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4.5 Heat and Energy
4.5.1 The Thermometer

On the one side, philosophy; on the other, technology—with such support, the 
nineteenth century discovered the most basic law of physics, one that was only 
strengthened by the later “one–two punch” of quantum mechanics and relativ-
ity—the law of conservation of energy.

Romantic natural philosophy aroused in the hearts of physicists the wish to dis-
cover what was common and consistent in the relationships among the variety of 
phenomena and transformations while technological advances led to questions 
about the efficiency of engines. It is not surprising, then, that progress in knowl-
edge about the nature of heat was closely related to the development of the con-
cept of energy. The importance of “living force,” which today is called kinetic 
energy, was surmised already at the end of the seventeenth century, except that its 
disappearance during an inelastic collision or due to friction was a very confusing 
fact. Leibniz already recognized that in these cases the living force is transformed 
into the living forces of the particles that constitute the given object. The main 
argument leading to the law of conservation of energy is in this way connected 
with questions about the nature of heat. Naturally, as shown in Figure 4.116, other 
fragments of physical knowledge also had important roles, for example, the con-
nection between electrical phenomena and heat, or the heat generated by chemical 
reactions, as well as the relationship between electrical and chemical phenomena.

One would expect that ideas concerning the nature of heat would have been based 
on a conception that was already widespread at the end of the seventeenth century, 
namely, that heat has its origin in the motion of the particles that make up a material 
body. This would then have led directly to the connection between the two forms of 
energy: heat and kinetic energy. However, that is not what happened. In a seemingly 
superfluous and at first glance surprising detour in the history of physics, the kinetic 
theory of heat was abandoned, and in its place a theory of heat substance (caloricum) 
was adopted. It is only the result of our hasty judgment about what should have 
happened that names such as Joseph Black have fallen into obscurity, although we 
owe our thanks to him for such quantitative concepts as heat quantity, specific heat, 
latent heat, melting point, and boiling point. It has also been forgotten that findings 
in Carnot’s and Fourier’s theory of heat that are seen today as fundamental and 
used in teaching are based on the theory of the caloricum.

We must immediately add that these results, arrived at by using the most up-
to-date mathematical apparatus of the time, actually hindered the development 
of the kinetic theory of heat, which was mired down in its search for quantitative 
conclusions from its qualitative ideas. For this reason the detour was necessary; 
only in this roundabout way could the qualitative notions be introduced whose 
measurements then would allow for the formulation of the simplest laws.

It was already clear in the Middle Ages that in connection with heat, two funda-
mentally different quantities had to be considered: one is an intensity and the other 
is a quantity. Naturally, all this was expressed only vaguely. But they could sense 
that, for example, a flame somehow possesses a greater heat intensity than a piece 
of warm iron, whereas in the piece of iron the quantity of heat is greater than in 
the flame. Today, we call these temperature and heat quantity. 

The measurements were made possible by the development in the seventeenth 
century of the most important instrument for the theory of heat: the thermometer.
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Quotation 4.36
Much as I venerate the name of Newton, I am not 
therefore obliged to believe that he was infallible. 
I see … with regret that he was liable to err, and 
that his authority has, perhaps, sometimes even 
retarded the progress of science. 
—THOMAS YOUNG [Mason 1953, p. 379]
Suppose a certain number of equal waves of water 
to move upon the surface of a stagnant lake, with 
a certain constant velocity, and to enter a narrow 
channel leading out of the lake. Suppose then 
another similar cause to have excited another equal 
series of waves, which arrive at the same channel, 
with the same velocity, and at the same time with 
the first. Neither series of waves will destroy the 
other, but their effects will be combined: if they enter 
the channel in such a manner that the elevations 
of one series coincide with those of the other, they 
must together produce a series of greater joint 
elevations; but if the elevations of one series are so 
situated as to correspond to the depressions of the 
other, they must exactly fill up those depressions, 
and the surface of the water must remain smooth; 
at least I can discover no alternative, either from 
theory or from experiment. 
—THOMAS YOUNG [Elliott 1966, p. 10]
Whenever two portions of the same light arrive at 
the eye by different routes, either exactly or very 
nearly in the same direction, the light becomes 
most intense when the differences of the routes is 
any multiple of a certain length, and least intense in 
the intermediate state of the interfering portions; 
and this length is different for light of different 
colours. 
—THOMAS YOUNG, “An Account of Some Cases of the 
Production of Colours,” 1802 [Elliott 1966, p. 11]
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As mentioned in Section 1.4, the fact that air expands when heated was known 
and used already in Alexandria. However, this phenomenon was not employed for 
the measurement of temperature until the beginning of the seventeenth century. 
Figure 4.117 shows an apparatus whose construction is attributed to Galileo, al-
though he himself did not describe it in detail. This measuring instrument is called 
the barothermoscope because its reading depends on the air pressure as well as on 
the temperature. The first enclosed alcohol thermometer (Figure 4.118) is ascribed 
to Ferdinando II de’ Medici, grand duke of Tuscany. In Florence, under the 
auspices of the Accademia del Cimento (Academy of Experiment), 1657–1667, 
a variety of glass masterpieces were produced with scales formed of colored glass 
beads. It is worthwhile to especially draw attention to thermometer #4 in the il-
lustration. An alcohol-filled ampoule contains a number of small, hollow glass 
spheres. The weights of the spheres are adjusted in such a way that as the density of 
alcohol decreases with rising temperature, one sphere after the other—at different 
given temperatures—sinks to the bottom.

The eighteenth century brought nothing essentially new to the construction of the 
thermometer. However, reproducibility of temperature measurements was achieved 
by temperature scales between two set scale values corresponding to two easily 
achievable phenomena. The temperature scale that was to become most widely used 
was introduced by the Swedish astronomer Anders Celsius (1701–1744). The zero 
point of this scale corresponds to the temperature of melting ice, and the boiling 
point of water is designated the second fixed point on the scale with the value of 
100 ºC. In Figure 4.119, alongside the Celsius scale we can see the Fahrenheit scale, 
which was introduced around the same time, and also the “absolute” (Kelvin) tem-
perature scale, which was established in the second half of the nineteenth century.

4.5.2 Progressive in Its Day: The Caloricum Theory of Joseph Black
With the introduction of the thermometer, a quantitative formulation of the fun-
damental laws of thermodynamics was made possible. This was accomplished by 
Joseph Black (1728–1799).

Black was a professor of chemistry and medical sciences, first in Glasgow (from 
1756 until 1766) and then in Edinburgh (1766 up to his death). His most im-
portant discoveries in the field of thermodynamics date from his time in Glasgow. 
Black himself wrote no books; we know of his theory primarily because of a book 
written in 1803 by his student Robison, in which Black’s lectures are reproduced 
(Figure 4.120). Intriguingly, Robison dedicated this book to James Watt, as the 
most talented and famous of Black’s students (Quotation 4.38).

