l, m and n are
transferred during the time dt. Since

of point l of point m of point n
Velocity w.r.t. AL= u u + Ldx u + ldy
Velocity w.r.t. AB= v v + Mdx v + mdy

in the time dt the point l reaches the point p, chosen such that:

AP − AL = udt and Pp− Ll = vdt.

Furthermore, the point m reaches the point q, such that

AQ−AM = (u+Ldx)dt and Qq−Mm = (v+Mdx)dt.

Also, the point n is carried to r, chosen such that

AR − AL = (u + ldy)dt and Rr − Ln = (v + mdy)dt.

16. Since the points l, m and n are carried to the points p, q
and r, the triangle lmn made of the joined straight lines pq, pr
and qr, is thought to be arriving at the location defined by the
triangle pqr. Because the triangle lmn is infinitely small, its
sides cannot receive any curvature from the motion, and there-
fore, after having performed the translation of the element of
water lmn in the time dt, it will conserve the straight and
triangular form. Since this element lmn must not be either
extended to a larger volume, nor compressed into a smaller
one, the motion should be arranged so that the volume of the
triangle pqr is rendered to be equal to the area of the triangle
lmn.
17. The area of the triangle lmn, being rectangular at l, is

= 1

2
dxdy, value to which the area of the triangle pqr should

be put equal. To find this area, the pair of coordinates of the
points p, q and r must be examined, which are:

AP = x + udt; AQ = x + dx + (u + Ldx)dt;

AR = x + (u + ldy)dt; Pp = y + vdt

Qq = y + (v + Mdx)dt, Rr = y + dy + (v + mdy)dt
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Then, indeed, the area of the triangle pqr is found from the
area of the succeeding trapezoids, so that

pqr = PprR + RrqQ − PpqQ.

Since these trapezoids have a pair of sides parallel and per-
pendicular to the base AQ, their areas are easily found.
18. Plainly, these areas are given by the expressions

PprR =
1

2
PR(Pp + Rr)

RrqQ =
1

2
RQ(Rr + Qq)

PpqQ =
1

2
PQ(Pp + Qq)

By putting these together we find:

∆pqr =
1

2
PQ.Rr −

1

2
RQ.Pp−

1

2
PR.Qq

Let us set for brevity

AQ = AP + Q; AR = AP + R; Qq = Pp + q; and

Rr = Pp + r,

so that PQ = Q, PR = R, and RQ = Q − R, and we
have ∆pqr = 1

2
Q(Pp + r) − 1

2
(Q − R)Pp− 1

2
R(Pp + q) or

∆pqr = 1

2
Q.r − 1

2
R.q.

19. Truly, from the values of the coordinates represented
before it follows that

Q = dx + Ldxdt; q = Mdxdt

R = ldydt; r = dy + mdydt,

upon the substitution of these values, the area of the triangle
is obtained

pqr =
1

2
dxdy(1 + Ldt)(1 + mdt) −

1

2
Ml dxdydt2, or

pqr =
1

2
dxdy(1 + Ldt + mdt + Lmdt2 − Mldt2).

This should be equal to the area of the triangle lmn, that is
= 1

2
dxdy; hence we obtain the following equation

Ldt + mdt + Lmdt2 − Mldt2 = 0 or

L + m + Lmdt − Mldt = 0.

20. Since the terms Lmdt and Mldt vanish for finite L and
m, we will have the equation L + m = 0. Hence, for the mo-
tion to be possible, the velocities u and v of any point l have
to be arranged such that after calculating their differentials

du = Ldx + ldy, and dv = Mdx + mdy,

one has L + m = 0. Or, since L= du
dx

and m = dv
dy

, the
velocities u and v, which are considered to occur at the point
l parallel to the axes AL and AB, must be functions of the
coordinates x and y such that du

dx
+ dv

dy
= 0, and thus, the

criterion of possible motions consists in this that du
dx

+ dv
dy

=

0;7 and unless this condition holds, the motion of the fluid
cannot take place.
21. We shall proceed identically when the motion of the

