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Experiment 1 
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Color patterns in thin films  

Take two pieces of thin glass and gently press one against the other with the 
tip of a pen/pencil. Change some parameters and describe what you see. 



Explanation 1 (Hooke, 1665) 
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Micrographia: or Some Physiological Descriptions 
of Minute Bodies Made by Magnifying Glasses. 
With Observations and Inquiries Thereupon. 

•  Pulse ab (white light) falls on the surface AB, 
which reflects a portion of it as the pulse cd. 

•  The rest is refracted and then reflected by the 
back surface EF as the pulse ef 

•  Pulse ef is weaker than cd 
•  When the combination of the two pulses enters 

the eye, it perceives different colors (blue, red, 
purple, yellow, green) depending on the relative 
position between cd and ef 

•  The latter depends on the thickness of the plate 

Different colors Qualitative 
Thickness is the key Why only thin plates? 

Source: Kipnis (1992) 



Explanation 2 (Newton, 1704) 
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The Project Gutenberg eBook of Opticks:, by Sir Isaac Newton, Knt.

http://www.gutenberg.org/files/33504/33504-h/33504-h.htm[7/9/12 9:44:47 AM]

Fig. 4.

Obs. 16. The Squares of the Diameters of these Rings made by any prismatick Colour were in
arithmetical Progression, as in the fifth Observation. And the Diameter of the sixth Circle, when
made by the citrine yellow, and viewed almost perpendicularly was about 58/100 parts of an
Inch, or a little less, agreeable to the sixth Observation.

The precedent Observations were made with a rarer thin Medium, terminated by a denser, such
as was Air or Water compress'd between two Glasses. In those that follow are set down the
Appearances of a denser Medium thin'd within a rarer, such as are Plates of Muscovy Glass,
Bubbles of Water, and some other thin Substances terminated on all sides with air.

Obs. 17. If a Bubble be blown with Water first made tenacious by dissolving a little Soap in it,
'tis a common Observation, that after a while it will appear tinged with a great variety of Colours.
To defend these Bubbles from being agitated by the external Air (whereby their Colours are
irregularly moved one among another, so that no accurate Observation can be made of them,) as
soon as I had blown any of them I cover'd it with a clear Glass, and by that means its Colours
emerged in a very regular order, like so many concentrick Rings encompassing the top of the
Bubble. And as the Bubble grew thinner by the continual subsiding of the Water, these Rings
dilated slowly and overspread the whole Bubble, descending in order to the bottom of it, where
they vanish'd successively. In the mean while, after all the Colours were emerged at the top, there
grew in the center of the Rings a small round black Spot, like that in the first Observation, which
continually dilated it self till it became sometimes more than 1/2 or 3/4 of an Inch in breadth
before the Bubble broke. At first I thought there had been no Light reflected from the Water in
that place, but observing it more curiously, I saw within it several smaller round Spots, which
appeared much blacker and darker than the rest, whereby I knew that there was some Reflexion
at the other places which were not so dark as those Spots. And by farther Tryal I found that I
could see the Images of some things (as of a Candle or the Sun) very faintly reflected, not only
from the great black Spot, but also from the little darker Spots which were within it.

Besides the aforesaid colour'd Rings there would often appear small Spots of Colours, ascending
and descending up and down the sides of the Bubble, by reason of some Inequalities in the
subsiding of the Water. And sometimes small black Spots generated at the sides would ascend up
to the larger black Spot at the top of the Bubble, and unite with it.

Obs. 18. Because the Colours of these Bubbles were more extended and lively than those of the
Air thinn'd between two Glasses, and so more easy to be distinguish'd, I shall here give you a
farther description of their order, as they were observ'd in viewing them by Reflexion of the

[Pg 214]
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- Regularities in the experimental data: Ratio 
of the areas (bright 1, 3, 5… dark 2, 4, 6…), 
thus same ratio of thicknesses 
- The unit in these progressions is 1”/178.000, 
which is the thickness of the film at 1st order 
bright for yellow (calculated for other colors) 

Fits of easy reflection and refraction  

Newton’s rings 

Quantitative predictions Fits??? 
Precise measurements Why only thin plates? 