A quotation from this book (Quotation 4.39) makes it clear how little the con-
cepts of temperature and heat quantity were understood in Black’s time. By tak-
ing measurements, Black confirmed the fact, previously known, that bodies in 
contact tend to assume the same temperature. This phenomenon was interpreted 
by Black as the result of equal distribution of heat among the various bodies. 
Black accurately called this state heat equilibrium of the bodies and concluded 
that anyone talking about heat equality was confusing two quantities, namely tem-
perature and heat quantity.

Through his investigations into the heat quantities needed to achieve equal in-
crease in temperature in bodies of equal mass but different chemical composition, 
Black introduced the notion of specific heat. He refuted the generally accepted 
opinion that this quantity should be proportional to the mass for bodies of equal 
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Quotation 4.37
The general equations are next applied to the case 
of a magnetic disturbance propagated through 
a non-conducting field, and it is shewn that the 
only disturbances which can be so propagated 
are those which are transverse to the direction of 
propagation, and that the velocity of propagation 
is the velocity v, found from experiments such as 
those of WEBER, which expresses the number of 
electrostatic units of electricity which are contained 
in one electromagnetic unit. 
This velocity is so nearly that of light, that it seems 
we have strong reason to conclude that light itself 
(including radiant heat, and other radiations if any) 
is an electromagnetic disturbance in the form of 
waves propagated through the electromagnetic 
field according to electromagnetic laws.
—MAXWELL, A Dynamical Theory of the 
Electromagnetic Field [Magie 1935, p. 537]
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volume, in other words, to their density. Black believed that his measurements 
contradicted the kinetic theory of heat: From the kinetic theory, it would follow—
at least at first glance—that when more particles or heavier particles move, their 
living force will be greater. Black added, “I see little possibility of refuting this 
counterargument.” As things turned out, the answer was only provided 100 years 
later, with the aid of the equipartition principle (Quotation 4.40).

Black’s train of thought with regard to latent heat is so clear and convincing that 
it could be transcribed verbatim into our high school physics texts (Quotation 4.41). 
His final conclusion—specifically that heat is a substance—is no longer accepted. It 
is remarkable, however, how cautiously he set forth his hypotheses. In the last lines of 
the quotation, we hear from the true experimental physicist who suggests the limited 
practical use for hypotheses arrived at through an overabundance of imagination.

What did Black or his contemporary, the important chemist Lavoisier, under-
stand by caloricum or “heat substance”? Black himself refers to Cleghorn, who 
in 1779 summarized the properties of heat substance as follows: The caloricum is 
an elastic liquid, a fluidum, whose particles are mutually repellent, being simul-
taneously attracted by the particles of ordinary ponderable (weighable) matter, 
where the attractive force depends on the quality of the material and its aggregate 
state. This fluidum can be neither created nor destroyed; like ponderable matter, it 
satisfies the conservation law. The caloricum can be present both measurably and 
latently in ponderable matter. In the latter case, the heat substance forms to some 
extent a chemical bond with the ponderable matter.

There was no universal agreement as to the weight of the heat substance. Many 
researchers attempted to decide this question on the basis of measurements. Yet 
we may easily imagine the difficulties and the many sources of error that arose in 
measurements taken when the material present in one pan of the balance had to 
be heated after the pans had been balanced. Measurements seemed to indicate 

��Figure 4.120 BLACK’s lectures in German. Title page and a typical page of drawings. (Library of the 
University for Heavy Industry, Miskolc.)

��Figure 4.119 Three important temperature scales.
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 Quotation 4.38
Fortunately for Dr. BLACK, and for the world, he had now 
gotten a pupil who was as keenly interested in the 
scientific question as the Professor. This was Mr. JAMES
WATT, then employed in fitting up the instruments 
in the McFarlane Observatory of the University; a 
philosopher in the most exalted sense of the word, 
who never could be satisfied with a conjectural 
knowledge of any subject, and who grudged no 
labor or study to acquire certainty in his researches. 
He chanced to have in his hands, for repairs, a model 
of NEWCOMEN’s steam engine, belonging to the 
Natural Philosophy Class, and was delighted with 
the opportunity which this small machine gave him 
for trying experiments connected with the theory of 
ebullition, which he had just learned from Dr. BLACK. 
These he prosecuted in a most happy train of success 
and did not stop, till his steam engine was rendered 
more like the most docile of animals, than a frame of 
lifeless matter; so that, while its power is competent 
to the lifting a house from its place, a child of ten 
years old shall, with a touch of his hand, make it go 
fast or slow, forwards or backwards, and act either 
forcefully or feebly. This gentleman attached to Dr. 
BLACK by every tie of respect, esteem, and affection, 
supplied him with proofs and illustrations in 
abundance, of all the points on which the professor 
wanted information. These were always recited in 
the class, with the most cordial acknowledgment of 
obligation to Mr. WATT. 
—JOHN ROBISON’s editor’s preface to JOSEPH BLACK’s 
Lectures on the Elements of Chemistry
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that the caloricum had some weight, though very small in comparison to the total 
weight of the object containing it. There were also measurements according to 
which a negative weight would have had to be assigned to the caloricum. The idea 
of a weightless substance—imponderable matter—would have caused no particu-
lar difficulties; physicists had already become accustomed to it in the case of light 
as well as that of the electric fluidum.

4.5.3 Rumford: But Heat Is Still a Form of Motion!
Declaring that heat is a form of motion, Count Rumford (Benjamin Thompson, 
1753–1814) took up the fight against the substance theory of heat. In the course 
of an adventurous life, Rumford worked in a wide variety of fields and left behind 
contributions not only to science but also to other realms of human endeavor. 
In 1800, for example, he founded the English Royal Institution, whose first di-
rector was Davy and which later became famous through the work of Faraday. 
Rumford’s scientific work was done in Munich, where he served as advisor to the 
Bavarian king and later as director of the military arsenal. He also founded social 
institutions and a state employment agency; and to this day, his name lives on in 
Rumford soup and the Rumford fireplace.

Rumford first set himself the task of verifying and completing the measure-
ments relating to the weight of the heat substance. He noticed that latent heat 
was a suitable object of these measurements because, for example, a relatively large 
amount of heat is required for the melting of ice, and the same quantity of heat 
is liberated when water freezes without a change in its temperature. This method 
allowed for the elimination of the sources of error resulting from differences in 
temperature. With carefully executed experiments, in which he investigated the 
influence of even the smallest possible differences in temperature on the balance 
arm, Rumford was able to prove unambiguously that the heat substance, if in-
deed it existed, must have a vanishingly small weight. According to Rumford, he 
achieved such a degree of precision in his weighing that he would have been able 
to detect a deviation of one part in a million in the weight of an object. Rumford’s 
description of his measurements can be found in Quotation 4.42, together with a 
cautious note that his results are almost self-evident if one considers heat not as a 
substance, but as motion.

