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Introduction 

In 1743 the young French geometer Jean d’Alembert published his 
work Treatise on Dynamics, in which the Laws of Equilibrium and 
Motion of Bodies are reduced to the smallest possible number and dem- 
onstrated in a new manner, and where a general Principle is given for 
finding the Motion of several Bodies which act on one another in any 
way. D’Alembert’s “general Principle” has since become the object of 
considerable celebration and misunderstanding in the history of me- 
chanics. Although Truesdell [1960, 186-1921 and Szabo [1979, 31431 
have done much to dispel this misunderstanding, their accounts re- 
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main unsatisfactory as a description of d’Alembert’s original pro- 
cedure. In Part One of the following study I shall describe how d’A- 
lembert formulates and applies his principle in the Trait& de Dyna- 
mique. In Part Two, to be published in the next issue of Centaurus, I 
shall examine several special uses which d‘Alembert makes of his 
principle in the TraitLPart ’ h o  will also explain the origin of the 
standard interpretation of d’Alembert’s principle. 

The Traitk de Dynamique consists of a preface and two parts.’ In the 
Preface d’ Alembert describes his philosophy of mechanics and out- 
lines the plan of the Truitk. In Part One he presents three laws of mo- 
tion and provides arguments to justify their status as fundamental 
truths of mechanics. In addition, he discusses in detail three special 
topics: the proper measure of accelerative force and its role in central 
force problems; the motion of bodies changed by obstacles; the prop- 
erties of the angular lever. Part One is written in an expository man- 
ner at a reasonably elementary level; it should, d’Alembert informs 
us be accessible to “commen~ants” or beginners. 

Part Two of the Trait4 opens with a statement of ‘d’Alembert’s prin- 
ciple] followed by three chapters in which it is applied. The most im- 
portant of these, Chapter Three, consists of fourteen problem sets 
with detailed solutions. Here d’ Alembert treats mechanical questions 
that had arisen in the earlier work of such geometers as James Her- 
mann, Leonhard Euler and James, John and Daniel Bernoulli. The 
technical demands of this chapter are such as to .restrict its audience to 
those at the forefront of research in rational mechanics. The Trait6 
closes with a discussion of the celebrated principle of live forces. 

In 1758 d’Alembert published a second edition of the Trait4 in 
which he incorporates some results of research completed after 1743 
and expands his earlier treatment of selected topics. The second edi- 
tion also contains sixty explanatory notes supplied by d’Alembert’s 
young contemporary fitienne Bezout. Although the later edition clar- 
ifies in places points unclear in 1743, the overall structure of the Truitk 
is not substantially altered. 

a. D ’Alembertls Principle 

D’Alembert opens Part Two of the Trait& with a statement of the prin- 
ciple he believed would provide a method for solving all problems of 
dynamics: 
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General Principle 
Given a system of bodies arranged mutually in any manner whatever; let us suppose that 
a particular motion is impressed on each of the bodies, that it cannot follow because of 
the action of the others, to find that motion that each body should take. 

Solution 
Let A,B,C, etc. be the bodies composing the system, and let us suppose that the motions 
a,b,c, etc. be impressed on them, and which be forced because of the mutual action of 
the bodies to be changed into the motions a&.;, etc. It is clear that the motion a im- 
pressed on the body A can be regarded as composed of the motion a that it takes, and of 
another motion a; similarly, the motions b,c, etc. can be regarded as composed of the 
motions 6$;S,x; etc.; from which it follows that the motions of the bodies A,B,C, etc. 
would have been the same, if instead of giving the impulses a,b,c, one had given simul- 
taneously the double impulses a,a;6,fi;E,x; etc. Now by supposition the bodies A,B,C, 
etc. took among themselves the motions a,&;, etc. Therefore the motions a,&x, etc. 
must be such that they do not disturb the motions a,6,;, etc., that is, that if the bodies 
had received only the motions a,&x etc. these motions would have destroyed each other 
and the system would remain at rest. 

From this results the following principle for finding the motion of several bodies which 
act on one another. Decompose the motions a,b,c etc. impressed on each body into two 
others B,a;6,p;c,x; etc. which are such that if the motions &,6,S, etc. were impressed al- 
one on the bodies they would retain these motions without interfering with each other; 
and that if the motions a$,x were impressed alone, the system would remain at rest; it is 
clear that a.6,; will be the motions that the bodies will take by virtue of their action. 
[1743,5&51] [1758,73-751 

D’Alembert appears to have derived the idea for his principle from 
the mechanics of impact, a subject which figures prominently in his 
discussion of the foundations of dynamics in Part One. In the chapter 
“On Motion Destroyed or Changed by Obstacles” he considers a 
“hard” particle which strikes obliquely a fixed impenetrable wall (Fig- 
ure 1). (The concept of “hard” body is a central one in d’Alembert’s 
mechanics. A hard body is impenetrable and non-deformable. Such 
bodies would today be treated analytically as perfectly inelastic.) De- 
compose the particle’s pre-impact velocity u into two components v 
and w parallel and perpendicular to the wall. D’Alembert argues us- 
ing a form of the principle of sufficient reason that w must be de- 
stroyed. (Assume the particle strikes the wall with perpendicular ve- 
locity w. Clearly no forward motion is possible. Thus the post-impact 
velocity is -nw, where n is a non-negative number. Since there is no 
reason why n should have any one positive value rather than another n 
must be zero.) Hence the post-impact velocity of the particle is the 
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F 
Figure 1. (Based on Figure 9, Trait6 (1743)). 

component v of u parallel to the wall. The velocities u, v and w of the 
particle correspond to the motions a,; and a of A in the statement of 
d’ Alembert’s principle. 

