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The interaction between mathematics and physics was the
topic of a conference held at the Saxon Academy of Science in
Leipzig in March 2010. The fourteen talks of the conference
have been adapted for this book and give a colourful picture
of various aspects of the complex and multifaceted relations.

The articles mainly concentrate on the development of this
interrelation in the period from the beginning of the 19th
century until the end of WW II, and deal in particular with
the fundamental changes that are connected with such
processes as the emergence of quantum theory, general
relativity theory, functional analysis or the application of
probabilistic methods. Some philosophical and epistemo-
logical questions are also touched upon. The abundance of
forms of the interaction between mathematics and physics
is considered from different perspectives: local develop-
ments at some universities, the role of individuals and/or
research groups, and the processes of theory building.

The conference reader is in line with the bilingual character
of the conference, with the introduction and nine articles
presented in English, and five in German.
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Studien zur Entwicklung von Mathematik und
Physik in ihren Wechselwirkungen

Die Entwicklung von Mathematik und Physik ist durch zahlreiche
Verknüpfungen und wechselseitige Beeinflussungen gekennzeichnet.
Die in dieser Reihe zusammengefassten Einzelbände behandeln vorran-
gig Probleme, die sich aus diesen Wechselwirkungen ergeben.
Dabei kann es sich sowohl um historische Darstellungen als auch um die
Analyse aktueller Wissenschaftsprozesse handeln; die Untersuchungsge-
genstände beziehen sich dabei auf die ganze Disziplin oder auf spezielle
Teilgebiete daraus.
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Vorwort

In vielen Bereichen der Naturwissenschaften wird von mathematischer
Durchdringung gesprochen, doch gibt es wohl kaum Gebiete, in denen
die wechselseitige Beeinflussung stärker ist als zwischen Mathematik
und Physik. Ihr Wechselverhältnis war wiederholt Gegenstand erkennt-
nistheoretischer und historischer Untersuchungen. Eine wichtige, nur
selten im Zentrum der Betrachtungen stehende Frage ist dabei die nach
der konkreten Ausgestaltung dieser Wechselbeziehungen, etwa an einer
Universität, oder die nach prägenden Merkmalen in der Entwicklung
dieser Beziehungen in einem historischen Zeitabschnitt.

Diesem Problemkreis widmete sich ein Projekt der Sächsischen Akade-
mie der Wissenschaften zu Leipzig, das die Untersuchung der Wechsel-
beziehungen zwischen Mathematik und Physik an den mitteldeutschen
Universitäten Leipzig, Halle-Wittenberg und Jena in der Zeit vom frühen
19. Jahrhundert bis zum Ende des Zweiten Weltkriegs zum Gegenstand
hatte. Das Anliegen dieses Projektes war es, diese Wechselbeziehungen
in ihren lokalen Realisierungen an den drei genannten Universitäten
zu untersuchen und Schlussfolgerungen hinsichtlich der Entwicklung
und Charakterisierung der Wechselbeziehungen abzuleiten. Die in dem
Projekt vorgelegten Ergebnisse dokumentieren die große Variabilität in
der Ausgestaltung dieser Wechselbeziehungen, die Vielzahl der dabei
eine Rolle spielenden Einflussfaktoren sowie deren unterschiedliche
Wirkung in Abhängigkeit von der jeweiligen historischen Situation.

Auf der internationalen wissenschaftshistorischen Fachtagung «Ma-
thematics meets physics – General and local aspects», die vom 22. – 25.
März 2010 in Leipzig stattfand, wurden die Ergebnisse dieser lokalen
Detailstudien in einen breiteren Kontext eingebettet und mit einem Fach-
publikum diskutiert. International anerkannte Wissenschaftshistoriker
und Fachwissenschaftler präsentierten ihre Untersuchungsergebnisse zu
den Wechselbeziehungen zwischen Mathematik und Physik, wobei sie
in ihrer Schwerpunktsetzung die Rolle innerdisziplinärer Entwicklun-
gen, einzelner Wissenschaftlerpersönlichkeiten bzw. wissenschaftlicher
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Schulen oder institutioneller Veränderungen in den Mittelpunkt ihrer
Analysen rückten und somit die in dem Akademieprojekt gewonnenen
Erkenntnisse in vielerlei Hinsicht ergänzten. Außerdem versuchten
einzelne Referenten von einem allgemeineren, philosophischen Stand-
punkt aus, das Wesen und die Entwicklungslinien der Wechselbezie-
hungen zwischen Mathematik und Physik durch einige Merkmale zu
charakterisieren. Im Ergebnis lieferte die Konferenz einen guten Einblick
einerseits in die aktuellen Forschungen zu den Beziehungen zwischen
Mathematik und Physik mit all ihrer Diversität und andererseits in die
auch in der abschließenden Podiumsdiskussion formulierte, wohl etwas
überraschende Einsicht, dass die in früheren Darstellungen skizzierte
kontinuierliche Entwicklung der Wechselbeziehungen einer deutlichen
Revision und Spezifizierung bedarf.

Mit diesem Tagungsband werden die vorgetragenen Ergebnisse nun
einer breiten wissenschaftlichen Öffentlichkeit vorgelegt. Dabei will der
Band nicht nur Einblicke in die gegenwärtige Forschung gewähren,
sondern zugleich neue Untersuchungen anregen. Er enthält 14 der
insgesamt 18 präsentierten Vorträge in einer überarbeiteten Fassung. Vier
der Tagungsteilnehmer haben aus unterschiedlichen Gründen ihr Referat
leider nicht zur Publikation eingereicht. In einigen Fällen werden sie
ihre Ergebnisse in ein größeres eigenes Werk einfließen lassen. Um dem
Leser einen vollständigen Überblick über die vorgetragenen Themen zu
geben, ist am Ende des Buches das Tagungsprogramm angefügt.

Die Konferenzsprachen waren Deutsch und Englisch. Wir haben als
Herausgeber diesen zweisprachigen Charakter der Tagung bewusst
für diesen Band übernommen und es den Autoren überlassen, die
Ausarbeitung ihres Vortrags in Deutsch oder in Englisch zu präsentieren.
In den meisten Fällen gab es sowohl gute Gründe für die Wahl der
deutschen Sprache, als auch für die Wahl des Englischen.