The weakest point of the substance theory was its inability to provide a plausible 
explanation for the creation of heat through friction. Within the framework of 
substance theory, it was necessary to assume that friction so alters the state of a 
body that its heat capacity is reduced, with the result that the unchanged quantity 
of heat substance can raise its temperature. By examining the heat generated by 
the process of boring cannon barrels in great detail, Rumford intended to deal a 
death-blow to this theory. He was first able to prove that the specific heat of the 
shavings from the barrel remained unchanged. Then he was able to establish that 
from a given body kept warm by friction we can extract a heat quantity propor-
tional to time; in other words, we can extract as much heat from it as we want. 
From these observations, Rumford drew confidently his final conclusions: Heat 
cannot be a substance, because if it were, then one would not be able to remove an 
unlimited quantity from a body. Heat can be nothing other than motion that can 
be continually recreated by mechanical friction, so that one can draw off heat from 
a body as long as this heat is created by mechanical work (Quotation 4.43). Quo-
tation 4.44, from Rumford’s article, shows that he came quite close to recogniz-

Quotation 4.39
Any person who reflects on the ideas which we 
annex to the word heat will perceive that this word 
is used for two meanings, or to express two different 
things. It either means a sensation excited in our 
organs, or a certain quality, affection, or condition 
of the bodies around us, by which they excite in us 
that sensation. The word is used in the first sense 
when we say, we feel heat; in the second when we 
say, there is heat in the fire, or in a hot stove. …
We must therefore adopt, as one of the most general 
laws of heat, that “all bodies communicating freely 
with each other, and exposed to no inequality of 
external action, acquire the same temperature, 
as indicated by a thermometer.” All acquire the 
temperature of the surrounding medium. …
This is what has been commonly called an equal 
heat, or the equality of heat among different 
bodies; I call it the equilibrium of heat. The nature 
of this equilibrium was not well understood, until 
I pointed out a method of investigating it. Dr. 
BOERHAAVE imagined, that when it obtains, there is 
an equal quantity of heat in every equal measure 
of space, however filled up with different bodies, 
and professor MUSCHENBROEK expresses his opinion 
to the same purpose: “Est enim ignis aequaliter per 
omnia, non admodum magna, distributus, ita ut in 
pede cubico auri et aeris ut plumarum, par ignis sit 
quantitas.” The reason they give for this opinion is, 
that to whichever of these bodies the thermometer 
be applied, it points to the same degree.
But this is taking a very hasty view of the subject. 
It is confounding the quantity of heat in different 
bodies with its general strength or intensity, though 
it is plain that these are two different things, and 
should always be distinguished, when we are 
thinking of the distribution of heat. 
—JOSEPH BLACK, Lectures on the Elements of Chemistry 
[pp. 21–22, 74, 75]

Quotation 4.40
It was formerly a common supposition, that the 
quantities of heat required to increase the heat of 
different bodies by the same number of degrees, 
were directly in proportion to the quantity of matter 
in each; and therefore, when the bodies were of 
equal size, the quantities of heat were in proportion 
to their density. But very soon after I began to think 
on this subject (anno 1760), I perceived that this 
opinion was a mistake, and that the quantities of 
heat which different kinds of matter must receive, 
to reduce them to an equilibrium with one another, 
or to raise their temperature by an equal number 
of degrees, are not in proportion to the quantity of 

continued on next page
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ing the equivalence of mechanical energy and heat energy. From the results of his 
measurements, with hindsight, we can even determine a value for the equivalence, 
which will play an important role later.

In saying farewell to Rumford, we must mention that he saw his investigations as 
basic research without immediate practical application and therefore had no expecta-
tion of material support. He writes in self-justification that the cannon barrels used in 
his experiments did not go to waste, but were put to use for their intended purpose.

From today’s vantage point of the complete triumph of the kinetic theory, we 
would be inclined to see Rumford’s conclusions as definitive. However, such was 
not the case at the beginning of the nineteenth century. Rumford’s experimental 
results were accepted, to be sure, but the attempt was made to interpret them on 
the basis of heat substance. The fact, for example, that one can remove an inex-
haustible quantity of heat from a body was interpreted to mean that in such cases 
the body serves only as a conduit; in reality, the heat substance flows into the body 
from the environment, which constitutes a practically inexhaustible reservoir.

To be sure, the kinetic theory also had its difficulties in the quantitative—and 
also qualitative—explanation of certain phenomena.

The following table summarizes the most important phenomena as well as com-
mentary as to which of the two theories—heat-substance theory and kinetic theo-
ry—can more convincingly explain them.

Heat  
conduction

Thermal  
radiation

Latent  
heat

Frictional  
heat

Quantitative 
conclusion 
possible?

Heat 
substance 
theory

yes yes yes no yes

Kinetic 
theory

yes no no yes no

To this table it must be added that the flow of heat substance (thermal conduction) 
could be presented as a very simple analogy to fluid flow, whereas with the kinetic 
theory, conduction was very difficult to describe because knowledge of the statistical 
nature of collision processes would have been needed. Nevertheless, in the table we 
state that the kinetic theory would eventually be able to accomplish this task. The 
caloricum theory can easily explain thermal radiation, that is, transmission of heat 
through a vacuum, as a flow of imponderable heat substance through a vacuum. The 
kinetic theory is helpless in the face of this phenomenon. Today we say that, in this 
situation, heat is transmitted from one body to another as electromagnetic radiation, 
that is, in a form of motion different from the usual motion of matter.

Looking at the above table, it is not difficult to understand why the great ma-
jority of scholars in the first decades of the nineteenth century still accepted the 
substance theory—not with full conviction, but as a useful working hypothesis.

4.5.4 Fourier’s Theory of Heat Conduction
One of the most important successes of heat substance theory was achieved by 
Fourier with his mathematical theory of heat conduction. 