fluid is not confined to the same plane. Let us assume, to in-
vestigate this question in the broadest sense, that all particles
of the fluid are agitated among themselves by an arbitrary mo-
tion, with the only law to be respected that neither condensa-
tion nor expansion of the parts occurs anywhere: in the same
way, we seek which condition should apply to the velocities
that are considered to occur at every point, so that the motion
is possible: or, which amounts to the same, all motions that
are opposed to these conditions should be eliminated from the
possible ones, this being the criterion of possible motions.
22. Let us consider an arbitrary point of the fluid λ. To

represent its location we use three fixed axes AL, AB and AC
orthogonal to each other (Fig. 2). Let the triple coordinates
parallel to these axes be AL= x, Ll = y and lλ = z; which
are obtained if firstly a perpendicular λl is dropped from the
point λ to the plane determined by the two axes AL and AB;
and then a perpendicular lL is drawn from the point l to the
axis AL. In this manner the location of the point λ is expressed
through three such coordinates in the most general way and
can be adapted to all points of the fluid.

23. Whatever the later motion of the point λ, it can be
resolved following the three directions λµ, λν, λo, parallel to
the axes AL, AB and AC. For the motion of the point λ we
set

the velocity parallel to the direction λµ = u,

the velocity parallel to the direction λν = v,

the velocity parallel to the direction λo = w.

Since these velocities can vary in an arbitrary manner for dif-
ferent locations of the point λ, they will have to be considered
as functions of the three coordinates x, y and z. After differ-

7 This is the two-dimensional incompressibility condition, which in a slightly
different form has already been established by d’Alembert, 1752; cf. also
Darrigol and Frisch, 2008:§ III.



5

entiating them, let us put to proceed

du = Ldx + ldy + λdz

dv = Mdx + mdy + µdz

dw = Ndx + ndy + νdz.

Henceforth the quantities L, l, λ, M, m, µ, N, n, ν will be
functions of the coordinates x, y and z.
24. Because these formulas are complete differentials, we

obtain as above

dL

dy
=

dl

dx
;

dL

dz
=

dλ

dx
;

dl

dz
=

dλ

dy
dM

dy
=

dm

dx
;

dM

dz
=

dµ

dx
;

dm

dz
=

dµ

dy
dN

dy
=

dn

dx
;

dN

dz
=

dν

dx
;

dn

dz
=

dν

dy
,

where it is assumed that the only varying coordinate is that
whose differential appears in the denominator varies.8
25. Thus, this point λ will be moved in the time dt by

this threefold motion, which is considered to take place at the
point X; hence it moves

parallel to the axis AL the distance = udt

parallel to the axis AB the distance = vdt

parallel to the axis AC the distance = wdt

The true velocity of the point λ, denoted by = V , which
clearly arises from the composition of this triple motion, is
given in view of orthogonality of the three directions by
V =

√

(uu + vv + ww) and the elementary distance, which
is traveled in the time dt through its motion, will be V dt.
26. Let us consider an arbitrary solid element of the fluid to

see whereto it is carried during the time dt; since it amounts
to the same, let us assign a quite arbitrary shape to that ele-
ment, but of a kind such that the entire mass of the fluid can
be divided into such elements; to investigate by calculation,
let the shape be a right triangular pyramid, bounded by four
solid angles λ, µ, ν and o, so that for each one there are three
coordinates

of point λ of point µ of point ν of point o
w.r.t. AL x x + dx x x
w.r.t. AB y y y + dy y
w.r.t. AC z z z z + dz

Since the base of this pyramid is λµν = lmn = 1

2
dxdy and

the hight λo = dz, its volume will be = 1

6
dxdydz.