In die Gestaltung der Artikel haben wir nur sehr vorsichtig und
nur formale, keine inhaltlichen Aspekte betreffend eingegriffen. Ne-
ben der Anpassung an ein einheitliches Layout wurde jedem Artikel
eine inhaltliche Übersicht vorangestellt, die wir aus der vom Autor
vorgenommenen Gliederung seines Beitrags erzeugten. Aufgrund der
individuellen Gewohnheiten ergaben sich dabei deutliche Unterschiede
zwischen den einzelnen Artikeln, die wir als persönliche Note des Autors
interpretiert haben und nicht versuchten zu beseitigen. Die Angaben zur
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verwendeten Literatur und die Zitierweise wurde von uns ebenfalls nicht
vereinheitlicht. Dennoch folgen sie im Wesentlichen einem einheitlichen
Schema, indem die Verweise in den Fußnoten bei der Literatur durch
Angabe des Autors und des Erscheinungsjahres bzw. bei Archivalien
entsprechend der offiziellen Abkürzungen der Archive vorgenommen
werden. Sind von einem Wissenschaftler mehrere Arbeiten aus einem
Jahr aufgeführt worden, so wird an die Jahreszahl der Buchstabe a, b
oder c entsprechend der Auflistung im Literaturverzeichnis angefügt.
Die Auflösung der Kürzel wird im Literaturverzeichnis vorgenommen,
das am Ende des jeweiligen Artikels steht. Während das Literatur- und
Quellenverzeichnis bei dem jeweiligen Artikel belassen wurde, sind
die Personennamen in einem gemeinsamen Personenverzeichnis am
Ende des Buches zusammengestellt. Soweit bekannt bzw. ermittelbar
wurden die Lebensdaten der Personen angefügt. Schließlich haben wir
die Reihenfolge der Artikel aus inhaltlichen Gründen gegenüber der
Vortragsfolge im Programm leicht abgeändert.

Die Durchführung der Tagung in dem geplanten Umfang wurde erst
durch die finanzielle Unterstützung seitens der Deutschen Forschungs-
gemeinschaft möglich. Für diese Hilfe danken wir sehr herzlich. Ebenso
danken wir der International Commission on the History of Mathematics,
die die Tagung als förderungswürdig anerkannte und ihr eine größere,
internationale Aufmerksamkeit verschaffte. Bei der Vorbereitung der
Tagung stand uns die Kommission für Wissenschaftsgeschichte der
Sächsischen Akademie der Wissenschaften zu Leipzig, insbesondere
ihr Vorsitzender Herr Professor M. Folkerts, mit Rat und Tat zur Seite,
wofür wir uns herzlich bedanken. Doch was wäre eine Tagung ohne die
fleißigen Helfer im Hintergrund. Ein besonderer Dank gilt diesbezüglich
mehreren Mitarbeitern in der Verwaltung der Akademie, von denen
stellvertretend Frau E. Kotthoff und Herr A. Dill besonders genannt
seien.

Bei der Drucklegung des Buches konnten wir wie gewohnt auf die gute
Zusammenarbeit mit dem Verlag, speziell Herrn K. Horn, und dessen
Kooperationspartner Herrn Dr. S. Naake bauen. Trotz des gegenüber
vorangegangenen Publikationen deutlich größeren Aufwandes hat
Herr Dr. Naake uns bei der Gestaltung des Buches sehr kompetent
beraten sowie unsere Vorstellungen mit viel Geduld und großer Sorgfalt
umgesetzt, beiden einen herzlichen Dank. Weiterhin möchten wir Frau
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Dr. H. Kühn für ihre tatkräftige Unterstützung und die zahlreichen
Hinweise bei der Vorbereitung des Buchmanuskripts und während der
Fahnenkorrektur danken.

Die Tagung ist ein wichtiges Element des eingangs genannten For-
schungsprojektes der Sächsischen Akademie im Rahmen des Akade-
mievorhabens: «Geschichte der Naturwissenschaften und der Mathe-
matik». Dem Bundesministerium für Bildung und Forschung sowie
dem Sächsischen Staatsministerium für Wissenschaft und Kunst danken
wir für die finanzielle Absicherung dieses Akademieunternehmens und
somit auch des Druckes dieses Tagungsbandes. Der Band bildet die
Abschlussveröffentlichung des Projektes und ist zugleich die letzte
Publikation in dem in einem Monat auslaufenden Akademievorhaben.

Mainz/Leipzig, November 2010

Martina Schneider
Karl-Heinz Schlote
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1 Introduction

Mathematical considerations played an important role in the new physics
that emerged in the early decades of the twentieth century. This may
be best known from the general theory of relativity, but the role of
mathematics was no less important in the case of the other revolutionary
theory of the period, quantum mechanics. In this paper I exemplify
the relationship between mathematics and physics by looking at the
development that in the late 1920s led to a relativistic theory of the
electron, as described by the Dirac wave equation. The problem that
faced the new generation of quantum physicists was to establish a
theory that was consistent with the general principles of both quantum
mechanics and special relativity; in addition the theory would have
to incorporate the spin of the electron which was discovered in 1925
and at first seemed foreign to quantum mechanics. In this process, as it
unfolded in the years 1926 – 28, contributions from mathematics were of
considerable importance. Likewise, some of the concepts and quantities
introduced by the physicists turned out to be of great interest to the pure
mathematicians.

2 Schrödinger and his equation

Quantum mechanics took its start with young Werner Heisenberg’s
Umdeutung of atomic mechanics in the early fall of 1925. A couple of
months later, the new and mysterious theory was established on a firm
basis with the famous Dreimännerarbeit of Heisenberg, Max Born and
Pascual Jordan. The new abstract mechanics was initially referred to
as the Göttingen mechanics, but soon came to be known as the theory
of matrix mechanics. Heisenberg was originally uncertain about the
meaning of the non-commutative multiplication of quantities that in a
symbolic form appeared in his theory. It was only after the intervention
of the mathematically accomplished Max Born that it was realized to be
a case of matrix calculus and that Heisenberg’s quantum variables could
similarly be understood as matrices. As Born recalled, he discovered
that “Heisenberg’s symbolic multiplication was nothing but the matrix
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calculus, well known to me since my student days from the lectures of
[Jacob] Rosanes in Breslau.”1