In Problem IX of Chapter Three of Part Two d’Alembert applies his 
principle to the collision of two hard bodies rn and M. Assume m and 
M collide with velocities u and U directed along the line joining their 
centers. It is necessary to find the velocities after impact. D’Alembert 
writes u = v + u-v and U = V + U- V, where v and V are the post- 
impact velocities of rn and M. The quantities u, v, and u-v correspond 
to the impressed, actual and “lost” motions of the body rn; a similar 
interpretation holds for the body M. Because the actual motions v and 
V are followed unchanged v must equal V. In addition, the application 
of the velocities u-v and U- V to m and M must -produce equi- 
librium. By the rule for equilibrium presented in Part One m(u-v) + 
M(U-V) = 0. (D’Alembert had “demonstrated” this rule using the 
properties of hard bodies and the laws of reason.’ See Hankins [1970, 
186-1871.) Hence v or V is equal to (rnu+MU)l(M+rn). 
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b. Some Mathematical Background 

In those problems of Part Tho of the Trait6 that involve continuously 
accelerated motion d’ Alembert derives differential equations to de- 
scribe the motion of the bodies of each system. He does so using his 
principle and the methods of the Leibnizian calculus. This calculus dif- 
fers in important ways, both conceptual and technical, from today’s 
subject. To understand his application of his principle in Part Two it 
will therefore be necessary to examine as background some technical 
features of the Leibnizian calculus. (A more detailed historical ac- 
count is provided in Bos [1974].) 

The Leibnizian calculus in the first half of the 18th century consisted 
of an algebraical theory that was interpreted geometrically. The al- 
gebra comprised a set of rules and algorithms that governed the use of 
the symbol d and was based on two postulates: d(x+y)  = dx+dy and 
d(xy) = ydx+xdy. The differential algebra was used to analyze the 
properties of a curve, the primary object of study in the calculus. The 
differential dx was set equal to the difference of the value of x at two 
consecutive “infinitely” close points in the geometrical configuration. 
Higher order differentials were set equal to the difference of succes- 
sive lower order differentials. Euclidian geometry and the algebraic 
procedures of the calculus were used to derive a differential equation 
to describe some property of the curve. 

The dual algebraical and geometrical character of the Leibnizian 
calculus was reflected in mathematical dynamics in the alternate ways 
accelerative force was measured. The effect of a force acting on a 
freely moving particle could be measured analytically by a relation of 
the form dde = qd12, where e is the distance travelled by the particle, t 
is the time and Q, is an algebraic expression composed from the several 
variables of the problem. Alternatively, the effect of the force might 
be given directly in geometry by a small line representing the motion 
imparted to the particle during an instant by the force. 

Some of the issues involved in the geometric interpretation of the 
differential algebra arise in the section “On the Comparison of Accel- 
erative Forces” of Part One of the Traitt! ([1743, 20-221, [1758, 22- 
341). (The background to this section concerns a dispute that had oc- 
curred in earlier 18th century discussions of central force problems. 
Details of this controversy and its relation to d’Alembert’s work are 
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t 

Figure 2. (Based on d‘Alembert’s supplementary Figure 3, Trait& (1758)). 

provided in Hankins [1970,222-2321.) Assume a force acts on a freely 
moving particle. Let e be the distance travelled by the particle in time 
t. D’Alembert plots e as a function of time to obtain a curve PDE 
(Figure 2). The letters M, B, C represent equally separated infini- 
tesimally close times. The points P, D, E are the corresponding points 
on the curve. It is possible to treat this curve in two ways: rigorously, 
as the curve is actually given; or polygonally, made up of infinitesimal 
chords joining the points P to D and D to E. D’Alembert uses the 
terms “Courbe rigoureuse” and “Courbe polygone” to describe this 
distinction. The distinction has implications for two questions: the cal- 
culation of the effect of the force; the calculation of the second differ- 
en tial. 

Consider first the question of the effect of the force. The two meth- 
ods of treating the curve lead to different measures of this force. Let N 
be the intersection of the tangent at D with the line CR extended. The 
effect of the force when the curve is treated rigorously is defined to be 
the distance NE. If 0 is the intersection of the extension of the chord 
PD with CR extended then the quantity OE is the measure of the 
force’s effect when the curve is treated polygonally. D’Alembert sup- 
poses the curve is suitably approximated at the point D by its circle of 
curvature; he then uses properties of the circle to establish the identity 
OE = 2(NE). He remarks that either method of estimating the effect 



D’Alembert’s Principle 37 

Figure 3. (Based on d’Alernbert’s Figure 5, Trait6 (1743)). 

of the force is valid as long as one is consistent. In comparing the ef- 
fects of several forces a decision must be made to treat the curve rigo- 
rously or polygonally; the two resulting sets of values will differ by a 
factor of two. 

To obtain OE = 2(NE) d’Alembert supposes the circle of curvature 
at the point D contains the three points P, D and E. Let Q be the sec- 
ond intersection of this circle and the line CO (Figure 3). By the famil- 
iar property of the circle (Euclid I11 (39)) ( D W 2  = (NE)(NQ) and 
2(00) ’  = (OD)(OP) = (OE)(OQ). In the following calculations 
third and higher order infinitesimals are neglected. Included in the im- 
plicit axioms of the Leibnizian calculus was the assumption that the 
difference of successive first order infinitesimals is second order (see 
our discussion of d’Alembert’s order analysis in section c(i)). Thu’s 
RE-ID is second order, from which it can be established that the dif- 
ference between DN and DO is second order. Therefore 2(NE)(NQ) 
= (OE)(OQ) = OE(NQ+NO).  But O E - N O  is third order, so that 
2NE = OE. 