27. Let us investigate, whereto these vertices λ, µ, ν and
o are carried during the time dt: for which purpose their three
velocities parallel to the directions of the three axes must be

8 The partial differential notation was so new that Euler had to remind the
reader of its definition.

considered. The differential values of the velocities u, v and
w are given by

Velocity of point λ of point µ of point ν of point o
w.r.t. AL u u + Ldx u + ldy u + λdz
w.r.t. AB v v + Mdx v + mdy v + µdz
w.r.t. AC w w + Ndx w + ndy w + odz

28. If we let the points λ, µ, ν and o be transferred to the
points π, Φ, ρ and σ in the time dt, and establish the three
coordinates of these points parallel to the axes, the small dis-
placement parallel to these axes will be

AP−A L = u dt
AQ−A M = (u + L dx) dt
AR−A L = (u + l dy) dt
AS−A L = (u + λ dz) dt

Pp − L l = v dt

Qq − Mm = (v + Mdx) dt

Rr − Ln = (v + mdy) dt

S s − L l = (v + µ dz) dt

p π − l λ = w dt

q Φ − mµ = (w + Ndx) dt

r ρ − nν = (w + n dy) dt

s σ − l o = (w + ν dz) dt

Thus the three coordinates for these four points π, Φ, ρ and σ
will be

AP = x + udt; Pp = y + vdt;

pπ = z + wdt

RQ = x + dx + (u + Ldx)dt; Qq = y + (v + Mdx)dt;

qΦ = z + (w + Ndx)dt

AR = x + (u + ldy)dt; Rr = y + dy + (v + mdy)dt;

rρ = z + (w + ndy)dt

AS = x + (u + λdz)dt; Ss = y + (v + µdz)dt;

sσ = z + dz + (w + νdz)dt

29. Since after the time dt has elapsed the vertices λ, µ,
ν and o of the pyramid are transferred to the points π, Φ, ρ
and σ, πΦρσ defines a similar triangular pyramid. Due to the
nature of the fluid the volume of the pyramid πΦρσ should
be equal to the volume of the pyramid λµνo put forward, that
is = 1

6
dxdydz. Thus, the whole matter is reduced to deter-

mining the volume of the pyramid πΦρσ. Clearly, it remains
a pyramid, if the solid pqrπΦρσ is removed from the solid
pqrπΦρσ; the latter solid is a prism orthogonally incident to
the triangular basis pqr, and cut by the upper oblique section
πρΦ.
30. The other solid pqrπΦρσ can be divided by similarly

into three prisms truncated in this manner, namely

I. pqrsπΦσ; II. prsπρσ; III. qrsΦρσ

This has to be accomplished in such a way that

1

6
dxdydz = pqsπΦσ + prsπρσ + qrsΦρσ − pqrπΦρ.
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Since such a prism is orthogonally incident to its lower base,
and furthermore has three unequal heights, its volume is found
by multiplying the base by one third of the sum of these
heights.
31. Thus, the volumes of these truncated prisms will be

p q s πΦσ =
1

3
p q s (p π + q Φ + s σ )

p r s πρ σ =
1

3
p r s (p π + r ρ + s σ )

q r s Φρ σ =
1

3
q r s (q Φ + r ρ + s σ )

p q r πΦρ =
1

3
p q r (p π + q Φ + r ρ ).

Since pqr = pqs+prs+qrs, the sum of the first three prisms
will definitely be small, or

1

6
dxdydz = −

1

3
pπ.qrs −

1

3
qΦ.prs −

1

3
rρ.pqs +

1

3
sσ.pqr,

or

dxdydz = 2pqr.sσ − 2pqs.rρ − 2prs.qΦ − 2qrs.pπ.

32. Thus, it remains to define the bases of these prisms:
but before we do this, let us put

AQ = AP + Q; Qq = Pp + q ; qΦ = pπ + Φ;

AR = AP + R; Rr = Pp + r ; rρ = pπ + ρ ;

AS = AP + S ; Ss = Pp + s ; sσ = pπ + σ ,

in order to shorten the following calculations. After the substi-
tution of these values, the terms containing pπ will annihilate
each other, and we shall have

dxdydz = 2pqr.σ − 2pqs.ρ − 2prs.Φ

so that the value of the bases to be investigated is smaller.
33. Furthermore the triangle pqr is obtained by removing

the trapezoid PpqQ from the figure PprqQ, the latter being the
sum of the trapezoids PprR and RrqQ; from which it follows
that