Erwin Schrödinger’s route to quantum mechanics was entirely dif-
ferent from the one followed by his colleagues in Germany. He was
primarily motivated by an attempt to turn Louis de Broglie’s theory of
matter waves, as propounded in his Recherches sur la théorie des quanta
from 1924, into a theory of atomic structure and, at the same time, to use
it for a quantum theory of gas statistics.2 By November 1925 Schrödinger
was looking for a wave mechanics of atoms, realizing that he needed a
wave equation to govern the behaviour of the still mysterious y matter
waves. The equation that eventually appeared on the second page of
his first communication in Annalen der Physik, submitted on 27 January
1926, was the celebrated stationary Schrödinger equation, namely, the
eigenvalue equation for the energy of a hydrogen atom.3 It had the form

Dy +
2m
K2

✓

E +
e2

r

◆

y = 0 (1)

Where K ⌘ h/2p (or h̄, to use the notation introduced by Dirac in 1930).
However, this was not the equation that Dirac arrived at in mid De-
cember. Because his theory was based on de Broglie’s ideas of unifying
quantum theory and special relativity, it was framed relativistically
from the very beginning. As we know from Schrödinger’s notebooks,
letters and recollections, his original wave equation was relativistically
invariant, namely of the form:

Dy +
4p

h2 m2
0c2

"

✓

E
m0c2 +

e2

m0c2r

◆2

� 1

#

y = 0 (2)

with E = hn. In order to solve the equation, he used the standard
separation y(q, f, r) = Y(q, f)c(r) and focused on the radial equation
which would yield the energy spectrum. There was a close mathematical

1 Born 1975, p. 217. Matrix methods were not unknown in physics in the early
twentieth century, but they were not widely used and did only enter quantum
theory with the works of Born and Jordan. See Mehra/Rechenberg 1982, pp. 34 – 44.

2 Detailed analyses of Schrödinger’s route to the wave equation, including references
to the primary sources, can be found in Kragh 1982 and Mehra/Rechenberg 1987,
pp. 377 – 419. See also Joas/Lehner 2009.

3 Schrödinger 1926.
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analogy between the case considered by Schrödinger and Arnold
Sommerfeld’s earlier analysis of the relativistic Bohr atom, which
assumedly guided Schrödinger’s approach. At any rate, he knew that
his energy eigenvalues would have to comply with the result derived
by Sommerfeld in 1916. This result, also known as the fine-structure
formula, was confirmed experimentally and enjoyed great authority.
In terms of the principal and azimuthal quantum numbers (n and k,
respectively), Sommerfeld’s formula was the following:

E(n, k) = m0c2

8

>

<

>

:

1 +
a

2Z2

h

(n� k)�pk2 � a

2
i2

9

>

=

>

;

�1/2

�m0c2 (3)

or approximately

E(n, k) ⇠= �Rhc
n2

⇢

1 +
a

2Z2

n2

✓

n
k
� 3

4

◆�

(4)

Here a denotes the dimensionless fine-structure constant e2/h̄c, Z is the
nuclear charge (Z = 1 for hydogen), and R is Rydberg’s spectroscopic
constant. For the difference in wave numbers ( f = 1/l = E/hc)
between the quantum levels (n, k) = (2, 2) and (2, 1) this gives the
experimentally testable fine-structure separation

D f =
Ra

2Z4

16
= 0.365 cm�1 (5)

for Z = 1. It was this prediction which was convincingly confirmed by
Friedrich Paschen and other experimentalists.4

The calculation of the energy values caused Schrödinger great mathe-
matical difficulties, such as he reported to Wilhelm Wien in a letter of
27 December 1925: “At the moment I am plagued by a new atomic theory.
If only I knew more mathematics! . . . For the time being I must learn
more mathematics to be able to get full hold on the vibration problem –
a linear differential equation, not unlike that of Bessel but less familiar

4 How could the semi-classical, no-spin treatment of Sommerfeld result in the very
same formula as later derived on the basis of relativistic spin quantum mechanics?
On this question, see Biedenharn 1983.
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and exhibiting remarkable boundary conditions.”5 It took Schrödinger a
week or two to solve the equation, during which work he was assisted by
Hermann Weyl, his friend and colleague at the University of Zurich. (It is
unknown with what Weyl helped him.) Although the mathematics of the
wave equation was unfamiliar to Schrödinger and most other physicists,
it was well known to the mathematicians. Schrödinger relied on the
third revised edition of a textbook by Ludwig Schlesinger, a mathematics
professor at the University of Giessen, which was originally published
in 1900 and contained many of the methods Schrödinger needed.6 It is
possible that he also used Richard Courant and David Hilbert’s Methoden
der mathematischen Physik published in 1924, but he did not actually refer
to it in his first communication. On the other hand, he did so repeatedly
in his later communications on wave mechanics. It seems that he only
began to use the Courant-Hilbert work extensively from the end of 1926,
possibly at the instigation of Erwin Fues, his assistant at the institute of
theoretical physics in Zurich.7

To make a long story short, Schrödinger must have found the result
of his laborious calculations disappointing. The good thing was that
he obtained a fine-structure formula quite similar to Sommerfeld’s, but
this was more than canceled by the value derived for the fine-structure
splitting: it came out too large by a factor of 8/3, which completely
destroyed the agreement between theory and experiment. Something
had gone wrong and a frustrated Schrödinger was unable to locate
the failure. In a much later letter to the American physicist Wolfgang
Yourgrau, Schrödinger referred to his early relativistic theory, which
“gives a formal expression of the fine-structure formula of Sommerfeld,
but it is incorrect owing to the appearance of half-integers instead
of integers.” He continued: “My paper in which this is shown has
. . . never been published; it was withdrawn by me and replaced
by the non-relativistic treatment.”8 That is, Schrödinger decided to

5 Schrödinger to Wien, 27 December 1925, Archive for History of Quantum Physics.
See also Mehra/Rechenberg 1987, p. 461.

6 Schlesinger 1900.
7 See Mehra/Rechenberg 1987, p. 582, who conclude that “all the steps, which

Schrödinger had undertaken in early 1926, seem to demand the application of
methods displayed in Courant-Hilbert, although apparently he was not aware of it.”

8 Mandelstam/Yourgrau 1958, p. 114.
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abandon temporarily the fine-structure problem and instead turn to the
non-relativistic approximation which could reproduce the simple Bohr
formula for the Balmer spectrum. It was this wave theory of atoms he
presented in the Annalen, with almost no hints that he had derived it
from a more ambitious but empirically problematic theory.