Explanation: Light can periodically change 
its property of being reflected or refracted 

•  After entering a refracting medium at every 
distance from the surface multiple of 2”/178.000 
light acquires a property to be transmitted further 

•  In the middle between these distances it can be 
reflected back  

•  Distance between two consecutive points of easy 
transmission/reflection is interval of fits and it 
depends on the color and index of refraction (λ?) 

•  Light either passes or returns, if the thickness is 
an odd or even number of 1”/178.000 

Source: Kipnis (1992) 



Thomas Young 
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Source: Kipnis (1992) 

•  Eldest of 10 children in a family of Quakers 
•  Grandfather stimulated in classic literature, 

neighbor in math/physics 
•  [At 14] versed in Greek, Latin, French, Italian, 

Hebrew, Persian and Arabic. (Later involved in 
deciphering the Rosetta Stone) 

•  1792 begins medical studies in London 
•  Interested in physics – “important for a good 

physician” 
•  1796: studied the formation of human voice 

(acoustics) 
•  1799: Studying beats of sound, discovered 

principle of interference (two sounds can also 
destroy one another) 

•  1801: Generalized the idea to light 



Explanation 3 (Young, 1801) 
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Source: Kipnis (1992) 

Ray 1 travels SCO, Ray 2 travels SAEFO  
Path difference is ∆ = SA+AE+EF+FO-(SC+SO) 
SA≈SB    t1BC=t2AD , thus ∆ = 2nDE (n ref index) 
Since DE = CE cosr (r angle of refraction) 
If e is the plate’s thickness ∆ = 2.e.n.cosr 

Quantitative predictions What is between  
max and min? Precise measurements 

Why only thin plates? 

1 

2 

Problem: Doesn’t match Newton’s results 

Solution: π phase shift in reflection 
from rarer to denser medium  

∆ = 2.e.n.cosr + λ/2  

e 

Bright fringes when ∆ = mλ (m = 0,1,2…)  

Dark fringes when ∆ = (2m+1/2)λ 

If the incident light is white, the rays 
producing maxima are reflected under 
different angles for different wave-lengths, 
resulting fringes of different colors. The 
spectra of higher order overlap and colors 
mix producing white. Thus, normally only 
spectra of the first few orders are seen. 
The number of spectra increases with path 
difference, which depends on thickness. 
This explains why fringes appear only in 
thin plates  



Experiment 2 (Young, 1807) 
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When a beam of homogeneous light falls on a 
screen in which there are two very small holes or 
slits, from whence the light is diffracted in every 
direction. In this case, when the two newly formed 
beams are received on a surface placed so as to 
intercept them, their light is divided by dark stripes 
into portions nearly equal, but becoming wider as 
the surface is more remote from the apertures, so as 
to subtend very nearly equal angles from the 
apertures at all distances, and wider also in the 
same proportion as the apertures are closer to each 
other. The middle of the two portions is always light, 
and the bright stripes on each side are at such 
distances, that the light, coming to them from one of 
the apertures, must have passed through a longer 
space than that which comes from the other, by an 
interval which is equal to the breadth of one, two, 
three, or more of the supposed undulations, while 
the intervening dark spaces correspond to a 
difference of half a supposed undulation, of one and 
a half, of two and a half, or more. 



John Worrall: NO 
Young’s double-slit experiment was 
an intuition of the truth, not a real 
expe r imen t . Young does no t 
explicitly state that he did the 
experiment; Young provides no 
numerical data; Young says nothing 
about the light source he used and 
the other experimental conditions; 
and Young never again refers to the 
experiment. 
 

    Nahum Kipnis: YES, but 
Young did not interpret his experi-
mental observat ions correct ly. 
Young did experiment with two slits, 
and used both white and mono-
chromatic light. However he did not 
discover the interference fringes: he 
confused them with diffraction 
f r inges. Because the in terva l 
between the slits was too large, he 
could see only diffraction fringes 
produced by each slit separately. 
His observation was qualitative: if 
he had measured the distance 
between the observed fringes, he 
would have realized that they were 
of the wrong kind. 
 