We can understand this result if we designate the times at M, B and 
Ct,  t+dt and t+2dt and set M P  = e(t) ,  BD = e(t+dt) and CE = 
e(t+2dt), and calculate N E  and OE to the second order - using the 
Taylor expansion - in the following way: 
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NE = NR - ER O E  = O R  - ER, 
NR = e'(t+dt) dt = e'(t)dt + e"(t)d?, 

O R  = e(t+dt) - e(t) = e'(t)dt + f e"(t)d?, 
ER = e(t+2dt) - e(t+dt) = e'(t)dt + e"(t)d?, 

hence 

N E  = -3 e"(t)dt and O E  = -e"(t)d?. 

Let us turn now to d'Alembert's calculation of the second differential 
of e. To obtain dde d'Alembert supposes ID and RE are equal to the 
first differential of e, de, at times M and B. The value of dde is there- 
fore the second difference RE-ID = RE-RO = -(#E).  To calculate 
dde in this way is to treat the curve polygonally. In the second edition 
of the Trait6 (1758) d'Alembert comments on this calculation: 

It is not useless to remark that when we have first the equation between e and t in finite 
terms, and we derive from it by ordinary differentiation the equation dde = 'pdt*, the 
value of dde that we find by this calculation is precisely OE, the true second difference of 
BD; we might first question, given the very nature of the differential calculus, if the value 
of dde found by this differentiation truly represents OE, or some other line, for example 
NE. But we may convince ourselves by the calculus itself that the quantity vdt' is equal to 
OE. 

[1758, 27-28) 

What d'Alembert is saying here is that the value for dde given by the 
differential algorithm is the same as the value for dde given earlier 
([1758, 211) by the 'polygonal' calculation RE-ID = - (#E).  Since 
we deduced that OE = -e"(t)(dt)2 we can observe that the 'polygonal' 
calculation indeed leads to dde = e"(t)d?. 

In a footnote to the second edition of the Trait6 [1758, 27-28] 
Jhienne Bezout added calculations corresponding to those just carried 
through. Thus he finds - although in a slightly different terminology - 
that in the polygonal approach dde = RE-ID = e"(t)d?; in the rigo- 
rous approach he introduces the intersection, S, of the tangent at P 
with the line BD and sets dde = RN-IS = e'(t+dt)dt - e'(t)dt = 
e"(t)d?. 

D'Alembert himself illustrates the point of obtaining the same sec- 
ond differential in the article "Diffdrentiel" in Diderot's Encycloptdie 
[1754,988]. He considers the parabola y = x2. Applying the differen- 
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tial algorithm twice (assuming dx is constant) he obtains dy = 2xdr 
and ddy = 2dxz. On the other hand, ‘polygonal’ reasoning leads to the 
three successive ordinates 2, x2+2dxdx+dr, 2+4xdx+4drz corre- 
sponding to the three abscissae x, x+dx, x+2dx. Take the difference 
of the third and second ordinate and the difference of the second and 
first ordinate: 2xdx+3& and 2xdx+dx2. Take now the difference of 
the differences: 2&. The value 2& is the same as that yielded direct- 
ly by the differential algorithm. 

Since he has chosen a function y = f ( x )  for which f’”(x), fi4) ( x )  etc. is 
equal to 0 it is no wonder that he gets exactly the same second differ- 
ential: When dr is assumed constant the differential approach leads to 
ddy = p’(x)dxz, whereas the polygonal approach gives 

ddy = f ( ~ + 2 d ~ )  - f (x+dU) - cf(x+dx) - f ( ~ ) )  = 
p’(x)dx2 + dx3cf*”(x) + ...). 

Thus in general the two are the same when third order infinitesimals 
are neglected; for the parabola they are exactly the same. 

In examining the distance-time graph d’Alembert has restricted 
himself to an analysis of the tangential component of the particle’s ac- 
celeration. (This is a limitation on his analysis of which he does not ap- 
pear to be completely aware.) In a subsequent section of Part One he 
turns to the study of a particle moving under the action of a central 
force ([1743, 27-30], [1758, 40-441). In this case, he also takes up the 
question of the rigorous and polygonal curve. However, here it is the 
actual physical trajectory of the particle in space that is being ana- 
lyzed. The points P, D, E on the curve PDE represent three infini- 
tesimally close points in space occupied by the particle. The lines OE 
and N E  are now directed line segments representing (vector) acceler- 
ations. As in the earlier analysis of the distance-time graph d’Alem- 
bert obtains OE = 2(NE). Once again he cautions on the need for 
consistency in measuring the force’s effect. If the curve is treated rigo- 
rously N E  is this measure; if treated polygonally the measure is OE. 

In many of the problems of Chapter Three of Part W o  that involve 
continuously accelerated motion d’Alembert proceeds either poly- 
gonally or in a way that is analogous to such a procedure. He does so 
with no explanation and with no reference to the issues raised and dis- 
cussed in Part One. A knowledge of these issues nevertheless il- 
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luminates the relationship in his analysis between the differential al- 
gebra and the geometrical polygonal procedure. Consider again the 
example of a particle moving in space. Assume we analyze the tra- 
jectory of the particle using a Cartesian x-y-z co-ordinate system. Let 
x,, xD, xE be the x-  values of the particle at P, D, E; suppose these val- 
ues are occupied at times t, t+dt, t+2dt. D’Alembert typically sets dx 
= xD-xp and calculates the second differential as follows: 

ddx = (xE-xD)  - (xD-xp) ,  

or, in modernized notation, 

ddr = (x(t+2dt)-x(f+df)) - (x( t+df)  - x( t ) ) .  

The value ddx obtained in this way is the same, as we saw above, as 
the value f d? given directly by the differential algorithm. 

The measure of the accelerative force in the polygonal approach 
also coincides with the value that would be provided by an analytical 
relation of the form dde = qd?. D’Alembert noted that the measure of 
the force in the polygonal approach is the line OE (Figure 2). OE is 
equal to the polygonal second difference of e, and, as we saw above, 
this second difference equals the quantity dde in the relation dde = 
qd?. 