3 The Klein-Gordon equation

Schrödinger only published the relativistic generalization of his wave
equation in the fourth of his series of communications on wave mechan-
ics, completed in June 1926. Several other physicists arrived at the same
equation, some of them independently and earlier than Schrödinger.9

For example, in the summer of 1926 de Broglie presented in Comptes
Rendus the eigenvalue equation and the time-dependent wave equation,
both in relativistic form. For an electron bound in the potential f he
wrote the latter equation as

✓

h̄c2D� h̄
∂

2

∂t2 � 2ieh̄
∂

∂t

◆

y =
⇣

m2
0c4 � e2

f

2
⌘

y (6)

Which for a free electron reduces to
✓

c2D� ∂

2

∂t2

◆

y =
✓

m0c2

h̄

◆2

y (7)

The same equations were discussed a little earlier by Vladimir Fock in
Leningrad who was also the first to publish a detailed solution to the
eigenvalue equation. Fock realized, as Schrödinger had known for some
time, that the equation failed to reproduce the correct fine-structure
separation.

Oskar Klein, the young Swedish physicist who at the time worked
at Bohr’s institute in Copenhagen, was the first to publish what soon
became known as the Klein-Gordon equation, which he did in a paper in
the Zeitschrift für Physik in the spring of 1926. (The other name refers to
the German physicist Walter Gordon, who some months later discussed
the same equations.) The relativistic equation was not of great impor-
tance to Klein, whose main purpose was to suggest an incorporation

9 Kragh 1984, which includes references to the primary literature.
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of quantum theory within the framework of five-dimensional relativity
theory. “I started the whole thing in relativistic mechanics because I had
this five-dimensional approach,” he later recalled. “I never thought that
that was any important thing, just to have the relativistic scalar equation
after Schrödinger’s equation.”10

According to Klein, the fifth dimension related to the elementary
electrical charge. In this way he hoped to explain the atomicity of
electricity as a quantum law and also account for the then known basic
building blocks of matter, the electron and the proton. Klein conjectured
that what we think of as a point in three-dimensional space is really a
tiny circle going round the fifth dimension in a loop with a certain period
l. The loop is not in ordinary space, but in a direction that extends it.
As he explained, “the origin of Planck’s quantum may be sought just in
this periodicity in the fifth dimension.” As to the period and its relation
to the quantum of action, he suggested

l =
hc
e
p

2k =
4h
e
p

pG ⇠= 0.84⇥ 10�32 m (8)

which is sometimes known as the Klein length. “The small value of this
length . . . may explain the non-appearance of the fifth dimension in
ordinary experiments as the result of averaging over the fifth dimension,”
he wrote.11 That is, like Theodor Kaluza had done earlier, he assumed
that the extra dimension was rolled up to a less than microscopic size –
compactified, as it was later called.

The Klein-Gordon equation was well known and generally accepted
in 1926 – 27. Pauli was among the few physicists who raised objections
to the equations, although he did so only in his correspondence. Latest
by the end of 1926 he had lost confidence in the second-order wave
equation. As he wrote in a letter to Schrödinger, “I do not believe that
the relativistic equation of 2. order with the many fathers corresponds
to reality.”12 He proposed to replace it by a linear first-order equation

10 Interview with Klein of 1963, Archive for History of Quantum Physics, as quoted in
Kragh 1984, p. 1026.

11 Klein 1926. On Klein and five-dimensional quantum theory, see Kragh 1984 and
Halpern 2007.

12 Letter of 22 November 1926. Pauli 1979, p. 356.
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involving the square-root operator

D = h̄c
p

m2c4 � D (9)

which “though mathematically uncomfortable makes sense per se and
is also self-adjoint.” Although this idea would later prove important in
Dirac’s derivation of his wave equation, at the time neither Pauli nor
others looked seriously into it.

4 The spinning electron

By the end of 1925, the spin of the electron was generally accepted
and it was widely recognized that the new phenomenon needed to be
taken into account in quantum-mechanical calculations. If relativity
alone could not account for the fine structure, perhaps a combination
of relativity and spin could solve the problem. In the early months of
1926, Heisenberg and Jordan, assisted by Pauli, attacked the problem by
writing the Hamiltonian of the hydrogen atom as the sum of two terms
added to the unperturbed energy H0:13

H = H0 + H1 + H2 (10)

Here H1 is a relativistic correction to H0, corresponding to the variation
of the electron’s mass with its speed, and H2 is the energy contribu-
tion due to the electron’s spin. Heisenberg and Jordan succeeded to
obtain Sommerfeld’s fine-structure formula, albeit only in its first-order
approximation. Their result was phenomenologically satisfying in so
far that it accounted for all known doublet phenomena, but it failed to
provide a proper explanation, that is, a deduction of these phenomena
in terms of fundamental theory. Ideally, the physicists wanted a fully
relativistic quantum equation from which would follow not only the
exact Sommerfeld formula but also the magnetic moment of the electron.
In the absence of such an equation, they proceeded less ambitiously.

One might try to make sense of the electron’s spin on the basis of the
relativistic Klein-Gordon equation, such as did a few physicists, includ-
ing Eugen Guth in Vienna and Antonio Carelli in Naples. However,

13 Heisenberg/Jordan 1926.
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none of the attempts to establish a connection between spin and the
second-order wave equation were fruitful. Nor was this the case with
Fritz London’s attempt to interpret the spin within the framework of
Klein’s five-dimensional theory, namely by identifying the canonical
conjugate of the fifth dimension with the spin angular momentum.14

Following an approach similar to the one adopted by Heisenberg
and Jordan, Pauli proposed in 1927 to conceive the Schrödinger wave
function as consisting of two components, each corresponding to one
of the values of the spin: y = (y+, y�).15 Stating the spin vector as
~s = (h̄/2)~s, Pauli found that the three components of s could be written
as 2⇥ 2 matrices, often known as Pauli matrices:

sx =
✓

0 1
1 0

◆

, sy =
✓

0 �i
i 0

◆

, sz =
✓

1 0
0 �1

◆

(11)

Although the introduction of the spin matrices was an important inno-
vation, Pauli’s theory did not provide an explanation of spin and neither
did it go beyond the Heisenberg-Jordan theory with respect to explaining
the fine structure or incorporating relativity as more than a correction.
With regard to phenomenology the two theories were equivalent, and
the same was the case with the slightly later wave-mechanical spin
theory presented by Charles G. Darwin. As Darwin expressed it: “The
deduction of the Sommerfeld formula for separation ought to be exact
and not merely a first approximation. In view of these considerations
we cannot regard the theory as at all complete – as, indeed, is true of the
whole interconnection of the quantum theory with relativity.”16