Did Young perform Young’s experiment? 

Source: Robinson (2006) 

8 



Excerpts from Fresnel’s originals 
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35. Given the intensities and relative positions of any number of trains of 
light-waves of the same length and travelling in the same direction, to 
determine the intensity of the vibrations produced by the meeting of these 
different trains of waves, that is, the oscillatory velocity of the ether particles. 

36. It is natural to suppose that the particles whose vibrations produce light 
perform their oscillations like those of sounding bodies that is, to suppose 
that the acceleration tending to make a particle return to its position of 
equilibrium is directly proportional to the displacement. 

37. The energy of motion in the ether at any point on the wave depends 
upon the velocity of the point-source at the instant when it started a 
disturbance which has just reached this point. The velocity of the ether 
particles at any point in space after an interval of time t is proportional to 
that of the point-source at the instant t – x/λ. 

Makes sense? 

Then Fresnel enters the scene…  
 



Excerpts from Fresnel’s originals 
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38. Let us first determine the velocity of a luminous particle in a vibration 
which results from the interference of two trains of waves displaced, one 
with respect to the other, by a quarter of a wave-length [i.e., differing in 
phase by 90°], and having intensities which we shall denote by a and a'. 

WHY by a quarter 
of a wave-length? 



Excerpts from Fresnel’s originals 
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38. Let us first determine the velocity of a luminous particle in a vibration 
which results from the interference of two trains of waves displaced, one 
with respect to the other, by a quarter of a wave-length [i.e., differing in 
phase by 90°], and having intensities which we shall denote by a and a'. 



Excerpts from Fresnel’s originals 
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39. The solution of this particular case for waves differing by a quarter of a 
wave-length suffices to solve all other cases. In fact, whatever be the number 
of the trains of waves, and whatever be the intervals which separate them, we 
can always substitute for each of them by its components referred to two 
reference points which are common to each train of waves and which are 
distant from each other by a quarter of a wave-length; […] but this is exactly 
the method employed in statics to fid the resultant of any number of forces; 
here the wave-length corresponds to one circumference in the static problem, 
and the interval of a quarter of a wave-length between the trains of waves to an 
angular displacement of 90° between the components. 

Are you convinced? 
Need to see mathematically? 



Excerpts from Fresnel’s originals 
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OR 

HOW 
COME? 

Phasors  



Huygens principle described mathematically 
Fresnel integrals 
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Huygens principle described mathematically 
Fresnel integrals 
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x/Am´=(a+b)/a 
Am’ ≈ z 

 

??? 



Huygens principle described mathematically 
Fresnel integrals (Buchwald, 1989) 
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Experiment 3 
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Look at some objects (e.g. text, point, window) through the crystal. Play a bit, 
move it around, rotate, etc. What do you observe? Take another crystal and 
put on top of the first one. What do you expect to see? What do you see? 
Observe light through the linear polarizer. Make your own experiments with 
this stuff. Be prepared to share your findings. 



Bartholini (1669): Experiments with Iceland spar 
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Huygens (1678/90): Traité de la lumière 
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•  Explains birefringence with wave theory of light 
•  Principal section (only one image) 
•  Different refraction indexes in different directions (anisotropic) 
•  Ordinary ray (circle) and Extraordinary ray (ellipse) 
•  Describes experiments with two calcite crystals 

CHAPTER V: ON THE STRANGE REFRACTION OF ICELAND CRYSTAL 
 

Before finishing the treatise on this Crystal, I will add one more marvelous phenomenon which I 
discovered after having written all the foregoing. For though I have not been able till now to find 
its cause, I do not for that reason wish to desist from describing it, in order to give opportunity to 
others to investigate it. It seems that it will be necessary to make still further suppositions 
besides those which I have made;  



Explanation ? (Newton, 1704) 
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When I made the foregoing Observations, I designed to repeat most of them 
with more care and exactness, and to make some new ones for determining 
the manner how the Rays of Light are bent in their passage by Bodies, for 
making the Fringes of Colors with the dark lines between them. But I was then 
interrupted, and cannot now think of taking these things into farther 
Consideration. And since I have not finished this part of my Design, I shall 
conclude with proposing only some Queries, in order to a farther search to be 
made by others. 