Jean Baptiste Joseph Fourier (Figure 4.121) came from a poor family. It was 
thanks to the French Revolution—and, following it, Napoleon—that he had 

Quotation 4.40, continued
matter in each, but in proportions widely different 
from this, and for which no general principle or 
reason can yet be assigned. …
Quicksilver, therefore, has less capacity for the 
matter of heat than water (if I may be allowed 
to use this expression) has; it requires a smaller 
quantity of it to raise its temperature by the same 
number of degrees. … We must, therefore, conclude 
that different bodies, although they be of the 
same size, or even of the same weight, when they 
are reduced to the same temperature or degree of 
heat, whatever that be, may contain very different 
quantities of the matter of heat; which different 
quantities are necessary to bring them to this level, 
or equilibrium, with one another. 
It may have been remarked that the discoveries 
which have been made in this way are very 
unfavorable to one of the opinions which have 
been formed of the nature of heat. Many have 
supposed that heat is a tremulous, or other, motion 
of the particles of matter, which tremendous 
motion they imagined to be communicated from 
one body to another. But, if this were true, we 
must admit that the communication would be 
in conformity with our general experience of the 
communication of tremulous motion. We are not 
at liberty to feign laws of motion different from 
those already admitted, otherwise we can make 
any supposition account for any phenomena that 
we please. The denser substances ought surely to 
be the most powerful in communicating heat to 
others, or exciting it in them. The fact, however, in 
a great many examples, and yet not in all, is just 
the reverse. Such an opinion is therefore totally 
inconsistent with the phenomena. I do not see how 
this objection can be evaded. 
—JOSEPH BLACK, Lectures on the Elements of Chemistry 
[pp. 76, 77, 80]

Quotation 4.41
Fluidity was universally considered as produced by a 
small addition to the quantity of heat which a body 
contains, when it is once heated up to its melting 
point; and the return of such a body to a solid state 
as depending on a very small diminution of the 
quantity of heat after it is cooled to the same degree; 
that a solid body, when it is changed into a fluid, 
receives no greater addition to the heat within it than 
what is measured by the elevation of temperature 
indicated after fusion by the thermometer; and that, 
when the melted body is again made to congeal, by 
a diminution of its heat, it suffers no greater loss 
of heat than what is indicated also by the simple 
application to it of the same instrument. 

continued on next page
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the opportunity to develop his talents. He had begun his investigations related to 
thermal conduction as early as 1807, but their publication was at first rejected by 
the strict referees Lagrange, Laplace, and Legendre. Fourier’s results finally 
appeared in 1822, in the book Théorie analytique de la chaleur, in which he starts 
out with a very clear physical description of the problem and proceeds to offer an 
illuminative presentation of the mathematical issues involved.

For the following discussion, let us imagine a body with an arbitrary initial temper-
ature distribution. We could picture this by using tiny thermometers applied to vari-
ous locations on the body. Each thermometer would at the outset show a particular 
value, perhaps all identical. From its surface, the body gives off heat, which passes 
into the environment, while heat flows from the interior of the body toward the 
surface. We can therefore expect that the thermometers located at various positions 
around the body, at any given time, will show different temperatures (Figure 4.122). 
The goal of the mathematical investigation is then to determine the temperatures 
displayed by the thermometers as a function of position and time.

Fourier’s research was of fundamental importance for the development of both 
mathematics and physics. Fourier found that the solution to the mathematical 
form of the problem, at least in its simplest case where the temperature is sought as 
a function of position, can be represented by combinations of sine functions with 
various arguments. Since the initial condition, that is, the temperature distribu-
tion at the beginning of the experiment, can be prescribed arbitrarily, it is natural 
to ask, how can an arbitrary function be built up just from sine functions? In the 
language of mathematics, this question relates to the representation of arbitrary 
functions by what are now called Fourier series. Thus, Fourier’s approach opened 
up an entire new branch of mathematics, the theory of Fourier series, and physi-
cists also found the Fourier series an extraordinarily effective method for solving 
many of their problems.
In the following, we stick to Fourier’s description of the problem and, for the sake of simplicity, confine 
our attention to the one-dimensional case.

As shown in Figure 4.123, suppose we are given, at time t = 0, the temperature distribution T(x,0) in a 
rod that runs along the x-axis. Furthermore, suppose that for all future times t > 0, the two ends of the rod 
are held at a fixed temperature, for example 0º C. This can be realized in practice by placing the ends of 
the rod in thermal contact with a very large container filled with water at 0º C. We assume that the heat 
capacity of this container is so great that the heat flowing from the rod into the heat sink causes no change 
in the container’s temperature. We assume that the cylindrical rod is covered by a heat-insulating layer, so 
that heat can only flow along the axis of the rod. Fourier was already aware, or, to put it more accurately, 
correctly assumed, that the heat flow J is proportional to the difference in temperature per unit length, or 
equivalently, the temperature gradient �T/�x, and flows in the direction of decreasing temperature. With 
this assumption, Fourier arrived at the relationship

J T
x

= − ∂
∂

κ ,

where ț is the so-called thermal conductivity constant. Moreover, Fourier took into account that the 
heat content of a segment of the rod of length �x can vary over time, since the quantities of heat flowing 
in or out of the two lateral surfaces do not have to be equal. This yields the second equation,

∂
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where c is the specific heat and ȡ is the thickness of the rod. (For the sake of simplicity, we have set the 
cross-sectional area of the rod equal to 1.) Combining the two equations, we immediately obtain the fol-
lowing differential equation for thermal conduction:
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Quotation 4.41, continued
This was the universal opinion on this subject, so 
far as I know, when I began to read my lectures in 
the University of Glasgow, in the year 1757. But I 
soon found reason to object to it, as inconsistent 
with many remarkable facts, when attentively 
considered; and I endeavored to shew, that these 
facts are convincing proofs that fluidity is produced 
by heat in a very different manner. 
I shall now describe the manner in which fluidity 
appeared to me to be produced by heat, and we 
shall then compare the former and my view of the 
subject with the phenomena. 
The opinion I formed from attentive observation 
of the facts and phenomena, is as follows. When 
ice, for example, or any other solid substance, is 
changing into a fluid by heat, I am of opinion that 
it receives a much greater quantity of heat than 
what is perceptible in it immediately after by the 
thermometer. A great quantity of heat enters into 
it, on this occasion, without making it apparently 
warmer, when tried by that instrument. This 
heat, however, must be thrown into it, in order to 
give it the form of a fluid; and I affirm that this 
great addition of heat is the principal, and most 
immediate cause of the fluidity induced. 
And, on the other hand, when we deprive such a 
body of its fluidity again, by a diminution of its heat, 
a very great quantity of heat comes out of it, while 
it is assuming a solid form, the loss of which heat 
is not to be perceived by the common manner of 
using the thermometer. …
When we perceive that what we call heat disappears 
in the liquefaction of ice, and reappears in the 
congelation of water, and a number of analogous 
phenomena, we can hardly avoid thinking it a 
substance, which may be united with the particles 
of water, in the same manner as the particles of 
Glauber’s salt are united with them in solution, and 
may be separated as these are. But, since heat has 
never been observed by us in a separate state, all 
our notions of this union must be hypothetical. …
Many have been speculations and views of ingenious 
men about this union of bodies with heat. But, as 
they are all hypothetical, and as the hypothesis 
is of the most complicated nature, being in fact a 
hypothetical application of another hypothesis, 
I cannot hope for much useful information by 
attending to it. A nice adaption of conditions 
will make almost any hypothesis agree with the 
phenomena. This will please our imagination, but 
does not advance our knowledge. 
—JOSEPH BLACK, Lectures on the Elements of Chemistry 
[pp. 111–112, 184, 185]
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Even today, differential equations of this type are called heat equations, even though we meet them 
in other branches of physics as well, such as the theory of long-distance electrical transmission and the 
theory of diffusion processes. We therefore seek the function