One respect in which the polygonal procedure differs from the dif- 
ferential algebra is in the calculation of the first differential. Let (dr), 
denote the value of dx in the polygonal approach. We have the fol- 
lowing relation: 

(dx), = x(t+dt) - x( t )  = i ( t )dt  + $i(t)d?. 

(dx), therefore differs from the analytical or ‘rigorous’ differential dx 
= i ( t )dt by the second order term if(t)d?. This technical difference in 
the calculation of the first differential plays no role in the derivation of 
the equations of mechanics. These equations may be expressed in a 
form composed of second-order terms. Any first-order differential ap- 
pearing in the equations thus expressed must be multiplied by another 
first-order differential. Because (dr), differs from i ( t )dt by a second- 
order term the error introduced by employing one differential rather 
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than the other would be third-order and would therefore be negli- 
gible. 

Note finally that d’Alembert presents an interpretation of the speed 
of the particle in the polygonal curve. It is unnecessary to know this 
interpretation in order to follow his application of his principle in Part 
Two of the Truiti. The interpretation nevertheless possesses some his- 
torical interest as an indication of how d’Alembert visualized the 
speed in the polygonal approach. It is described in Appendix Two. 

c. Two Problems with Solutions 

D’Alembert’s solutions to Problems I1 and X of Chapter Three of Part 
Two illustrate how he applies his principle to problems of continuously 
accelerated motion. These problems are representative of the simple 
mechanical examples studied by geometers of the period. Versions of 
them appear in a memoir composed by Clairaut in 1742, a treatise in- 
troduced with a note explaining that the problems presented “have 
nearly all been proposed by the savants Messr. Bernoulli and Euler” 
([1742, 2131). 

From a modem view (and possibly also to his contemporaries) d’A- 
lembert’s solutions seem complicated. The reader may wish to com- 
pare the account which follows to Appendix One, where the modern 
solutions to Problems I1 and X are presented. 

i. Problem II  

In Problem I1 d’Alembert examines a system consisting of a massless 
rigid rod situated in a plane. The rod is free to rotate about one end G 
which is fixed in the plane. A body A is attached to the other end of 
the rod; a second body D is free to slide along its length. No external 
forces act on the system. The problem is to determine the speeds of A 
and D at any instant and the path of D. 

To solve Problem I1 d’Alembert analyzes the system during an in- 
finitesimal time period. The motions of A and D are represented geo- 
metrically by line segments. In all calculations he neglects infinitesi- 
mals of the third order or higher. That is, two quantities are taken to 
be equal if their difference is an infinitesimal of the third order or 
higher. I shall use the phrase “up to second order” to refer to this level 
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P 

Figure 4. (DAlembert’s Figure 24, Trairt! (1743)). 

of approximation. As an example, consider the sector PMO (Figure 
4), where the angle PA40 is infinitesimal. The arc PO, the chord PO 
and the perpendicular Pa are all equal up to second order. The line 
Oa is an infinitesimal of the second order. 

D’Alembert had preceded Problem I1 with the demonstration of a 
geometrical lemma needed in its solution. Assume in the triangle MPn 
that the angle PMn is infinitesimal, Pp=pn and MO=MP (Figure 4). 
D’Alembert establishes the following results: 

PO2 
MJC - PM = 2 p O  + - 

PM (1) 

(The quantity P O  may be taken to be the chord or the arc; (1) is valid 
in either case up to second order.) (1) and (2) are presented as a corol- 
lary to the geometrical lemma; the latter is itself established for a con- 
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figuration more general than the triangle PMn.  I shall for simplicity 
describe d’ Alembert’s demonstration as it would apply directly to this 
triangle. From P and n drop the perpendiculars Pa and nc to p M .  
Then 

U P .  (3) 
(Pa)’ 

PM-pM = (PM-Ma) + (Ma-pM)  = - - 
2PM 

The equality PM-Ma = (Pa)’/2(PM) can be derived from the two re- 
lations 

8 2  
PM-Ma = PM(1-cos8) = ( P M ) -  

2 

Pa = (PM)sin8 = ( P M ) 8 ,  

where 8 = 4 P M p .  Equation ( 4 )  follows in a similar manner: 

By adding (3) and (4) we obtain, up to second order, 

( 5 )  P M - M n =  -2(ap).  

Substituting the value for up given by (3) into (5) yields 

(Pa)’ P M - M n  = 2(PM-pM)  - - 
PM * 

Because Pa and PO are equal up to second order, (1) follows from 
(6). To obtain (2) notice first that 

Pa 2(ap) Pa 
(7) =---.- C Z  Pa 

cM PM+2(ap) Ma Ma Ma’ 
4 p M n  = - = 
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up to second order. But P d M u  = 4 P M p  and (i$PMp)(up/Mu) = 
4PMp(pO/PM)  up to second order. (2) therefore follows from (7). 

Equations (1) and (2) are used by d’Alembert to analyze the motion 
of the body D. These equations express the following fact: If Ppjt is 
the path of a particle moving freely under the action of no force and M 
is the origin of a polar co-ordinate system, then the radial and trans- 
verse accelerations of the particle are zero. (The following modem in- 
terpretation may be useful in recognizing this fact. Assume the par- 
ticle as it moves from P to n with constant velocity occupies the posi- 
tions P, p and ~t at times t, t+dt and t+2dt. In polar co-ordinates 
equation (1) becomes 

?d O2 
r(t+2dt)-r(t) = 2[r(t+dt)-r(t)] + - 

r 

which leads to 
+re2 = 0. 

Similarly equation (2)  becomes 

which leads to 
rtl+2ie = 0. 

The left sides of (1‘) and (2‘) are the well known expressions for the 
acceleration in the radial and perpendicular direction.) 