5 A beautiful exercise in pure reason17

The problem of a fully relativistic quantum wave equation and its
relation to the electron’s spin was not much discussed during the fall
of 1927. For instance, it did not turn up in the discussions during the
Solvay conference in October that year. Most physicists were satisfied

14 London 1927.
15 Pauli 1927. For early spin quantum theories, see Van der Waerden 1960.
16 Darwin 1927, p. 253.
17 In recollections of 1985, Nevill Mott called Dirac’s relativistic wave equation “the

most beautiful exercise in pure reason that I have ever seen.” See Mott 1987, p. 75.
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with using either the Klein-Gordon equation or the Pauli-Darwin
spin quantum mechanics, not worried about the lack of consistency
between the two theories. However, Paul Dirac realized that the general
structure of quantum mechanics, such as given by the recently developed
transformation theory, was incompatible with a wave equation of the
second order in the time derivative. To his mind, it was all-important
that a relativistic generalization of the Schrödinger equation should be
of the form

ih̄
∂

∂t
y = Hy (12)

which excludes the Klein-Gordon equation. Dirac reasoned that linearity
in the time derivative was necessary for the probabilistic interpretation
of quantum mechanics, and hence that the Hamiltonian must contain
energy and momenta in their first order. Fifty years later he recalled:

“I had the general physical interpretation of quantum mechanics
which I felt sure was right, but it required one to work with a wave
equation for quantum mechanics which was linear in the operator
d/dt, giving dy/dt equal to some finite function of y. Now, the
Klein-Gordon equation involves d2

y/dt2. This would not fit with
my general interpretation. If one tried to fit it in, one was led to a
probability which could be sometimes negative, and that of course
is physical nonsense.”18

When Dirac started to look for a linear and relativistic wave equation at
the end of 1927, he was thoroughly acquainted with Pauli’s spin theory
which he exposed in details in his lectures on quantum mechanics that
he had prepared during the summer. Indeed, he later claimed that he
got the spin matrices independently of Pauli, a claim which however
lacks documentary evidence. At any rate, during the creative phase
Dirac decided to ignore the spin. “I was not interested in bringing the
spin of the electron into the wave equation,” he recalled, “It was a great
surprise for me when I later on discovered that the simplest possible
case did involve the spin.”19 Dirac started out by considering a free

18 Dirac 1977, p. 141. For more details on Dirac’s route to his wave equation, see Kragh
1981, Kragh 1990, pp. 50 – 66 and Mehra/Rechenberg 2000, pp. 287 – 299. Steiner
1998 provides an interesting account of how Dirac arrived at his equation, seeing it
as an example of what he calls anthropomorphic physics. See also Dirac 1928, the
paper in which the equation was first proposed.

19 Dirac 1977, p. 139.
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spinless electron governed by a wave equation of the form

ih̄
∂

∂t
y = c

q

p2
1 + p2

2 + p2
3 + m2c2

y (13)

where p1 = �ih̄∂/∂x, etc. He recognized that to make physical and
mathematical sense, the square root had to be linearized, that is, written
as

q

p2
1 + p2

2 + p2
3 + m2c2 = a1 p1 + a2 p2 + a3 p3 + a4mc (14)

But how could this be done? At this stage, when Dirac was faced with a
purely mathematical problem, he was inspired by a property of the Pauli
matrices that he had found by “playing around with mathematics”:

“I was playing around with the three components s1, s2, s3, which
I had used to describe the spin of an electron, and I noticed that
if you formed the expression s1 p1 + s2 p2 + s3 p3 and squared it,
p1, p2 and p3 being the three components of momentum, you got
just p2

1 + p2
2 + p2

3, the square of the momentum. This was a pretty
mathematical result. I was quite excited over it. It seemed that it
must be of some importance.”20

That is, Dirac found that the identity
q

p2
1 + p2

2 + p2
3 = s1 p1 + s2 p2 + s3 p3 (15)

holds for any commuting numbers p. Obviously, if the identity could be
generalized to four squares instead of three, it would indicate a solution.
Arguing that the linear wave equation had to contain the Klein-Gordon
equation as its square, Dirac derived the following set of conditions for
the a-coefficients:

a

µ

a

n

+ a

n

a

µ

= 0 (µ 6= n) (16)

a

2
µ

= 1

where µ, n = 1, 2, 3, 4. Dirac knew that similar conditions were fulfilled
by the spin matrices, but soon realized that 2⇥2 matrices would not be
of any help. He consequently considered matrices with four rows and

20 Dirac 1977, p. 142.

http://www.harri-deutsch.de/1844.htm


Verlag Harri Deutsch – Schlote, Schneider: Mathematics meets physics – (978-3-8171-1844-1)

362 Part IV. Entwicklung von Konzepten | Development of concepts

columns, arriving at the first version of what came to be known as Dirac
matrices, which he expressed as:

aj =
✓

0 sj
sj 0

◆

and a4 =

0

B

B

@

1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

1

C

C

A

(17)

where j = 1, 2, 3. With the new a-matrices he could now formulate the
wave equation for a free electron as

(p0 +~a ·~p + a4mc)y = 0 (18)

where p0 = E/c. The Dirac equation exists in a variety of forms and
notations. Modern physicists often use for Dirac’s matrices the “gamma
matrices” which were introduced by Pauli in 1936 and are related to the
a matrices in a simple way.21 Using Pauli’s notation, the Dirac equation
can be written in the compact form

igµ

∂

µ

y =
mc
h̄

y (19)

Here g

µ are the four Dirac gamma matrices with µ = 0, 1, 2, 3 satisfying

g

µ

g

n + g

n

g

µ = 2gµn (20)

where gµn is the contravariant Lorentz metric.
The crucial step in Dirac’s derivation was the reduction of a phys-

ical problem to a mathematical one. It was mathematical reasoning
that forced him to introduce 4 ⇥ 4 matrices as coefficients and, as a
consequence, a four-component wave function

y = (y1, y2, y3, y4) (21)

“A great deal of my work is just playing with equations and seeing
what they give”, Dirac said in an interview of 1963. “I think it’s a
peculiarity of myself that I like to play about with equations, just looking
for beautiful relations which maybe can’t have any physical meaning at

21 Pauli 1936.
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all. Sometimes they do.”22 He worked for himself, without consulting
either mathematicians or other physicists. In this case, where he was
trying to find quantities that satisfied the anticommutation relations,
mathematicians could have told him that the problem was well known.