T T x t ( , )

that satisfies the above differential equation, with the boundary conditions

T t T l t t( , ) , ( , ) , ,0 0 0 0= = >

and the initial condition

T x f x( , ) ( ),0  

where f(x) is some prescribed function.
Fourier solved equation (1) by applying the usual method of separation of variables. He assumed that 

the desired function could be represented as the product of two functions, one of them a function of x 
alone and the other a function of t alone:

T x t x t( , ) ( ) ( ).=Φ Ψ

If we substitute this product into the initial differential equation,
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we obtain, after a bit of manipulation,
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One side of this equation depends only on the variable x, whereas the other side depends only on t, so the 
equation can only be satisfied if both sides are equal to some constant. (This constant, denoted by Ȝ, is 
called the separation constant.) If this is the case, then the initial differential equation, which is a partial 
differential equation, decomposes into two ordinary differential equations

d ( )
d
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2
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whose solutions can be written at once:

Φ Ψ( ) sin , ( ) e .x b kx c t a t= +( ) = −λ λ

The boundary conditions are satisfied when we require of the function ĭ(x) that

Φ Φ( ) ( ) .0 0= =l

These conditions are satisfied if we have

c kl v v= = =0 1 2, , , , ,λ π #

and so the separation constant assumes the value
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Taking into account the time-dependent term, we obtain
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where we have taken into consideration the fact that for the linear differential equation (1), the sum of 
solutions is again a solution.

 	�Figure 
4.121 JOSEPH  
FOURIER  
(1768–1830): 
1796: profes-
sor at the École 
Polytechnique. 
1816: member of 
the French Acad-
emy. His Théorie 
analytique de la 
chaleur, in which 
the theory of 
the Fourier series 
also appears, 
was published 
in 1822. He also 
investigated prob-
lems of measure-
ment errors.

Quotation 4.42
Having determined that water does not acquire or 
lose any weight upon being changed from a state 
of liquid to that of ice, and vice versa, I shall now 
take my final leave of a subject which has long 
occupied me, and which has cost me much pains 
and trouble; for I am fully convinced, from the 
results of the afore-mentioned experiments, that 
if heat be in fact a substance, or matter—a fluid 
sui generis, as has been supposed—which, passing 
from one body to another, and being accumulated, 
is the immediate cause of the phenomena we 
observe in heated bodies, it must be something so 
infinitely rare, even in its most condensed state, as 
to baffle all our attempts to discover its weight. And 
if the opinion which has been adopted by many of 
our ablest philosophers, that heat is nothing more 
than an intestine [internal] vibratory motion of the 
constituent parts of heated bodies, should be well 
founded, it is clear that the weights of bodies can in 
no wise be affected by such motion. 
—Count RUMFORD, “An Inquiry Concerning the 
Weight Ascribed to Heat,” 1799 [pp. 58–59]

Quotation 4.43
It is hardly necessary to add, that any thing which 
any insulated body, or system of bodies, can 
contribute to furnish without limitation, cannot 
possibly be a material substance: and it appears to 
me to be extremely difficult, if not quite impossible, 
to form any distinct idea of any thing, capable of 
being excited, and communicated, in the manner 
the heat was excited and communicated in these 
experiments, except it be motion. 
—Count RUMFORD, “An Inquiry Concerning the Source 
of the Heat Which Is Excited by Friction” [p. 99]
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The mathematical problem of representing an arbitrary function by a Fourier series arises in the at-
tempt to satisfy the initial conditions. If we set t = 0 in the general solution procedure, we obtain the 
relationship

T x f x c v x
lv

v
( , ) ( ) sin .0

1
= =

=

∞

∑ π

On the left-hand side of this equation, we have an arbitrary function, and on the right-hand side, we have 
an infinite series of sine functions.

In order to determine the unknown coefficients cv associated with the function f(x), Fourier at first 
offered a very complicated method that was extremely questionable with respect to mathematical rigor. 
He developed the sine functions into the power series
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He then interchanged the order of summation, thereby obtaining
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Fourier then compared the resulting power series with the Maclaurin series of the function f(x):
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finally obtaining the following algebraic system of infinitely many equations in an infinite number of 
unknowns cv:
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Later, Fourier also found the relationship, familiar to us today,

c f s vs sv = ∫
2

0π
π

( )sin d .

In studying this relationship, Fourier determined that the value of the integral can be interpreted geo-
metrically as the area under the graph of the function f (s)sin vs over the interval from 0 to ʌ, and therefore 
one can carry out the transformation as well for the case of “arbitrary” functions that are not analytic in 
the sense of Lagrange. This way, whether he intended or not, Fourier contributed to the extension of 
the notion of function. 

4.5.5 Caloricum and the State Equation

The theory of the caloricum was able to produce useful results even beyond the connection with heat 
flow. Laplace attempted also to derive the state equations for gases on the basis of this theory. Reading 
his works today, one cannot help but be amazed by the ability of this brilliant mathematician to juggle 
hypotheses and formulas. Laplace begins with the assumption that due to the heat substance that sur-
rounds the particles of mater like a cloud, a repulsive force emerges between the particles that can be 
expressed by the relationship

F Hc r= 2ϕ( ),

where H is a constant, c the density of the caloricum, and ĳ(r) a function that decreases rapidly with the 
distance between the particles. (We note, in this discussion, that we are assuming for the first time the 
action of short-range forces.) By considering the sum of such forces, Laplace derives the formula

P HK c= 22 2π ρ

for the pressure of the gas. The constant K describes the resultant of all forces acting on a single particle. 
This constant has a finite value even in the case of infinitely many particles because of the above-men-
tioned short range of interaction between the particles. However, the derived formula is obviously incor-
rect because the gas density ȡ appears to the second power instead of to the correct first. This issue was 
explained away effortlessly by Laplace by arguing that the density of the material and the density of the 

��Figure 4.122 FOURIER’s problem: At time t = 0, a certain tem-
perature distribution in a body is given. How will the temperature 
change at various points in the body as a function of time?

��Figure 4.123 The one-dimensional heat-conduction 
problem: We are investigating the cooling of the rod given 
the initial temperature distribution and given that the rod can 
transmit heat to the environment only at its end surfaces.

	�Figure 4.124  
JOSEPH-LOUIS GAY-
LUSSAC (1778–
1850): After his 
studies at the École 
Polytechnique, 
worked as a chem-
ist in BERTHOLLET’s 
laboratory (in 
Arcueil), then 
was associated 
for a time with 
HUMBOLDT (who 
also belonged to 
the Arcueil circle; 
the director of the 
physics department 
of the labora-
tory was  LAPLACE). 