D’Alembert begins his solution to Problem I1 by assuming that the 
bodies A and D travel during a given instant the arc A B  and the line 
DE (Figure 5). In a second instant equal to the first A would if free 
travel by its circular motion the arc BC = arc AB; D would travel the 
line Ei= DE. Because of the constraint resulting from the presence of 
D the body A actually travels BC in an instant larger than the first. Let 
BQ be the arc that would be travelled uniformly by A with the circular 
speed it possesses at B during this larger instant. Let Eo be the line 
that would be travelled by D with its speed at E during the same in- 
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Figure 5. (D’Alembert’s Figure 25, Trait.! (1743)). 

stant. Because D is constrained to move on the rod it ends up at p .  
D’ Alembert invokes his principle to obtain the following decomposi- 
tions: 

BQ : composed of BC and CQ, 
Eo : composed of Ep and PO. 

(8) 
(9) 

BQ and Eo represent the impressed or free motions of A and D; BC 
and Ep represent the actual motions and CQ and PO represent the lost 
motions. (Note that CQ, PO and io are second order quantities; this 
fact will be used later in calculations where third order infinitesimals 
are neglected.) By his principle equilibrium would subsist if CQ and 
PO were the motions of A and D .  Since D is free to slide along the rod, 
po=EZ must be perpendicular to GB. D’Alembert uses as a condition 
for equilibrium the fact that the total moment of the lost motions 
about G is zero: 

A(CQ)(GA) = D(EZ)(GE). (10) 

D’Alembert proceeds to derive a differential equation for the path of 
D. Let GA=a, GD=y, AB=dr, and CQ=a. The line FD is then 
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Figure 6.  

(ydr)/u; d’Alembert sets FE equal to dy. (As will become clear in the 
subsequent analysis, d’Alembert is taking GF to be equal to G D . )  In 
all calculations he neglects third and higher order differentials. We 
have first the relation expressing the equality of the times with which 
A and D traverse AB, D E  and BQ, Eo: 

BC DE 
CQ i o ’  
-- -- 

By ( 2 )  4 i G E  = 4EGD(1-2(FE)/GD). Since &EGD = dx/u we ob- 
tain 

2dy& 
4 i G E  = 4 E G D  - -, 

UY 
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Let us now draw a chord if and a perpendicular ix from i to Go (Figure 
6 ) .  In addition, draw a perpendicular DX from D to GE. Then 

if ix 
4iGo = - = (to second order) - 

Gi Gi 

But ixlio differs from DXIDE by a first order quantity, a fact that may 
be ascertained after some calculation. Also, DXIDE = DFIDE up to 
second order. Hence ixlio differs from DFIDE by a first-order quan- 
tity. Thus, because io is second order, ix = (DF1DE)io up to second 
order. Consequently - by (11) - 

io DF (CQ)(DF) 
Gi DE (GI’)(BC)’ 

4iGo = - x - - - 

Now DFIBC = GDIGA. Also, CQ is second order and GDIGi differs 
from unity by a first order quantity. Letting CQ=a and GA=a we 
therefore obtain the equation: 

a 
4iGo = -. 

a 

The aligle oGp is equal to polGp, which, up to second order, equals 
poly. Expressing (10) in terms of a,y  andpo givespo = (Aaa)/(Dy). 
Hence 

Aaa 
40Gp = -. 

DY2 

We now add equations (12), (13) and (14): 

2dydx a Aaa 

aY a Dy2’ 
4EGp = 4EGD - - + - + -  

Since 4EGp = 4EGD we obtain 
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2dydr a Aaa -- + - + - =  
aY a Dy' 0, 

which, expressed in terms of a, becomes 

2Dydydx 
Aa2+Dy' 

a =  

D'Alembert continues by calculating ddy. Applying (1) to the triangle 
DGi he derives the relation 

Y& - 2dy + - 2 '  
(W2 Gi-GD = 2FE + - - 
GD 

Now Gp=Go up to second order. Consider again Figure 6. By com- 
paring the triangles DFE and ifo we conclude, after some calculation, 
that folio and FEIDE differ by a first order quantity. Hence, because 
io is second order, Gp-Gi = Go-Gi = fo = (io)(FE/DE) up to sec- 
ond order. Thus from (11) we obtain 

A value for Gp-GE = (Gp-Gi)+(Gi-GD)+(GD-GE) is then 
given by 

ady Y e  
dx a2 

Gp-GE = dy + - + -. 

Since ddy = (Gp-GE)-dy, equation (19) becomes 

By substituting the value for a given by (16) into (20) d'Alembert ob- 
tains a differential equation describing the path DEp of D: 
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(21) 
ydx2 2Dydy’ 

ddy= - + 
AUU+DYY’ 

He proceeds to integrate (21). Let dx=pdyla. Because dx=AB=BC is 
constant we have 0 = dpdyla + pddyla or ddy = (-dpdy)/p. Sub- 
stituting this value of ddy into (21) and adjusting terms yields 

a4dp 2ydya4 D 
= ydy. --- 

P3 p’(Aaa+Dyy) 

D’ Alembert multiplies (22) by the factor l / (Aaa 
grates: 

and inte- 

a4 1 
= G -  (23) 2p2(Aaa+ Dyy)’ 2D (Aaa + Dyy ) 

where G is a constant. By substituting (adx)ldy=p into (23) we obtain 
the result 

ady 
= dx, (24) ~ ( A u u  + Dyy) [2GD(Aaa + Dyy ) - 11 

an equation which, when integrated, furnishes an integral connecting 
x and y. (This integral is what in later mathematics would be called an 
elliptic integral.) 

