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Hydraulico-statics 

When Daniel Bernoulli brought up the subject of hydrostatics (to which he made 
no important new contributions), he made the following declaration concerning 
its relationship to hydrodynamics: 

 
The pressure of water at rest must be clearly distinguished from the pressure of 
flowing waters, although no one, as far I know, has been aware of this. Hence it is 
that the rules presented by other authors are only valid for water at rest, although 
they employ terms that might lead us to believe that such rules refer to flowing 
water. [II.§.17] 

 
Certainly, no previous author had noticed this fact, one of such overriding im-
portance that it constitutes the base of all hydrodynamics. What is more, hydro-
statics and hydraulics had hitherto been two separate disciplines, the only nexus 
of union being the fluid. From now on the separation will disappear. We have 
seen that in the chapters devoted to movement in pipes and to discharges, his 
sole aim was to obtain velocities, but he said nothing about pressures, which 
constitute an element of hydrostatics. From the moment at which they proceed 
side-by-side, a new discipline appears which he baptises as ‘hydraulico-statics’, 
as both participate in it. He says that ‘in this hydraulico-statics it is surprising 
that the pressures of waters cannot be defined without previously having grasped 
their motions’ [XII.§.2], and he devotes himself to this, arriving at the first defi-
nition of what is now known as ‘Bernoulli’s theorem’, which is the first theorem 
that any student of fluid mechanics encounters.29 

 

 
Fig. 7-10. Water manometer 

                                                      
29 From my own experience, I can state that it is difficult to understand something of the abstruse 
science of fluids if this theorem has not been fully understood. 
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But Daniel’s contributions are not limited to the theoretical field. We have 
already said that he was a great experimenter, in this respect we must acknow-
ledge that he used the column water manometer in order to measure pressures30 
(Fig. 7-10). This consists of a narrow pipe placed vertically in a small lateral 
orifice of a pipe through which water circulates, and through which the water 
will ascend until it reaches the height proportional to the pressure.31 It is not 
surprising that Daniel was the first to use this instrument, as there is actually a 
close relation between the phenomenon of ‘hydraulico-statics’ and this measur-
ing instrument. So much so, that we believe these pipes and measurements existed 
before the theoretical formulation of the theorem, as we shall go on to show. 
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Fig. 7-11. Discharge of a reservoir through a tube 

 
Employing a methodological procedure standard in his study of the relation 

between pressure and velocity, he proposes a study of motion based on an appa-
ratus that he uses as a model. It is a reservoir that discharges through a horizon-
tal tube closed in turn by a perforated seal, as shown in Fig. 7-11. In principle 
the discharge is like those already studied in the previous chapters. The differ-
ence in level between the free surface of the water and the outlet orifice is desig-
nated by him as a, which will remain constant as he considers the surface of the 

                                                      
We must remember that Daniel was trained as a doctor, and first he developed this manometer 

to measure the pressure of arterial flow. Perhaps following Varignon’s invention of the manometer 
in 1705, Bernoulli also experimented by puncturing the wall of a pipe with a small open-ended 
straw and noted that the height to which the fluid rose in the straw was related to fluid’s pressure 
in the pipe. Based on this observation, doctors began to measure blood pressure by sticking sharp-
ened glass tubes directly into their patients’ arteries. The less-painful sphygmomanometer (blood-
pressure cuff) was not invented until the close of the nineteenth century (This comment is due to 
Larrie Ferreiro).  
31 The pressure at the base of column of water is expressed by the well known formula p = ȡgh, 
i.e., if h is known, p will also be know. These apparatus have continued to be used up to the pre-
sent-day, be it with water or another liquid, and so much so that in experimental aerodynamics the 
pressures are frequently quoted as heights of water or mercury. 