1809–1832: professor of chemistry at the École Polytechnique 
and professor of physics at the Sorbonne.

Two laws are associated with his name: 1802, investigation 
of the expansion of gases under constant pressure, where he 
obtained the relation

V V t t= + −[ ]0 01 α ( ) .

The coefficient of expansion a in this formula is the same for all 
gases to very good approximation. GAY-LUSSAC also measured 
its value, and for t = 0ºC he obtained the excellent result a = 
(1/267) K–1 (the exact value being 1/273.15 K–1).

continued on next page
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caloricum are not independent of each other—indeed, that as a consequence of the radiative equilibrium 
between them, there must exist a dependence of the form

ρc u2 =Π ( ),

in which the right-hand side depends solely on the temperature u. With this assumption, Laplace finally 
obtains

P uρΠ ( ),∼

which is the correct result: The equation has the same form of Gay-Lussac’s law if, like Laplace, we use 
the quantity Ȇ(u) that depends only on the temperature instead of the temperature itself (Figure 4.124).

The greatest accomplishment of Laplace’s theory is the derivation, in which he uses the method de-
scribed above, of the state equation for the adiabatic change of state:

pV κ = constant.

4.5.6 The Carnot Cycle
Efforts to increase the efficiency of heat engines led to the recognition—especially 
by James Watt (Figure 4.125)—of the necessity to merge theory with practical 
application. The experiments of Sadi Carnot (Figure 4.126) were also dedicated 
to this task. Carnot envisioned the mode of operation of a heat engine as being 
similar to that of a water-powered engine, whereby water (in itself incapable of 
being transformed into work) cascades from a higher to a lower level, thereby pro-
ducing mechanical work. In the case of heat engines, one can think of the water 
level as being replaced by the temperature, and the flowing mass of water by the 
heat substance that, like the water, is neither created nor destroyed. If one accepts 
this analogy in calculating the efficiency of a steam engine, then the result is

η = − = − = −Q T T
QT

T T
T

T
T

( ) .1 2

1

1 2

1

2

1

1

This example demonstrates both the heuristic value of analogical thinking and 
the dangers of its uncritical application. If we compare, following Figure 4.127, 
the operating principles of a water-powered engine, a heat engine, and a direct-
current motor, we can see that in all three cases, work is performed by a flow from 
a higher level (a higher potential) to a lower, assuming, however, that the quanti-
ties of electricity and heat remain unchanged. The analogy between the water-
wheel and the electric motor works, in the sense that in both cases the inflow per 
unit time of substance (water or electric charge) at the higher level is equal to the 
outflow per unit time at the lower level. However, Carnot erroneously believed 
the heat substance to be conserved, when, in fact, the amount of heat at a lower 
temperature flowing out of a heat engine is less than the amount at a higher tem-
perature flowing in. Part of the heat is transformed in the machine into mechanical 
work. Such cannot be said about either water or electric charge, that some part of 
the water or some of the charge were somehow turned into mechanical work. 

The surprising fact is that the Carnot formula for efficiency is still correct and 
is still in use today. But there is a simple explanation for this: if in a given time 
interval we supply Q1 heat at temperature T1 to the engine, and at the same time 
remove Q2 heat and temperature T2, then, in the ideal case, the difference Q1 – Q2 
is turned into mechanical work, so the efficiency will be

η = − = −Q Q
Q

Q
Q

1 2

1

2

1

1 .

Figure 4.124 continued

1808: publication of the results of several years of research, 
according to which the volumes of chemically reacting gases 
and the gaseous reaction products are in the proportions of 
whole numbers that tend to be small. For example, if a unit 
volume of hydrogen reacts with a unit volume of chlorine, 
then after the reaction, there will be two unit volumes of hy-
drochloric acid: H2 + Cl2 = 2HCl. DALTON propounded the law 
of simple and multiple proportions around this time. DALTON 
and GAY-LUSSAC did not get along, so it was only later that 
AMADEO AVOGADRO was able to unite their results, by point-
ing out the difference between atoms and molecules and 
thereby formulating the law that bears his name.

Of interest are also the balloon ascents that GAY-LUSSAC made 
in 1804 with BIOT for measuring Earth’s magnetic field (Figure 
4.88). Later, GAY-LUSSAC ascended alone to a height of 7000 
meters to measure air pressure and temperature and take air 
samples at various altitudes.

An important result of GAY-LUSSAC’s multifaceted work in the 
area of chemistry is the discovery (together with THÉNARD) of 
the element boron.

We should mention as well that JACQUES-ALEXANDRE-CÉSAR 
CHARLES, in part before GAY-LUSSAC and in part at the same 
time, but independently, also discovered the law of the ther-
mal expansion of gases.

Putting together the laws of BOYLE–MARIOTTE and GAY-LUSSAC 
yields the state equation for ideal gases, and after the intro-
duction of absolute temperature T = t + 273.15, the formula 
pV = RT for this law becomes obvious. CLAPEYRON gave the 
state equation in this form, but it was a long journey before 
W. THOMSON (LORD KELVIN) introduced the thermodynamic tem-
perature scale named for him (1848), which is independent 
of the properties of the ideal gas.

Quotation 4.44
As the machinery used in this experiment could 
easily be carried round by the force of one horse 
(though, to render the work lighter, two horses were 
actually employed in doing it), these computations 
show further how large a quantity of heat might be 
produced, by proper mechanical contrivance, merely 
by the strength of a horse, without either fire, light, 
combustion, or chemical decomposition; and, in a 
case of necessity, the heat thus produced might be 
used in cooking victuals.
But no circumstances can be imagined, in which 
this method of procuring heat would not be 
disadvantageous; for, more heat might be obtained 
by using the fodder necessary for the support of a 
horse, as fuel …
For fear I should be suspected of prodigality in the 
prosecution of my philosophical researches, I think 
it is necessary to inform the Society, that the cannon 
I made use of in this experiment was not sacrificed 
to it. The short hollow cylinder which was formed 
at the end of it … called in the German language 
the verlorner Kopf … the head of the cannon to be 
thrown away. 
—Count RUMFORD, “An Inquiry Concerning the Source 
of the Heat Which Is Excited by Friction” [p. 95]
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Today we know that, in the case of the process investigated by Carnot, the so 
called Carnot cycle (Figure 4.128), the following relationship holds:

Q
T

Q
T

1

1

2

2

 ,

In other words,
T
T

Q
Q

2

1

2

1

 .

This means that Carnot’s formula, even though it was derived on the basis of 
incorrect assumptions, happens to be completely correct. In his later years—as it 
is evident from his correspondence and notes—Carnot saw the relationship be-
tween heat and mechanical work more clearly. His untimely death prevented him 
from taking the decisive step, but the following quotation shows just how close he 
had come to the principle of conservation of energy.