∆pqr =
1

2
PR(Pp+Rr)+

1

2
RQ(Rr+Qq)−

1

2
PQ(Pp+Qq);

or, because of PR = R; RQ = Q−R; and PQ = Q we shall
have

∆pqr =
1

2
R(Pp − Qq) +

1

2
Q(Rr − Pp) =

1

2
Qr −

1

2
Rq.

In the same manner we have

∆pqs =
1

2
PS(Pp + Ss) +

1

2
SQ(Ss + Qq) −

1

2
PQ(Pp + Qq),

or

∆pqs =
1

2
S(Pp + Ss) +

1

2
(Q − S)(Ss + Qq) −

1

2
Q(Pp + Qq),

from where it follows that:

∆pqs =
1

2
S(Pp − Qq) +

1

2
Q(Ss − Pp) =

1

2
Qs −

1

2
Sq.

And finally

∆prs =
1

2
PR(Pp + Rr) +

1

2
RS(Rr + Ss) −

1

2
PS(Pp + Ss),

or

∆prs =
1

2
R(Pp + Rr) +

1

2
(S − R)(Rr + Ss) −

1

2
S(Pp + Ss)

from where it follows that

∆prs =
1

2
R(Pp − Ss) +

1

2
S(Rr − Pp) =

1

2
Sr −

1

2
Rs.

34. After the substitution of these values we will obtain

dxdydz = (Qr − Rq)σ + (Sq − Qs)ρ + (Rs − Sr)Φ;

thus the volume of the pyramid πΦρσ will be

1

6
(Qr − Rq)σ +

1

6
(Sq − Qs)ρ +

1

6
(Rs − Sr)Φ.

From the values of the coordinates presented above in §. 28
follows

Q = dx + Ldxdt q = Mdxdt Φ = Ndxdt

R = ldydt r = dy + mdydt ρ = ndydt

S = λdzdt s = µdzdt σ = dz + νdzdt.

35. Since here we have

Qr − Rq = dxdy(1 + Ldt + mdt + Lmdt2 − Mldt2)

Sq − Qs = dxdz(−µdt − Lµdt2 + Mλdt2)

Rs − Sr = dydz(−λdt − mλdt2 + lµdt2)

the volume of the pyramid πΦρσ is found to be expressed as

1

6
dxdydz

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 +L dt +Lmdt2 +Lmν dt3

+mdt −Ml dt2 −Mlν dt3

+ν dt +Lν dt2 −Lnµ dt3

+mν dt2 +Mnλ dt3

−nµ dt2 −Nmλdt3

−Nλ dt2 +Nlµ dt3

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

,

which (volume), since it must be equal to that of the pyramid
λµνo = 1

6
dxdydz, will satisfy, after performing a division by

dt the following equation9

0 =L + m + ν + dt(Lm + Lν + mν − Ml − Nλ − nµ)

+ dt2(Lmν + Mnλ + Nlµ − Lnµ − Mlν − Nlµ).

36. Discarding the infinitely small terms, we get this equa-
tion:10 L+m + ν = 0, through which is determined the re-
lation between u, v and w, so that the motion of the fluid be

9 This is the calculation to which Euler refers in his later French memoir
Euler, 1755.

10 This is the three-dimensional incompressibility condition.
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possible. Since L= du
dx

, m = dv
dy

and ν = dw
dz

, at an arbitrary
point of the fluid λ, whose position is defined by the three
coordinates x, y and z, and the velocities u, v and w are as-
signed in the same manner to be directed along these same
coordinates, the criterion of possible motions is such that

du

dx
+

dv

dy
+

dw

dz
= 0.