30 
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reservoir to be very large. According to Torricelli’s Law, the speed of the liquid 
flowing out through the orifice will be gavs 2 ,32 and consequently the velocity 
in the tube, obviously less, must be vs/r, where r is the relation between the sec-
tions of the tube and the orifice. From what has already been said, it follows that 
the velocity inside the reservoir is zero, given its large size. 
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was to disappear suddenly. It is clear that the liquid in the tube would accelerate 
from its previous velocity vs/r to vs, which would be the velocity accorded it by 
Torricelli’s Law. Therefore, according to Daniel, the effect of the perforated 
plug can be interpreted as if its presence were compressing and retaining the 
water, pressing it against the walls of the reservoir and preventing it from  
expanding. This retention pressure will be greater as the velocity of the water 
circulating through the tube is slower, because the water will have greater accel-
eration capability upon the disappearance of the plug, which is the obstacle pre-
venting free movement. 

The result of this compression and retention (nisus et renisus) is that the 
water is compressed along the axial hub of the tube, and this pressure is trans-
mitted to the lateral walls. We see that there is a likeness between this containing 
pressure and accelerating force that appears when we remove the plug. He 
writes: 
 

 

                                                      
32 From this point on of the Hydrodynamica, Daniel changes the conceptual sense of the velocity, 
which goes from being represented by the kinetic height to its intrinsic sense of a space travelled in 
a unit of time. 

Fig. 7-12. Separation of the spout 

a) b)

Given this, let us imagine that the right part of the horizontal tube (Fig. 7-12a) 
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It seems that the pressure of the lateral walls is proportional to the acceleration or 
the increment of velocity which the water would receive if the entire obstacle to 
motion were to vanish in an instant, so that [the water] might pour out directly into 
the air. [XII.§.5] 

 
In order to reduce this reasoning to equations he makes use of the principle of 
live forces, not as a potential ascent however but in the form Ȉmv2 = 2gȈma.33 
After the disappearance of the plug in an intermediate moment of acceleration 
process, the velocity of the liquid in the tube will be v, and this will be increased 
in dv in a time dt. In this interval the mass of water ms = ȡSdx will egress the tube 
through the cut section (Fig. 7-12b), and will be substituted for an equal mass 
coming from the reservoir. As this entering mass has no velocity, it will pass 
from repose to the velocity v + dv. The increase of live force of the entire set will 
be the sum of that acquired by the mass of water entering, which is ȡSv2dx, plus 
the increase corresponding to the mass that was inside the tube that passes 
through v to v + dv, and which will be 2ȡScvdv. On the other hand, the real de-
scent will be that corresponding to the fall of the mass ms from the height a, 
which is 2gȡSadx. Equalling will result in: 

 
gadxcvdvdxv 222  �                                           [7.26] 

dx
vdv

a
vga

 
�

2
2 2

                                                 [7.27] 

 

pressure multiplied by the increase in time, which would be dv = kpdt, or rather 
dv = kpdx/v. At this point we note that he uses pressure instead of force,34 which 
would be justified if he were talking about the internal pressure on the bases of 
the cylinder of fluid that he has isolated, as this would act in the same direction 
as the variation of the velocity. However, he indicates that the pressure on the 
walls is what he is looking for, and in some intuitive way he likens these.35 On 

                                                      
33 If one follows the original text, one observes that the factor 2g does not appear, and that the 
formulas are not non-dimensional. It is also appreciated that the relation between the velocity and 
the height is simply v = ¥a, as the same factor is also missing. This is explained because in his 
system of units it is verified that g = 1/2 as he warned in Note no. 20. 
34

35 The concept of internal pressure would be introduced by his father later on, but Daniel here has 
an inkling of this. 

He says that in all motion the increase of velocity is proportional to the 

which yields: 

 This will be later criticised by d’Alembert, in the Traité de l’équilibre et mouvement des fluides. 
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the other hand, the equation he gives Newton’s second law,36 which he intro-
duces as a differential equality between the impulse and the variation of the 
quantity of motion. With these clarifications the previous equation changes to: 
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                                               [7.28] 

 
This equation refers to an intermediate moment between the separation of the 
tube and the final condition. In the initial instant the velocity was rgarvs /2/  , 
and the pressure was that which existed before the separation of the tube, and which 
he likens to a height of z as ȡgz. Introduced into the last formula, the result is: 
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In order to eliminate all the unknown parameters that still remain in this formula, 
he imagines the case in which the outlet orifice is infinitesimal, i.e., r ĺ �. In 
this condition the outlet flow will be practically null, and therefore the pressure 
would be ȡga, then c = 1/ȡ, which introduced into the last equation leads to: 
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This is the final formula presented by Daniel, in which a relation is established 
between the velocities, determined by the magnitude r and the height of the 
pressure z. If we make a small transformation with the aim of updating of for-
mula37 we arrive at: 

 
2

0 2
1 vȡpp �                                                 [7.31] 

 
an equation which is much more familiar to the present-day student. 