It may be objected at this point that perpetual motion, which has been 
shown to be impossible for purely mechanical processes, may not be so 
where the effects of heat or electricity are concerned. But is it conceivable 
that the phenomena of heat or electricity are [not] due to … some kind of mo-
tion and hence that they are not governed by the general laws of mechanics? 
Moreover, do we not know from experience that every attempt to produce 
perpetual motion has been futile, whatever method has been used, and that 
no one has ever managed to generate motion that is truly perpetual, in other 
words, motion that would continue without any effect on the materials be-
ing used to create it?
It has sometimes been suggested that the electrical generating apparatus 
(Volta’s pile) could be a source of perpetual motion, and attempts have been 
made to achieve this by constructing dry piles which are claimed to undergo 
no changes. But, no matter what procedure has been adopted, the devices 
have always deteriorated quite markedly, whenever they have been used at 
all vigorously and for any length of time.
In a broad philosophical sense, the words “perpetual motion” should not be 
taken simply to mean motion that will continue indefinitely, following some 
initial impetus. They refer to the effect produced by a device, or any apparatus, 
that is capable of yielding unlimited quantities of motive power, capable of 
successively disturbing the state of rest of all those objects in nature that are 
not in motion and of overcoming their principle of inertia. Such a device would 
even possess the force necessary to move the entire universe and to sustain 
and constantly accelerate its motion. This is what we mean by the true creation 
of motive power. If such creation was possible, we would have no need to seek 
motive power in air currents, water, or combustible materials. We would have 
at our disposal a limitless supply on which we could draw infinitely. 

—SADI CARNOT, Reflexions on the Motive Power of Fire [pp. 69–70]

4.5.7 The Kinetic Theory of Heat: First Steps
With Carnot’s results, the theory of heat substance reached the limits of its ex-
planatory power. While in the first half of the nineteenth century this theory con-
tinued to serve as the background for investigations into the physics of heat, even 
its most successful proponents, such as Carnot and Laplace, were already con-
sidering the possibility that heat is, in fact, a form of motion of the particles of 

	�Figure 
4.125  
JAMES WATT 
(1736–
1819): 
Son of a 
well-to-do 
shipwright. 
Unable to at-
tend school 
regularly 
because of 
his health. 
In 1757, 
opened in 
Glasgow a 
mechanical 
workshop 
affiliated 
with the 
university, 

and here, in addition to his skills as a toolmaker, acquired 
the theoretical knowledge that turned him from a technician 
into a scientist. In 1763, he began the repairs to a model of a 
Newcomen engine that belonged to the university. 1765: the 
condensing steam engine is born. The centrifugal regulator and 
the indicator for measuring steam pressure in the cylinder are 
also his inventions. WATT’s significant contributions are twofold: 
He brought the steam engine into a practical form and helped 
it thereby to achieve the role that it would play in the course of 
the Industrial Revolution, while also giving impetus to scientifi-
cally based investigation into increasing the engine’s efficiency, 
on which the foundations of thermodynamics were laid.

	�Figure 
4.126  
NICOLAS 
LÉONARD 
SADI CARNOT 
(1796–1832): 
Engineering 
officer. Wrote 
his famous 
treatise 
Réflexion sur 
la puissance 
motrice de 
feu et sur 
les machines 
propres à 
dévelop-
per cette 
puissance 
(published in 
Paris in 1824) 
in 1821 while 
fleeing the 
Bourbons. In 

this work, CARNOT still supports the existence of a heat substance 
(caloricum); however, from notes that he wrote shortly before 
his death, it is clear that he had recognized the kinetic theory as 
a possible alternative. One can even find in his ideas hints of the 
principle of conservation of energy.
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matter. The only problem was that proceeding from this point of view, they were 
not able to derive quantitative laws.

As we mentioned before, the kinetic theory already had a long history. Indeed, 
Bacon (Section 3.4) had categorically declared that there must exist a close rela-
tionship between heat and motion. This idea was generally accepted throughout 
the seventeenth century. However, the quantitative formulation of the theory was 
first taken up seriously by the “Basel school.” Jakob Hermann (1678–1733) had 
claimed in 1716, although without any justification, that heat is proportional to 
the density of a body and the square of its motion. As in so many other areas, here, 
too, Euler contributed pioneering work: He arrived at a numerical value for the 
speed of the particles: v § 477 ms–1. In the year 1738, Daniel Bernoulli, in his 
work on hydrodynamics, derived the relationship

p nmv2 ,∼

where he began with assumptions that are very similar to those underlying today’s 
kinetic theory of gases. Figure 4.129 is taken from his book. Bernoulli surmised 
that the pressure exerted by a gas is the result of collisions of particles bouncing 
about as they try to move on a straight path. As can be seen in the figure, Ber-
noulli pictured the particles of matter neither as identical shapes nor as geo-
metrically regular. Bernoulli’s quantitative theories were not immediately taken 
note of, and they were forgotten for almost a century. The first time we encounter 
Bernoulli’s ideas again is in 1816, in the work of John Herapath (1790 –1868), 
who, however, made no further progress and indeed, contrary to Bernoulli, in-
correctly associated temperature with the impulse of the particles. Thus it was easy 
for his opponents, among them no less an authority than Davy, to silence him.

Significant progress was made at the beginning of the 1840s in the theory de-
rived by John James Waterston (1811–1883). The fate of Waterston’s investi-
gations is most instructive. An unknown neophyte among professional physicists, 
he sent his work from Bombay to the Royal Society. His article was turned over to 
two referees who were recognized specialists. Only one of the two found anything 
remotely positive to say in an otherwise negative review, while the other declared 
the entire work to be nothing but nonsense (Quotation 4.45).

Waterston’s work, and indeed his very name, would have faded into obscurity 
had it not been possible for him finally to publish a short extract from his work 
and had not Lord Rayleigh discovered, in 1891, the original manuscript in the 
archives of the Royal Society. As a result, Waterston’s article eventually appeared in 
the journal of the Royal Society after a delay of half a century. In connection with 
this story, Lord Rayleigh’s advice to young physicists is particularly noteworthy: 
“A young author who believes himself capable of great things would usually do well 
to secure the favourable recognition of the scientific world by work whose scope is 
limited, and whose value is easily judged, before embarking on higher flights” (see 
Quotation 4.45). And Lord Rayleigh meant this completely seriously.