Book 3 Opticks: Queries  

Qu. 26. Have not the Rays of Light several 
sides, endued with several original Properties?  



Important discovery (Malus and Brewster) 
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Modern explanation 
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•  Light is a transverse wave 
•  Wire-grid polarizer absorbs E field in all directions except the ⟂   
•  In the iceland spar, the ordinary and extraordinary rays are 

polarized in perpendicular planes 



Not so fast! Fresnel reappears triumphantly… 
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Fresnel equations 

Goal: Equations describing what fraction of light is reflected (Fresnel equations). 

r = r(θ1,n)
58 Propagation of light

Figure 3.7 Light travelling from one insulator n1 into another n2.
The plane of incidence is spanned by he normal to the surface and
the incident k1 vector.

of them here, but refer to other optics books. However, let us look at two
prominent proofs both illustrating the kinematic nature of the law. The
first is perhaps the most general. Since there is translation symmetry
along the y -direction, momentum will be conserved in this direction.
For a photon entering along k1 and exit along k2 the y-component of
its momentum its conserved:

h sin(θ1)

λ1
=

h sin(θ2)

λ2
(3.24)

n1 sin(θ1)

λ0
=

n2 sin(θ2)

λ0
(3.25)

n1 sin(θ1) = n2 sin(θ2) (3.26)

where we used the expression for the photon momentum and λ0 is the
vacuum wavelength. The reflection law θ1 = θ3 can be shown in a similar
manner. From Fermat’s principle we can also show Snell’s law. Looking
at figure 3.8 we write up the the OPL and demand it to be stationary:

OPL(x) = n1

√
x2 + a2 + n2

√
(s− x)2 + b2 (3.27)
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Fresnel equations 
Assumptions 



Department of Science Education 

66 Propagation of light
(
Et

Ei

)
=

2n1 cos(θ1)

n1 cos(θ1) + n2 cos(θ2)
(3.48)

For the ratios we often use the notation r⊥ = Er/Ei and t⊥ = Et/Ei.
Since we had four boundary conditions we will have four Fresnel equa-
tions:

Fresnel’s equations: (3.49)

r⊥ =
n1 cos(θ1)− n2 cos(θ2)

n1 cos(θ1) + n2 cos(θ2)

t⊥ =
2n1 cos(θ1)

n1 cos(θ1) + n2 cos(θ2)

r∥ =
n2 cos(θ1)− n1 cos(θ2)

n2 cos(θ1) + n1 cos(θ2)

t∥ =
2n1 cos(θ1)

n2 cos(θ1) + n1 cos(θ2)

Example 3.7 Fresnel’s equations at normal incidence.
At normal incidence θ1 = θ2 = 0. Looking at r⊥ (r∥) and t⊥ (t∥) we
find:

r⊥ =
n1 − n2

n1 + n2
and t⊥ =

2n1

n1 + n2
(3.50)

For an air glass interface n1 = 1 and n2 = 1.5 we will have r⊥ = −0.2.
The reflected wave is thus

Er = −0.2 · Ei = 0.2 · eiπ · Ei = 0.2 · Ei
0 · ei(k·r−ωt+π). (3.51)

This means the reflected beam undergo a phase change of π at the
interface! You may have noticed that if we used the parallel component at
normal incidence we would get Er = 0.2 ·Ei predicting same amplitude
ratio, but no phase shift? Actually, there is a π phase shift and the
conflict comes from the sign convention used for the two polarizations
E∥ and E⊥. For parallel polarization, r∥ is positive when E∥ has an
upward component for both the incident and reflected beams. Imagine
the angle of incidence θ1 → 0 (normal incidence case), this means that
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Figure 1: Upper panel: Reflection coefficients R∥ and R⊥ as a function of incident angle
θ1. Lower panel: Phase change of reflected beam with respect to the incoming light as a
as a function of incident angle θ1.