The relations (16) define a so-called Clifford algebra, so named
after William Kingdon Clifford who introduced his associative but
non-commutative “geometric algebra” in a paper of 1878.23 Two years
later the German mathematician Rudolf Lipschitz reinvented the Clifford
algebra, on which he gave a full exposition in a book of 1886. With
Lipschitz’s work it was known that Clifford algebra was isomorphic to
the algebra of 4⇥4 matrices.24 Without knowing that the general solution
was already contained in the algebraic theory, Dirac worked it out in his
own way, by “playing with equations.” He essentially rediscovered the
Clifford algebra. It is possible that Dirac received inspiration from Henry
Baker’s Principles of Geometry, a book of 1922 that he knew well and had
earlier influenced him. Although Baker’s book did not mention Clifford
algebra, it did contain sections on algebraic symbols corresponding to
4⇥ 4 matrices.

Having found the wave equation for a free electron, Dirac had of
course to show that it really described an electron, and he also had to
prove that it was Lorentz invariant. I shall not go into these details
except to point out that without introducing the magnetic electron in
advance, Dirac was able to show that his equation included a term
representing the magnetic moment of the spinning electron. That is,
Dirac deduced the correct spin from first principles of relativity and
quantum mechanics. In his paper of 1928 he also referred to the four
components of the y function, of which only two corresponded to the
electron. What did the other two components describe? This problem
would soon lead to Dirac’s celebrated theory of antielectrons, but this is
a development outside the scope of this paper.

22 Archive for History of Quantum Physics, interview of 1963, quoted in Kragh 1990,
p. 325.

23 Clifford 1878. For a brief history of Clifford algebra and its application in physics,
see Bolinder 1987.

24 Lipschitz 1886. On the connection between the Dirac equation and Clifford algebra,
see Olive 1997.
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6 Dirac, physics, and mathematical beauty

Dirac’s approach of 1928 was essentially mathematical or logical, in the
sense that he formulated a mathematical problem from basic physical
principles and then focused on the solution of this problem, disregarding
physics. This approach, together with a willingness to associate formulae
with physical meaning, led him to suggest the existence of antiparticles,
originally by identifying protons with antielectrons. By 1930 he had
reached the conclusion that theoretical physics must follow the route
determined by what he later described as “beautiful mathematics.” In his
influential textbook Principles of Quantum Mechanics, he hailed what he
called the “symbolic method,” namely a formulation of quantum theory
that relied only on symbols and which avoided physical interpretation.
The symbols, he said, “are used all the time in an abstract way, the
algebraic axioms that they satisfy and the connexion between equations
involving them and physical conditions being all that is required.” On
the other hand, while praising mathematics as a most powerful tool in
physics, he also made it clear that he favoured a pragmatic attitude: “All
the same, the mathematics is only a tool and one should learn to hold
the physical ideas in one’s mind without reference to the mathematical
form.”25

In his slightly later paper of 1931, in which he introduced the antielec-
tron as a separate particle and also suggested the existence of magnetic
monopoles, Dirac extolled the power of pure mathematics stronger than
he had done earlier: “The most powerful method of advance that can be
suggested at present is to employ all the resources of pure mathematics
in attempts to perfect and generalise the mathematical formalism that
forms the existing basis of theoretical physics, and after each success
in this direction, to try to interpret the new mathematical features in
terms of physical entities (by a process like Eddington’s Principle of
Identification).”26

Dirac’s attitude to the use of mathematics in physics changed over
time. He did not strive towards mathematical rigour, an ideal for which
he had little respect. In his Mathematische Grundlagen der Quantenmechanik
of 1932, John von Neumann took Dirac to task for his intuitive use of

25 Dirac 1930, p. 18 and p. vi.
26 Dirac 1931, p. 60.
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mathematics. “The method of Dirac”, he said, “in no way satisfies the
requirements of mathematical rigour – not even if these are reduced
in a natural and proper fashion to the extent common elsewhere in
theoretical physics.”27 Instead to follow the mathematicians’ advice,
Dirac preferred to rely on his intuition and let others, mathematicians or
mathematical physicists, present his ideas in rigorous forms. This relaxed
attitude is clearly visible in his invention of the Dirac matrices in 1928
and also in his introduction of the so-called d-function the year before.28

There is some similarity between the two cases, since in both of them
Dirac was unconcerned with the works of the mathematicians. Laurent
Schwartz recalled that some time after having established distribution
theory in 1945, he became aware of the earlier works of Dirac and other
physicists. The physicists, he realized, had made great progress “without
the mathematicians ‘given them the right’.”29

Dirac often stressed the value of approximations and related en-
gineering methods, and in general favoured a pragmatic attitude to
mathematics. But latest from about 1940 there emerged a tension
between his praise of mathematical pragmatism and his increasing
emphasis on mathematical beauty as the only sure guide for progress
in theoretical physics. In the James Scott Prize Lecture that he gave
on 6 February 1939, Dirac spelled out his new ideas of the relationship
between mathematics and physics which focused on the concept of
mathematical beauty. Many years before his brother in law Eugene
Wigner famously problematized the unreasonable effectiveness of math-
ematics in the natural sciences, Dirac discussed the same topic. How is
it that the mathematical-deductive method is so remarkably successful
in physics? According to Dirac:

“This must be ascribed to some mathematical quality in Nature, a
quality which the casual observer of Nature would not suspect,
but which nevertheless plays an important role in Nature’s scheme.
One might describe the mathematical quality in Nature by saying
that the universe is so constituted that mathematics is a useful tool
in its description. However, recent advances in physical science
show that this statement of the case is too trivial. The connection

27 Von Neumann 1943, p. 2.
28 On Dirac and the d-function, see Peters 2004 and Bueno 2005.
29 Schwartz 1972, p. 180.
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between mathematics and the description of the universe goes far
deeper than this.”30