This condition expresses that through the motion no part of the
fluid is carried into a greater or or lesser space, but perpetually
the continuity of the fluid as well as the identical density is
conserved.
37. This property is to be interpreted further so that at the

same instant it is extended to all points of the fluid: of course,
the three velocities of all the points must be such functions of
the three coordinates x, y and z that we have du

dx + dv
dy + dw

dz =
0: in this way the nature of those functions defines the motion
of every point of the fluid at a given instant. At another time
the motion of the same points may be howsoever different,
provided that at an arbitrary point of time the property holds
for the whole fluid. Up to now I have considered the time
simply as a constant quantity.
38. If however, we also wish to consider the time as vari-

able so that the motion of the point λ whose position is given
by the three coordinates AL= x, Ll = y and lλ = z has to
be defined after the elapsed time t, it is certain that the three
velocities u, v and w depend not only on the coordinates x, y
and z but additionally on the time t, that is they will be func-
tions of these four quantities x, y, z and t; furthermore, their
differentials are going to have the following form

du = Ldx + ldy + λdz + Ldt;

dv = Mdx + mdy + µdz + Mdt;

dw = Ndx + ndy + νdz + Ndt;

Meanwhile we shall always have L + m + ν = 0, therefore at
every arbitrary instant the time t is considered to be constant,
or dt = 0. Howsoever the functions u, v and w vary with time
t, it is necessary that at every moment of time the following
holds:

du

dx
+

dv

dy
+

dw

dz
= 0.

Since the condition expresses that any arbitrary portion of the
fluid is carried in a time dt into a volume equal to itself, the
same will have to happen, due to the same condition, in the
next time interval, and therefore in all the following time in-
tervals.

II. SECOND PART

39. Having exposed what pertains to all possible motions,
let us now investigate the nature of the motion which can re-
ally occur in the fluid. Here, besides the continuity of the fluid
and the constancy of its density, we will also have to con-
sider the forces which act on every element of the fluid. When

the motion of any element is either non-uniform or varying
in its direction, the change of the motion must be in accor-
dance with the forces acting on this element. The change of
the motion becomes known from the known forces, and the
preceding formulas contain this change; we will now deduce
new conditions11 which single out the actual motion among
all those possible up to this point.
40. Let us arrange this investigation in two parts as well;

at first let us consider all motions being performed in the same
plane. Let AL = x, Ll = y be, as before, the defining coor-
dinates of the position of an arbitrary point l; now, after the
elapsed time t, the two velocities of the point l parallel to the
axes AL and AB are u and v: since the variability of time has
to be taken into account, u and v will be functions of x, y and
t themselves. in respect of which we put

du = Ldx + ldy + Ldt anddv = Mdx + mdy + Mdt

and we have established above that because of the former con-
dition encoutered above, we have L + m = 0.
41. After an elapsed small time interval dt the point l is

carried to p, and it has travelled a distance udt parallel to the
axis AL, a distance vdt parallel to the other axis AB. Hence,
to obtain the increments in the velocities u and v of the point l
which are induced during the time dt, for dx and dy we must
write the distance udt and vdt, from which will arise these
true increments of the velocities

du = Ludt+ lvdt+Ldt and dv = Mudt+mvdt+Mdt.

Therefore the accelerating forces, which produce these accel-
erations are

Accel. force w.r.t. AL = 2(Lu + lv + L)

Accel. force w.r.t. AB = 2(Mu + mv + M)

to which therefore the forces acting upon the particle of water
ought to be equal.12

42. Among the forces which in fact act upon the particles
of water, the first to be considered is gravity; its effect, how-
ever, if the plane of motion is horizontal, amounts to nothing.
Yet if the plane is inclined, the axis AL following the inclina-
tion, the other being horizontal, gravity generates a constant
accelerating force parallel to the axis AL, let it be α. Next we
must not neglect friction, which often hinders the motion of
water, and not a little. Although its laws have not yet been ex-
plored sufficiently, nevertheless, following the law of friction
for solid bodies, probably we shall not wander too far astray
if we set the friction everywhere proportional to the pressure
with which the particles of water press upon one another.13

11 Here Euler probably has in mind the condition of potentiality, which he
will obtain in §§. 47 and 54 for the two-dimensional case and in §. 60 for
the three-dimensional case.

12 The unusual factors of 2 in the previous equations have to do with a choice
of units which soon became obsolete; cf. Truesdell, 1954; Mikahailov,
1999.

13 It is actually not clear why Euler takes the friction force proportional to the
pressure.