Having derived an expression for the path of D d’Alembert calcu- 
lates the speeds u and v of A and D. He first presents the relation 

du CQ 
u BC’ 

_ _ - -  - 

a result which is explained by Gtienne Bezout in a footnote to the edi- 
tion of 1758 ([1758,107]). Since udt = BC and BCis constant we have 
d(udt) = dudt + uddt = 0 or -du/u = ddtldt. Clearly, however, ddtldt 
= CQIBC, so that -dulu = CQIBC, as desired. Because CQ=a and 
BC=& we obtain from (16) 

4 Centaurus XXVIII 
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du 2Dydy _ - -  - 
u A&+DY~’ 

D’Alembert proceeds to integrate (26): 

u Aa2+Db2 
g Aa2+Dy2’ 
- -  - 

where g and b are the initial values of u and y .  He continues by cal- 
culating an expression similar to (25) for the speed v of D. He points 
out, however, that v is given “more elegantly” by the principle of con- 
servation of live forces, a principle he says he will demonstrate later. 
By this principle Dv2+Au2 is equal to a constant, so that 

Dh2+A$-AU2 
D 

y2 = 
7 

h being the initial speed of D. With (28) the solution to Problem I1 is 
complete. 

(In a series of remarks following Problem I1 d’Alembert extends his 
analysis to the case in which external forces act on the system. These 
remarks are mainly of interest in illustrating how he applies his prin- 
ciple when external forces are present. Since I deal with this matter in 
my presentation of Problem X I omit discussion of them.) 

Let us turn now to a critical examination of d’Alembert’s solution. 
The first point to be noticed concerning this solution is that d’Alem- 
bert is making the quantity x the independent variable in the problem. 
(To say x is the independent variable was understood by geometers of 
the period to mean dx is held constant in all calculations. See Bos 
[1974].) The solution is based on the following two postulates: the to- 
tal moment about G of the constraint forces acting on A and D is zero; 
the radial acceleration of D is zero. Equations (16) and (20) are the 
analytical statement of these postulates, expressed in terms of x in- 
stead of t as the independent variable. The quantity a is equal to 

In his first remark following the solution to Problem I1 d’Alembert 
states he has avoided making dt constant in order to obtain an expres- 

(&/dt)ddt. 
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sion for the curve that does not require a knowledge of the speeds. It 
is unclear to me what advantage he sees in such a procedure. This pro- 
cedure, which he follows in several other problems (111, IV and VIII), 
rather complicates his solutions and is an aspect of his analysis that 
Lagrange ([1811, 2561) would later ~r i t ic ize .~ (In .d’Alembert’s solu- 
tion the motion is analyzed from the outset using the independent 
variable x .  His analysis should be contrasted to the modem approach 
to central force problems, where a variable other than the time is the 
independent variable in certain formulas. The modem procedure is a 
mathematical one; the formulas are themselves derived from time-dif- 
ferential equations of motion.) 

The principle of conservation of live forces, used by d’Alembert to 
obtain (28), is the assertion of the constancy of the live force or vi.s 
viva (later (twice) the kinetic energy) in the absence of external 
forces. In Part II(c) we examine d’Alembert’s presentation of this 
principle in the last chapter of the Trait&. 

Note that d’Alembert is treating the motion of D “polygonally”, in 
the sense explained in Section (b). Thus the path of D consists of the 
two polygonal segments DE and Ep. The differential dy is equal to 
EG-GD, the difference of the value of y at x and x+&. The second 
differential ddy equals (Gp-GE)-dy,  the difference of two succes- 
sive values of dy. A similar interpretation holds for the second differ- 
ential ddt of the time. 

A final noteworthy feature of d’Alembert’s solution concerns the 
assumptions he makes about the order of infinitesimal quantities. The 
order of the product of two infinitesimals is the sum of their orders. 
Also, the difference of two successive values of a given first order in- 
finitesimal is second order. Thus d’Alembert assumes that CQ and io 
are second order. (He treats this fact as self-evident. He was probably 
guided by examples such as the acceleration: since ddeld? is finite, the 
second difference dde of the distance travelled is proportional to d? 
and is therefore second order.) 

ii. Problem X 
In Problem X d’Alembert considers an irregularly shaped object 
KARQ of mass m which is free to slide along a frictionless plane QR 
(Figure 7). A body of mass M is situated on the curve K Q  which forms 



52 Cruig Frrrscr 

K A 

Figure 7. (DAlembert's Figure 43, Truitk (1743)). 

the left edge of KARQ. A force acts on M in a direction perpendicular 
to QR. The two bodies possess given initial velocities; the problem is 
to determine the motion of the system as M slides down KQ.  

D'Alembert preceded the presentation of Problem X with a lemma 
used in its solution. Consider the system described above with the ver- 
tical force acting on M removed. If rn has velocity v1 directed along 
RQ and M has velocity v2 such that the system is in equilibrium then: 

i) vz is directed along the perpendicular ML to the curve KQ, 
ii) (rnvl)/(Mv2) = (SL)/(GL). 

This result, stated by d'Alembert without proof, is apparent: for 
equilibrium to subsist the component of v2 tangent to KQ must be 
zero; also, since the vertical component of v2 is destroyed, and since 
the horizontal component equals v,(SL)/(GL), we must have 
(Mv,)(SL)/( GL) = rnv,. 

In Problem X d'Alembert analyzes the section of the curve K Q  
along which M moves during an infinitesimal time period (Figure 8). 
The section consists of two infinitesimal polygonal segments AB and 
BC; d'Alembert assumes the vertical projections of these segments 
are equal. At the beginning of the time period M is located at A. In 
the next instant it travels the line AB'; ABC travels the line AA' to as- 
sume the position A'B'C'. In the following instant rn if free would 
travel the line A'A" = AA'. The body M if free would travel B'j = 
AB' as well as an additional distance jd due to the action of the ver- 
tical force; its free motion would therefore consist of the line B'd. Be- 
cause of the constraint of impenetrability rn and M actually travel the 
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A A’ A” a 

6 

Figure 8. (D’Alembert’s Figure 44, Trait6 (1743)). 

lines A’a and B’c in the next instant. D’Alembert’s principle gives the 
decompositions: 

B‘B’’ : composed of B‘b and -(B”b), 
B’d : composed of B‘c and cd. 