”Large angle of incidence 2” the initial polarizer is at +45 degrees as before but the
analyzer is turned to -45 degrees. Here we observe almost no light passes through.
However the light level it is a bit more compared to the experiment at small angles
of incidence, - how can that be? That is due to the fact at large angles R∥ and R⊥
coefficients approach 100% at a different rate. Eventually they meet up at 100% for
θ1 = π/2, but at an angle θ1 slightly different from π/2 they are not really equal.
This is not the case for.
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S(⊥) and P(II ) polarizations

 

 
 
 
 
 

66 Propagation of light
(
Et

Ei

)
=

2n1 cos(θ1)

n1 cos(θ1) + n2 cos(θ2)
(3.48)

For the ratios we often use the notation r⊥ = Er/Ei and t⊥ = Et/Ei.
Since we had four boundary conditions we will have four Fresnel equa-
tions:

Fresnel’s equations: (3.49)

r⊥ =
n1 cos(θ1)− n2 cos(θ2)

n1 cos(θ1) + n2 cos(θ2)

t⊥ =
2n1 cos(θ1)

n1 cos(θ1) + n2 cos(θ2)

r∥ =
n2 cos(θ1)− n1 cos(θ2)

n2 cos(θ1) + n1 cos(θ2)

t∥ =
2n1 cos(θ1)

n2 cos(θ1) + n1 cos(θ2)

Example 3.7 Fresnel’s equations at normal incidence.
At normal incidence θ1 = θ2 = 0. Looking at r⊥ (r∥) and t⊥ (t∥) we
find:

r⊥ =
n1 − n2

n1 + n2
and t⊥ =

2n1

n1 + n2
(3.50)

For an air glass interface n1 = 1 and n2 = 1.5 we will have r⊥ = −0.2.
The reflected wave is thus

Er = −0.2 · Ei = 0.2 · eiπ · Ei = 0.2 · Ei
0 · ei(k·r−ωt+π). (3.51)

This means the reflected beam undergo a phase change of π at the
interface! You may have noticed that if we used the parallel component at
normal incidence we would get Er = 0.2 ·Ei predicting same amplitude
ratio, but no phase shift? Actually, there is a π phase shift and the
conflict comes from the sign convention used for the two polarizations
E∥ and E⊥. For parallel polarization, r∥ is positive when E∥ has an
upward component for both the incident and reflected beams. Imagine
the angle of incidence θ1 → 0 (normal incidence case), this means that

66 Propagation of light
(
Et

Ei

)
=

2n1 cos(θ1)

n1 cos(θ1) + n2 cos(θ2)
(3.48)

For the ratios we often use the notation r⊥ = Er/Ei and t⊥ = Et/Ei.
Since we had four boundary conditions we will have four Fresnel equa-
tions:

Fresnel’s equations: (3.49)

r⊥ =
n1 cos(θ1)− n2 cos(θ2)

n1 cos(θ1) + n2 cos(θ2)

t⊥ =
2n1 cos(θ1)

n1 cos(θ1) + n2 cos(θ2)

r∥ =
n2 cos(θ1)− n1 cos(θ2)

n2 cos(θ1) + n1 cos(θ2)

t∥ =
2n1 cos(θ1)

n2 cos(θ1) + n1 cos(θ2)

Example 3.7 Fresnel’s equations at normal incidence.
At normal incidence θ1 = θ2 = 0. Looking at r⊥ (r∥) and t⊥ (t∥) we
find:

r⊥ =
n1 − n2

n1 + n2
and t⊥ =

2n1

n1 + n2
(3.50)

For an air glass interface n1 = 1 and n2 = 1.5 we will have r⊥ = −0.2.
The reflected wave is thus

Er = −0.2 · Ei = 0.2 · eiπ · Ei = 0.2 · Ei
0 · ei(k·r−ωt+π). (3.51)