In his James Scott Lecture and at numerous later occasions, Dirac asserted
that the modern history of theoretical physics provides convincing
evidence that there is a perfect marriage between the rules that math-
ematicians find interesting by their own standards and the rules that
govern natural phenomena. He thought this was not accidental, but that
it might reflect some deep identity between mathematics and physics:

“Pure mathematics and physics are becoming ever more closely
connected, though their methods remain different. One may
describe the situation by saying that the mathematician plays
a game in which he himself invents the rules while the physicist
plays a game in which the rules are provided by Nature, but as
time goes on it becomes increasingly evident that the rules which
the mathematician finds interesting are the same as those which
Nature has chosen. It is difficult to predict what the result of all
this will be. Possibly, the two subjects will ultimately unify, every
branch of pure mathematics then having its physical application,
its importance in physics being proportional to its interest in
mathematics.”31

Dirac suggested that future developments in theoretical physics would
lead to the “existence of a scheme in which the whole of the description
of the universe has its mathematical counterpart.” In accordance with
this philosophy, he advised physicists to “begin by choosing that branch
of mathematics which one thinks will form the basis of the new theory.
One should be influenced very much in this choice by considerations of
mathematical beauty. . . . Having decided on the branch of mathematics,
one should proceed to develop it along suitable lines, at the same time
looking for that way in which it appears to lend itself naturally to
physical interpretation.”32

Dirac went as far as arguing that mathematical beauty was the
hallmark of truth for a physical theory. What amounted to an iden-
tification of beauty with truth led him to a one-sided emphasis on the
mathematical-aesthetic method at the expense of the empirical-inductive

30 Dirac 1939, p. 122.
31 Ibid., p. 124.
32 Ibid., p. 125.
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method. As far as fundamental physics was concerned, he wanted
to subordinate experimental tests to the admittedly vague idea of
mathematical beauty. At least in some cases, mathematical beauty should
be assigned a higher priority than comparison with experimental data,
implying that ultimately truth would have to be judged on mathematics.
“If the equations of physics are not mathematically beautiful that denotes
an imperfection, and it means that the theory is at fault and needs
improvement. There are occasions when mathematical beauty should
take priority over agreement with experiment.”33 This is obviously a
controversial and problematic claim, for other reasons because neither
Dirac nor others have been able to come up with a definition of
mathematical beauty that can serve as a standard for judging the truth
of physical theories. There just is no consensus among either physicists
or mathematicians as to which equations and mathematical structures
should be singled out as particularly beautiful, elegant and interesting.34

I have earlier concluded that the strong version of the principle of
mathematical beauty proved to be a failure in Dirac’s scientific career,
and I see no reason to change that conclusion. In his most creative
phase, from about 1925 to 1933, he was only guided by mathematical
considerations in a limited and fairly conventional sense.35 Only after the
mid-1930s did he turn into an apostle of mathematical beauty, primarily
in his long and unfruitful critique of standard quantum electrodynamics.
He mostly applied the principle of mathematical beauty rhetorically
and destructively, whereas he did not succeed to build up sustainable
alternatives of physics and cosmology on the basis of the principle.
Contrary to what Dirac preached, the strong principle of mathematical
beauty hampered his scientific creativity.

33 Conversation with Jagdish Mehra from the late 1960s, in Mehra 1972, p. 39.
34 An analysis of mathematical beauty with special reference to Dirac’s claim can be

found in Kragh 1990, pp. 275 – 292 and in McAllister 1990.
35 Bueno 2005 argues in detail that Dirac’s work in the period relied more on

physical interpretations of the mathematical formalism than on mathematics itself.
Mathematical theories played an important but not an indispensable role to Dirac.
On this question, see also Steiner 1998.
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7 Postscripts

This paper has focused on the Schrödinger equation and the process
that led to the relativistic theory for the electron, the celebrated Dirac
equation. Schrödinger was among the physicists who considered Dirac’s
equation a true masterpiece. In 1953 he wrote that “Dirac’s relativistic
wave equation still stands out as the great success that has been scored
in this whole subject [relativity and quantum mechanics].”36 In spite
of their very different styles and conceptions of quantum physics,
Schrödinger and Dirac had much in common. Dirac acknowledged
his mental similarity to Schrödinger, which he ascribed to a shared
appreciation of the importance of mathematical beauty in physics:
“Schrödinger and I both had a very strong appreciation of mathematical
beauty, and this appreciation of mathematical beauty dominated all our
work. It was a sort of act of faith with us that any equations which
describe fundamental laws of Nature must have great mathematical
beauty in them. It was like a religion with us.”37

The relations between mathematics and physics in the early phase
of relativistic quantum theory were reciprocical and not merely an
application of mathematical concepts and methods in the domain of
quantum physics. On the contrary, the work of the physicists resulted in
many ideas that were eagerly explored by both mathematical physicists
and pure mathematicians. The operators and matrices introduced by
Dirac eventually gave rise to a whole mathematical industry. Early
mathematical studies of the Dirac equation and its connection to spinor
theory and Clifford algebra included works by John von Neumann
(1928), Bartel L. Van der Waerden (1929), Jan A. Schouten (1929),
Alexandre Proca (1930), and Richard Brauer and Hermann Weyl (1935).
This case of how physics paid back its debts to mathematics has not
received much attention among historians of science.

8 Bibliography
Biedenharn, L. C. [1983]: The ‘Sommerfeld puzzle’ revisited and resolved.

Foundations of Physics 13, 13 – 34.

36 Schrödinger 1953, p. 329.
37 Dirac 1977, p. 136.

http://www.harri-deutsch.de/1844.htm


Verlag Harri Deutsch – Schlote, Schneider: Mathematics meets physics – (978-3-8171-1844-1)

KRAGH: Mathematics, Relativity, and Quantum Wave Equations 369

Bolinder, E. Folke [1987]: Clifford algebra: What is it? IEEE Antennas and
Propagation Society Newsletter (August), 18 – 23.

Born, Max [1975]: My Life: Recollections of a Nobel Laureate. New York:
Charles Scribner’s Sons.

Bueno, Otávio [2005]: Dirac and the dispensability of mathematics. Studies in
History and Philosophy of Modern Physics 36, 465 – 490.

Clifford, William K. [1878]: Applications of Grassmann’s extensive algebra.
American Journal of Mathematics 1, 350 – 358.

Darwin, Charles G. [1927]: The electron as a vector wave. Proceedings of the
Royal Society A 116, 227 – 253.