(29) 
(30) 

The lines - B”b and cd represent the lost motions of rn and M. Equili- 
brium would by this principle subsist if the bodies possessed the lost 
motions alone. The previous lemma is now invoked to conclude that 

rn(A”u) ij 
= -  

M(cd) cd‘ 

Thus rn(A”a) = M(ij) .  But ij = ec-jo-A”a. Hence 

rn(A’a) = M(ec-jo)-M(A”u). 
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D’Alembert sets AA’=du and BE=dy. (The variable u designates the 
horizontal distance from some fixed line to the point K (Figure 7) in 
the body m. The variable y represents the horizontal distance trav- 
elled by M, measured from K in the moving system.) Clearly A”a = A’ 
a-AA’ = ddu. Also, since jo=BE it is clear that ec-jo = ddy. Sub- 
stituting these values into (32) we obtain the final equation for Prob- 
lem X: 

or 
mddu = Mddy-Mddu, 

(M+m)ddu = Mddy. (33) 

D’Alembert states that (33) is an “equation general and very simple 
for finding the motion of the two bodies, whatever be the force which 
acts on M, provided that this force be always perpendicular to QR”. 

The differentials in equation (33) are differentials with respect to 
time. (33) asserts that the horizontal projection of the center-of-grav- 
ity moves with constant velocity. Earlier in the Trait& ([1743, 52-68], 
[ 1758,75-961) d’Alembert had provided a discussion of the dynamical 
properties of the center-of-gravity of a constrained system. He re- 
cognized that in connected systems where the external forces are per- 
pendicular, the horizontal projection of the center-of-gravity travels 
equal distances in equal times. He apparently wished to derive (33) di- 
rectly from his principle rather than present it as a consequence of this 
fact. (He recognized the existence of other solutions, but preferred his 
own, “because it is extremely simple”.) His procedure here indicates 
that at this point in the history of mathematical mechanics the relati- 
onship between general dynamical theorems and the analytical differ- 
ential equations of motion was not yet fully assimilated. 

Although d’Alembert provides no details, it is clear how one would 
proceed from (33) to a complete description of the motion of the sys- 
tem. By integrating (33) twice we would obtain a relation among u,y 
and the time t. A knowledge of the shape of the curve KQ would allow 
us to express y in terms of the height z of M above the base QR. The 
final equation needed to solve the problem would then be provided by 
equating the total force perpendicular to QR acting on M to Mi. Al- 
ternatively, and more characteristic of d’ Alembert’s own approach, 
we could use the equation of live force (i.e., energy): 
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from the pivot G. The ordered pairs (a,x/u) and ( j~ ,x /u)  are the polar 
co-ordinates of A and D. Using the known expression for the acceler- 
ation in polar co-ordinates we obtain 

as the values for the radial and transverse acceleration of A and D. We 
therefore arrive at the two equations: 

0. Y 2  
Y - - =  a2 

(1) asserts that the angular momentum is constant; (2) asserts that the 
force acting on D along the rod is zero. (1) and (2)  are simply d’Alem- 
bert’s equations (16) and (20) when the parameter time is the inde- 
pendent variable in the problem. 

We now rewrite (1) in the form (A2+Dy2)i+ 2Dyy.t = 0 and inte- 
grate: 

(3) 

where c, is a constant of integration. Substituting this value for i into 
(2)  and integrating yields 

I c? 
-1 

y =’\I 2c, - 
Du2(Ad+Dy2)’ (4) 

where c, is a second constant of integration. By dividing (3) by (4) and 
adjusting constants (G=c,d/c$ we obtain the final equation: 

n a d y  
~ / ( A a 2 + D y z ) [ 2 G D ( A ~ ’ + D ~ ) -  11’ 

d x =  

The determination of the speeds is straightforward. (3) furnishes a 
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M((li-y)2+22) + mriZ = W(u,z),  (34) 

where W is an integral to be computed from a knowledge of the exter- 
nal force acting on M. 

Problem X is of interest as illustration of how d’Alembert applies 
his principle when external forces are present. Consider again the de- 
composition furnished by this principle for the body M: 

B’d : composed of B’c and cd. (35) 

The quantity B’d is the ‘sum’ of B’j and j d .  B’j=AB’ represents the 
velocity of M when it is at B’ (d’Alembert sometimes refers to this 
quantity as the “primitive impressed velocity”); jd represents the im- 
pressed increment of velocity imparted to m by the vertical force. Be- 
cause no external forces act on m its impressed motion is represented 
solely by the quantity A’A“. The resulting interaction of M and m is 
treated by d’Alembert as one of collision arising from the impen- 
etrability of the bodies. He is therefore able to invoke the previous 
lemma on collision to obtain a condition on the lost motions; this con- 
dition in turn leads to the final solution to the problem. 

Note finally that d’Alembert is treating the motion of M and m 
‘polygonally’. The path of M consists of the two polygonal segments 
AB‘ and B’c. The differential du of the horizontal distance u travelled 
by m is equal to AA’,  the difference of u at two successive instants. 
The second differential ddu in turn equals the difference of two suc- 
cessive values of du. 

Appendix One. Problems 11 and X:  The Modern Solutions 

i) Problem 11 

The body A is attached to the end of a massless rod GA of length a. 
The rod is free to rotate about G (Figure 5). The body D is free to 
slide along the rod. No external forces act on the system. A and D 
possess given initial velocities and the problem is to determine the 
subsequent motion. 