                                                      
36 We recall that Newton formulated his law in an integral manner, not differential. Therefore, the 
approximation made by Daniel Bernoulli in this point should no surprise us. See above in previous 
Chapter 2, ‘Resistance in aeriform fluids’. 
37 On one hand p = ȡgz, and p0 = ȡga, which is the pressure that would exist without egress  
or repose pressure. On other hand r = ST /Ss = vs/vT = vs/¥(2ga). Substituting, p = p0 – p0/r2 =  
p0 – ½ȡvT

2 . 
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Fig. 7-13. Manometer and jet 

 
Daniel suggests several experiments and corroborations for this formula, 

and here we reproduce one of them (Fig. 7-13). We can see the manometer tube 
and a small jet, and in both the water reaches a height z, which is a function of 
the velocity v. This apparatus clearly testifies to the intimate relation existing 
between the height of the water in the manometers and the formula, which was 
the reason why we venture to suggest that perhaps the instrument existed prior to 
the law. It is common to try to pinpoint an exact date for an important factor. 
However, this desire is frequently impossible to satisfy, not through ignorance or 
lack of documentary proof, but because the thought follows a line of evolution-
ary maturity, and there is no definite crystallisation point. Something like this 
happens with Bernoulli’s formula. What is more, there are a couple of indica-

know of a letter that he sent to Golbach, dated 17 July 1730, in which he writes 
that: 
 

In these past days I have made a new discovery which can be of great use for the 
design of ducts for water, but which above all will bring in a new day in physio-
logy: it is to have found the statics of running water, which no one before me has 
considered, so far as I know ….38 

 
He encloses a drawing of an apparatus similar to that of the Hydrodynamica, and 
the final formula without any type of demonstration. 

                                                      
38 Comment by Truesdell. Cf. ‘Rat. Fluid Mech-12’, p. XXX, that specifies that the mention of 
physiology is due to the fact that Daniel was a medical practitioner. See also previous note 31. 

tions that the idea was mulling around in Daniel’s head quite a long time. We 
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Another note on this is found in the article ‘Experimenta coram societate 
instituta in confirmationem theoriae pressionum quas lateera canalis ab aqua 
transfluente sustinent’ (‘Experiments made before the Academy in confirmation 
of the theory of pressures exercised by the waters circulating in the laterals of 
chanels’) published in the Commentarii petropolitanæ (1729), in which there is a 
drawing of an experimental apparatus, that we reproduce in Fig. 7-14, and also 
the formula, as well as some paragraphs that are later repeated almost word for 
word in the Hydrodynamica. The volume is from the year 1729, but it was pub-
lished in 1735. The drawing shows the tube he used as a manometer, and the 
removable plug with the orifice used in the experiments. It is clearly the precur-
sor of the model he will use to demonstrate his theory. 

Fig. 7-14. The Commentarii apparatus 
 

It is curious that in both cases he gives the formula of the height of the 
pressure as (1 – 1/r2)a without proof. This seems to indicate that he obtained this 
formula from experimental data, which is not unusual, as it is very simple and 
easy to conjecture, especially for an excellent experimenter like Daniel was. If 
this is so, then his work consisted in looking for a basis for this equation, which 
would constitute another of the many cases in which theory has to justify experi-
ments. This could also explain his father’s anger, as he very probably had the 
empirical formula, perhaps even before the publication of the Commentarii in 
1735 and he could have been very close to its theoretical reduction. Neverthe-
less, this is a simple conjecture, interesting and even likely, but not verified. 

The discharge of elastic fluids 

In the Hydrodynamica there is a chapter subtitled ‘Concerning Properties and 
Motions of Elastic Fluids, but especially of Air’, the only chapter that does not 
deal with liquids. This section begins with a kinetic theory of gases, one of the 