Dirac, Paul A. M. [1928]: The quantum theory of the electron. Proceedings of
the Royal Society A 117, 610 – 624.

Dirac, Paul A. M. [1930]: Principles of Quantum Mechanics. Oxford: Clarendon
Press.

Dirac, Paul A. M. [1931]: Quantised singularities in the electromagnetic field.
Proceedings of the Royal Society A 133, 60 – 72.

Dirac, Paul A. M. [1939]: The relation between mathematics and physics.
Proceedings of the Royal Society (Edinburgh) 59, 122 – 129.

Dirac, Paul A. M. [1977]: Recollections of an exciting era. In: History of
Twentieth Century Physics, ed. Charles Weiner, pp. 109 – 146. New York:
Academic Press.

Halpern, Paul [2007]: Klein, Einstein, and five-dimensional unification. Physics
in Perspective 9, 390 – 405.

Heisenberg, Werner; Jordan, Pascual [1926]: Anwendung der Quanten-
mechanik auf das Problem der anomalen Zeemaneffekte. Zeitschrift für
Physik 37, 263 – 277.

Joas, Christian; Lehner, Christoph [2009]: The classical roots of wave mechanics:
Schrödinger’s transformations of the optical-mechanical analogy. Studies in
History and Philosophy of Modern Physics 40, 338 – 351.

Klein, Oskar [1926]: The atomicity of electricity as a quantum theory law.
Nature 118, 516.

Kragh, Helge [1981]: The genesis of Dirac’s relativistic theory of electrons.
Archive for History of Exact Sciences 24, 31 – 67.

http://www.harri-deutsch.de/1844.htm


Verlag Harri Deutsch – Schlote, Schneider: Mathematics meets physics – (978-3-8171-1844-1)

370 Part IV. Entwicklung von Konzepten | Development of concepts

Kragh, Helge [1982]: Erwin Schrödinger and the wave equation: The crucial
phase. Centaurus 41, 154 – 197.

Kragh, Helge [1984]: Equation with the many fathers. The Klein-Gordon
equation in 1926. American Journal of Physics 52, 1024 – 1033.

Kragh, Helge [1990]: Dirac: A Scientific Biography. Cambridge: Cambridge
University Press.

Lipschitz, Rudolf [1886]: Untersuchungen über die Summen von Quadraten.
Bonn: F. Cohen.

London, Fritz [1927]: Über eine Deutungsmöglichkeit der Kleinschen fünfdi-
mensionalen Welt. Naturwissenschaften 15, 15 – 16.

Mandelstam, Stanley; Yourgrau, Wolfgang [1958]: Variational Principles in
Dynamics and Quantum Theory. London: Sir Isaac Pitman & Sons.

McAllister, James W. [1990]: Dirac and the aesthetic evaluation of theories.
Methodology and Science 23, 87 – 102.

Mehra, Jagdish [1972]: The golden age of theoretical physics: P. A. M.
Dirac’s scientific works from 1924 – 1933. In: Aspects of Quantum Theory,
eds. Abdus Salam; Eugene P. Wigner, pp. 17 – 59. Cambridge: Cambridge
University Press.

Mehra, Jagdish; Rechenberg, Helmut [1982]: The Historical Development of
Quantum Theory, Vol. 3. New York: Springer-Verlag.

Mehra, Jagdish; Rechenberg, Helmut [1987]: The Historical Development of
Quantum Theory, Vol. 5, Part 2. New York: Springer-Verlag.

Mehra, Jagdish; Rechenberg, Helmut [2000]: The Historical Development of
Quantum Theory, Vol. 6, Part 1. New York: Springer-Verlag.

Mott, Nevill [1987]: Learning and teaching quantum mechanics 1926 – 33:
Cambridge, Copenhagen and Manchester. In: The Making of Physicists, ed.
Rajkumari Williamson, pp. 74 – 76. Bristol: Adam Hilger.

Olive, D. I. [1997]: The relativistic electron. In: Electron: A Centenary Volume,
ed. Michael Springford, pp. 39 – 59. Cambridge: Cambridge University Press.

Pauli, Wolfgang [1927]: Zur Quantenmechanik des magnetischen Elektrons.
Zeitschrift für Physik 43, 601 – 623.

Pauli, Wolfgang [1936]: Contributions mathématiques à la théorie des matrices
de Dirac. Annales de l’Institut Henri Poincaré 6: 2, 109 – 136.

http://www.harri-deutsch.de/1844.htm


Verlag Harri Deutsch – Schlote, Schneider: Mathematics meets physics – (978-3-8171-1844-1)

KRAGH: Mathematics, Relativity, and Quantum Wave Equations 371

Pauli, Wolfgang [1979]: Wissenschaftlicher Briefwechsel, Vol. 1, eds. Armin
Hermann; Karl von Meyenn; Victor F. Weisskopf. New York: Springer-Ver-
lag.

Peters, Klaus-Heinrich [2004]: Schönheit, Exaktheit, Wahrheit. Der Zusam-
menhang von Mathematik und Physik am Beispiel der Geschichte der
Distributionen. Berlin: GNT-Verlag.

Schlesinger, Ludwig [1900]: Einführung in die Theorie der gewöhnlichen
Differentialgleichungen auf funktionentheoretischer Grundlage. Leipzig:
G. J. Göschensche Verlagshandlung.

Schrödinger, Erwin [1926]: Quantisierung als Eigenwertproblem. Erste Mit-
teilung. Annalen der Physik 79, 361 – 376.

Schrödinger, Erwin [1953]: Relativistic quantum theory. British Journal for the
Philosophy of Science 4, 328 – 329.

Schwartz, Laurent [1972]: La ‘fonction’ d et les noyaux. In: Aspects of Quantum
Theory, eds. Abdus Salam; Eugene P. Wigner, pp. 179 – 182. Cambridge:
Cambridge University Press.

Steiner, Mark [1998]: The Applicability of Mathematics as a Philosophical
Problem. Cambridge. Mass.: Harvard University Press.

Van der Waerden, Bartel L. [1960]: Exclusion principle and spin. In: Theoretical
Physics in the Twentieth Century, eds. Markus Fierz; Victor F. Weisskopf,
pp. 199 – 244. New York: Interscience.

Von Neumann, Johann [1943]: Mathematische Grundlagen der Quanten-
mechanik. New York: Dover Publications.

http://www.harri-deutsch.de/1844.htm