At a given instant let x be the distance of A measured along its cir- 
cular path from a fixed initial reference line. Let y be the distance of D 
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value for the speed x of A. The speed v of 0 is then given by the equa- 
tion of energy: 

(6)  $i2 + +vz = constant. 

ii. Problem X 
The object KARQ moves on a frictionless plane QR. The body M is 
situated on the curve KQ which forms the left edge of KARQ. A force 
acts on M in a direction perpendicular to the base QR. The two bodies 
possess given initial velocities; the problem is to determine the motion 
of the system as M slides down KQ. 

Assume the base QR of KARQ lies on the u-axis of a u-z co-ordi- 
nate system. Suppose at a given instant that M is at the point C on the 
curve KQ. Consider the following designations (Figure 9): 

(uM,z) = co-ordinates of M 
(um,b) = co-ordinates of K in rn 
F 
e 

RM 
Rm 

= vertical force acting on M 
= angle between the normal to the curve KQ at C and the 

= magnitude of force of reaction exerted on M by m 
= magnitude of net force acting on m as a result of the force 

vertical 

exerted by M and the reaction at the base. 

RM and R, are the constraint forces which act on M and m. R,  acts on 
M along the normal at C and is directed away from KQ. R, acts on rn 
horizontally to the right. The accelerations corresponding to these 
forces, if reversed, constitute the “lost motions”. By d’Alembert’s 
principle, equilibrium would subsist if M and m possessed the rever- 
sed accelerations alone. Hence by his introductory lemma on equili- 
brium: 

R m  - =sine. 
RM 

The relation (6) would be obtained today using the equality of action- 
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T 

I / L I I  

Figure 9. 

reaction (R, = force exerted on m by M) and taking horizontal pro- 
jections. Now 

R, = mu,. (7) 

In addition, because -R, sine is the u-component of the total force 
acting on M, 

- R,sinO = MU,. (8 )  

(6),  (7) and (8) correspond to two steps in d'Alembert's solution: the 
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step where he sets cd and -(A”u) equal to the lost motions of M and 
m; the assumption involved in the lemma on equilibrium, namely, 
that the horizontal projection M(ij) of M(cd) equals m(A’a). (6)’ (7) 
and (8) yield the desired equation: 

0 = mu,,, + Mu,. (9) 

Note that the total force acting on M is composed of F and R,. The 
forces F and - R M  correspond to the impressed motion jd and the lost 
motion cd of M in d’Alembert’s solution. Note also that 

R M  = Fcos0 + Mv2/e, 

where v is the speed of M and Q is the radius of curvature of its tra- 
jectory when it is at C. The equation obtained by equating the z-com- 
ponent of the total force acting on M to Mi: is therefore: 

(10) Fcos20 + (Mv2/e)cos0 - F = Mi‘. 

Either (10) or the equation of energy could be used to find the time- 
motion of the system. 

Appendix Two. The Polygonal Curve 

In his discussion of the polygonal and rigorous curve in Part One of 
the Traitk ([1758, 29-31]) d’Alembert includes an interpretation of the 
speed of the particle in the two approaches. Consider again the dis- 
tance-time graph of the particle (Figure 2). The infinitesimal distance 
OE is the measure of the effect of the force when the curve is treated 
polygonally. D’Alembert says that OE “should be regarded as  trav- 
elled uniformly with a uniform motion equal to the infinitely small 
speed that the body has acquired at the end of the instant BC”. He 
continues 

since in the polygonal curve the effect of the accelerative power is represented by a uni- 
form motion, one should not suppose in this hypothesis that the speed of the body accel- 
erates continuously (“by degrees”) during the instant BC, but that at the beginning of 
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this instant BC, when the body has travelled the space BD, the speed rcceives suddenly 
and by a single blow all the increase or decrease. that it actually acquires only at the end of 
the instant BC. 

[1758, 301 

The polygonal interpretation should be contrasted with the rigorous 
treatment of the curve, where, as a result of the action of the force, 
the distance NE=j)(OE) is supposed to be travelled with a (uniformly) 
accelerated motion during BC. To treat the curve rigorously is to sup- 
pose the accelerative power 

imparts to the mobile during this instant [BC] a sequence of small equal and reiterated 
blows; and the sum of these small blows is equal to the single blow that the same power is 
assumed to impart to the body at the beginning of the instant BC in the hypothesis of the 
polygonal curve. 

[1758, 30-31) 

In d’Alembert’s polygonal curve the particle is assumed to move with 
constant speed during the time interval MB; at B this speed is sud- 
denly, by a “single blow”, increased or decreased by the total speed 
the particle actually gains or loses during the next time interval BC; 
the particle then moves uniformly with this new speed during BC. The 
changing speed of the particle therefore consists of a succession of dis- 
crete const ant speeds. 
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NOTES 

1. For a discussion of the historical background to the Traitc de DyMmique see T. L. Hankins’ 
scientific biography [1970] of d‘Nembert. 

2. For an interesting historical connection between this rule and the virtual work principle pre- 
sented by d’Alembert in the last chapter of the n d  see Szabo [1979.441-442]. I discuss this 
chapter in Part (II)(c). 
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3. Lagrange’s criticism does not appear in the first edition (1788) of the MCcanique Analyriqw. 
It is interesting to compare Section ”&to of Part ”&to “Formule genkrale de la dynamique pour 
le mouvement d’un systbme de corps animts par des forces quelconques” in the two (1788, 
1811) editions. In 1788 Lagrange follows d’Alembert’s original presentation of his principle 
much more closely than he would later in the second edition. (Lagrange finished the MCca- 
nique A ~ l y t i q ~  in 1782, a year before d’Alembert’s death. At the time he was d‘Alembert’s 
closest professional correspondent.) 
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