This means the reflected beam undergo a phase change of π at the
interface! You may have noticed that if we used the parallel component at
normal incidence we would get Er = 0.2 ·Ei predicting same amplitude
ratio, but no phase shift? Actually, there is a π phase shift and the
conflict comes from the sign convention used for the two polarizations
E∥ and E⊥. For parallel polarization, r∥ is positive when E∥ has an
upward component for both the incident and reflected beams. Imagine
the angle of incidence θ1 → 0 (normal incidence case), this means that

 

 
 
 
 
 

66 Propagation of light
(
Et

Ei

)
=

2n1 cos(θ1)

n1 cos(θ1) + n2 cos(θ2)
(3.48)

For the ratios we often use the notation r⊥ = Er/Ei and t⊥ = Et/Ei.
Since we had four boundary conditions we will have four Fresnel equa-
tions:

Fresnel’s equations: (3.49)

r⊥ =
n1 cos(θ1)− n2 cos(θ2)

n1 cos(θ1) + n2 cos(θ2)

t⊥ =
2n1 cos(θ1)

n1 cos(θ1) + n2 cos(θ2)

r∥ =
n2 cos(θ1)− n1 cos(θ2)

n2 cos(θ1) + n1 cos(θ2)

t∥ =
2n1 cos(θ1)

n2 cos(θ1) + n1 cos(θ2)

Example 3.7 Fresnel’s equations at normal incidence.
At normal incidence θ1 = θ2 = 0. Looking at r⊥ (r∥) and t⊥ (t∥) we
find:

r⊥ =
n1 − n2

n1 + n2
and t⊥ =

2n1

n1 + n2
(3.50)

For an air glass interface n1 = 1 and n2 = 1.5 we will have r⊥ = −0.2.
The reflected wave is thus

Er = −0.2 · Ei = 0.2 · eiπ · Ei = 0.2 · Ei
0 · ei(k·r−ωt+π). (3.51)

This means the reflected beam undergo a phase change of π at the
interface! You may have noticed that if we used the parallel component at
normal incidence we would get Er = 0.2 ·Ei predicting same amplitude
ratio, but no phase shift? Actually, there is a π phase shift and the
conflict comes from the sign convention used for the two polarizations
E∥ and E⊥. For parallel polarization, r∥ is positive when E∥ has an
upward component for both the incident and reflected beams. Imagine
the angle of incidence θ1 → 0 (normal incidence case), this means that

66 Propagation of light
(
Et

Ei

)
=

2n1 cos(θ1)

n1 cos(θ1) + n2 cos(θ2)
(3.48)

For the ratios we often use the notation r⊥ = Er/Ei and t⊥ = Et/Ei.
Since we had four boundary conditions we will have four Fresnel equa-
tions:

Fresnel’s equations: (3.49)

r⊥ =
n1 cos(θ1)− n2 cos(θ2)

n1 cos(θ1) + n2 cos(θ2)

t⊥ =
2n1 cos(θ1)

n1 cos(θ1) + n2 cos(θ2)

r∥ =
n2 cos(θ1)− n1 cos(θ2)

n2 cos(θ1) + n1 cos(θ2)

t∥ =
2n1 cos(θ1)

n2 cos(θ1) + n1 cos(θ2)

Example 3.7 Fresnel’s equations at normal incidence.
At normal incidence θ1 = θ2 = 0. Looking at r⊥ (r∥) and t⊥ (t∥) we
find:

r⊥ =
n1 − n2

n1 + n2
and t⊥ =

2n1

n1 + n2
(3.50)

For an air glass interface n1 = 1 and n2 = 1.5 we will have r⊥ = −0.2.
The reflected wave is thus

Er = −0.2 · Ei = 0.2 · eiπ · Ei = 0.2 · Ei
0 · ei(k·r−ωt+π). (3.51)

This means the reflected beam undergo a phase change of π at the
interface! You may have noticed that if we used the parallel component at
normal incidence we would get Er = 0.2 ·Ei predicting same amplitude
ratio, but no phase shift? Actually, there is a π phase shift and the
conflict comes from the sign convention used for the two polarizations
E∥ and E⊥. For parallel polarization, r∥ is positive when E∥ has an
upward component for both the incident and reflected beams. Imagine
the angle of incidence θ1 → 0 (normal incidence case), this means that

74 Propagation of light

Fresnel equations for glass-air (eliminated θ2 using Snell’s law)

r∥ =
n2 cos(θ1)− n1

√
1−

(
n1
n2

)2
sin2(θ1)

n2 cos(θ1) + n1

√
1−

(
n1
n2

)2
sin2(θ1)

(3.60)

=
cos(θ1)− n

√
1− n2 sin2(θ1)

cos(θ1) + n
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Figure 3.7 Light travelling from one insulator n1 into another n2.
The plane of incidence is spanned by he normal to the surface and
the incident k1 vector.

of them here, but refer to other optics books. However, let us look at two
prominent proofs both illustrating the kinematic nature of the law. The
first is perhaps the most general. Since there is translation symmetry
along the y -direction, momentum will be conserved in this direction.
For a photon entering along k1 and exit along k2 the y-component of
its momentum its conserved:

h sin(θ1)

λ1
=

h sin(θ2)

λ2
(3.24)

n1 sin(θ1)

λ0
=

n2 sin(θ2)

λ0
(3.25)

n1 sin(θ1) = n2 sin(θ2) (3.26)

where we used the expression for the photon momentum and λ0 is the
vacuum wavelength. The reflection law θ1 = θ3 can be shown in a similar
manner. From Fermat’s principle we can also show Snell’s law. Looking
at figure 3.8 we write up the the OPL and demand it to be stationary:

OPL(x) = n1

√
x2 + a2 + n2

√
(s− x)2 + b2 (3.27)
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n2 sin2(θ 1)

> 1 

When 

r⊥  is not real!

= 1 r⊥ =1

< 1 r⊥ <1

Due to the general law of continuity, if 
there is an accurate expression for the 
laws of reflection just before the limit, 
it should remain valid afterwards; the 
challenge is to interpret/guess these 
imaginary expressions.  
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1− n2 sin2(θ 1) = n2 sin2(θ 1)−1 ⋅ −1

Phase shift! 

r⊥ = a2 − b2

a2 + b2
⎛
⎝⎜

⎞
⎠⎟

2

+ −2ab
a2 + b2

⎛
⎝⎜

⎞
⎠⎟
2

=1

sinα = −2ab
a2 + b2

r⊥ = r⊥ cosα + isinα[ ]

a = ncos(θ 1) b = n2 sin2(θ 1)−1

(cosα, sinα )

α

r⊥ =1
cosα = a

2 − b2

a2 + b2

r⊥ = a − bi
a + bi

= a
2 − b2

a2 + b2
+ −2abi
a2 + b2

27 

Fresnel equations 



Department of Science Education 

 ⊥  and !  in phase  ⊥  and !  phase difference = 90° ⊥  and !  out of phase

EMANIM 
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 ⊥  and !  phase difference = 90°

Fresnel Rhomb 

3.2 Fresnel’s laws of reflection 73

Figure 3.17 Plot of the reflectance (R∥, R⊥) and associated phases
(δ∥, δ⊥) for an air-glass n1 = 1, n2 = 1.5 and a glass air interface
n1 = 1.5, n2 = 1.

In figure 3.17 we show the reflectance for an air-glass interface. At the
Brewster’s angle ”parallel” reflections vanish.

Example 3.11 Phases upon reflection.
In figure 3.17 we show the reflectance and phase relations for an air-glass
and glass-air interface. The first phase plot, air-glass interface, follows
directly from fresnels equations plotted in figure 3.13. Here you can see
r⊥ stays negative for all incident angles and a π phase shift is associated
with a reflection. For the other component r∥ it stays positive until the
Brewster angle then becomes negative.

A similar plot will explain the phase behavior for a glass-air interface
at angles below the critical angle θc. However, for angles greater that
the critical angle, we have total internal reflection, things become a bit
more complicated. Let us calculate the phase shift for θ ≥ θc. Recall the
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End of module feedback 

•  Please go to b.socrative.com (student login)  

•  Enter the HISPHYSKU room 

•  Fill out the short (anonymous) survey 

•  Tak skal du have! 
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