Quotation 4.46 reproduces Waterston’s article almost completely, summariz-
ing his theory. The author’s “peculiar theory” has an entirely modern tone. We may 
judge Waterston’s most important accomplishment to be that he succeeded in 
formulating with greater precision the findings of the earlier kinetic theories. Fur-
thermore, he was the first to formulate a special case of the equipartition principle, 
namely that every atom of two gases at temperature equilibrium has the same 
average kinetic energy. We shall have more to say about the role of the equiparti-
tion theorem when we treat classical statistical theory. Here we mention only that 

��Figure 4.127 How work is extracted by a water wheel, 
a heat engine, and a direct-current motor. The water wheel 
and the electric motor work analogously, but the pattern 
breaks down with the heat engine because though the heat 
flows from a higher level to a lower one, it changes in its 
quantity. This was first noticed by JOULE. CARNOT did not yet 
realize the problem in his Réflexion… .

We may rightly compare the moving force of heat with 
that of a waterfall. The moving force of the latter de-
pends on the height and on the quantity of fluid: the 
moving force of heat depends on the applied quantity 
of caloricum and—what could be called the height of 
fall—on the temperature difference that exists between 
the heat-exchanging bodies.

��Figure 4.128 The Carnot cycle, represented in (a) a V-P 
and in (b) an S-T coordinate system.
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Waterston was the first to succeed in answering Black’s question as to why the 
kinetic theory did not necessarily imply a proportionality between the specific heat 
of a body and its density.

Given all this, we can well understand why Waterston had absolutely no in-
fluence on the further development of the kinetic theory. It was not in England, 
but in Germany a decade later, that the theory was advanced, or more precisely, 
restarted from a somewhat more basic level than where Waterston started.

4.5.8 The Law of Conservation of Energy
Meanwhile, by the beginning of the 1840s, the time had become ripe for a formu-
lation of the law of conservation of energy.

The discovery of this law is usually linked to three names: Julius Robert Mayer 
(1814–1878, Figure 4.130), James Prescott Joule (1818–1889, Figure 4.131), 
and Hermann von Helmholtz (1821–1894, Figure 4.132). However, we should 
add that similar ideas had occurred to many other researchers. Thus, for example, 
Justus Liebig wrote about the connection between heat energy and chemistry as 
well as the role of energy in biological processes.

Robert Mayer, too, was led to his own research by certain physiological phe-
nomena. As a naval physician, he noticed that the blood drawn from the veins 
of sailors was of a brighter red in the tropics than what was usual in their chillier 
home climate. He correctly concluded that in the tropics, the oxidation processes 
of an organism proceed with lesser intensity because part of the heat required by 
life functions is supplied by the environment. His 1842 paper entitled Bemerkun-
gen über die Kräfte der unbelebten Natur (Remarks on the Forces of the Inorganic 
Nature) was strongly influenced by natural philosophy, and it is therefore no great 
surprise that it was rejected for publication by the leading physics journal of the 
time, Annalen der Physik. Eventually, Liebig helped to place the article in the 
journal Annalen der Chemie. In reading the introduction (Quotation 4.47), we 
can understand the unease of the physicists with a work in which every claim is 
derived from the basic axiom that causa aequat effectum, meaning the cause is to 
be equated with its effect. Of a similar nature is the strange argument with which 
Robert Mayer tries to make it plausible that falling bodies increase in tempera-
ture. He starts from the experience that when we compress a body, that is, when 
we decrease its volume, heat is created. Let’s consider a stone falling from a high 
place: as it falls, the volume of Earth to which the stone also, after all, belongs will 
thereby be reduced; hence, the temperature will rise …

At the end of his article, almost unexpectedly, we find the correct conclusion that 
when a body falls from a given height, its temperature must rise by a correspond-
ing definite amount. This is posed in the form of a question: from what height 
must a body fall in order to achieve an increase in temperature of one degree? 
Although Mayer, as we would expect, did not carry out the experiment, he nev-
ertheless gives an answer: Using the relationship of the specific heat of gases under 
constant pressure and volume, he estimates the mechanical equivalent for heat and 
obtains a numerical value of about 360 kpm. This value is far from the 425 kpm 
measured by Joule, which is today considered valid. Nonetheless, the order of 
magnitude of the result and the theoretical approach were both entirely correct.

In 1841, Joule published the law that is today named for him regarding the heat 
effect of electric current, whereby the heat generated by current flowing through

	�Figure 
4.129 An 
illustration 
in BERNOULLI’s 
work on the 
kinetic theory of 
gases (Fig. 96). 
(Library of the 
University for 
Heavy Industry, 
Miskolc.)

Quotation 4.45
It is difficult to put oneself in imagination into 
the position of the reader of 1845, and one can 
understand that the substance of the memoir 
should have appeared speculative and that its 
mathematical style should have failed to attract. But 
it is startling to find a referee expressing the opinion 
that “the paper is nothing but nonsense, unfit even 
for reading before the Society.” Another remarks 
“that the whole investigation is confessedly founded 
on a principle entirely hypothetical, from which it is 
the object to deduce a mathematical representation 
of the phenomena of elastic media. It exhibits much 
skill and many remarkable accordances with the 
general facts, as well as numerical values furnished 
by observation…. The original principle itself involves 
an assumption which seems to me very difficult 
to admit, and by no means a satisfactory basis 
for a mathematical theory, viz., that the elasticity 
of a medium is to be measured by supposing 
its molecules in vertical motion, and making a 
succession of impacts against an elastic gravitating 
plane.” … [The history of this paper suggests that] 
highly speculative investigations, especially by an 
unknown author, are best brought before the world 
through some other channel than a scientific society, 
which naturally hesitates to admit into its printed 
records matter of uncertain value. … [Perhaps one 
may go further and say that] a young author who 
believes himself capable of great things would 
usually do well to secure the favourable recognition 
of the scientific world by work whose scope is limited, 
and whose value is easily judged, before embarking 
on higher flights. 
—Lord RAYLEIGH, Introduction to J. J. WATERSTON, “On 
the  Physics of Media that Are Composed of Free and 
Perfectly Elastic Molecules in a State of Motion” 
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a resistor is proportional to the square of the current, the resistance, and the time:

Q I Rt2 .∼

His seminal work on the law of conservation of energy was published in 1845 
with the title On the Existence of an Equivalent Relation between Heat and the Or-
dinary Forms of Mechanical Power. The method he used for taking measurements 
and the measuring device employed are today part and parcel of the standard high 
school physics curriculum (Figure 4.133). The potential energy of a body of a 
given weight is transformed into heat as the descent of the weight drives stirring 
paddles in some liquid. Of course, the measurements must be made with great 
care. Joule’s first measurements did not yield the value that is considered correct 
today. However, with a refinement of his techniques, elimination of sources of er-
ror, or compensating for them, he arrived at a value for the mechanical equivalent 
of heat that is very close to what is in use today: 1 kcal ≈ 425 kpm.

Helmholtz’s work on the conservation of energy was published in 1847 under 
the title Über die Erhaltung der Kraft (On the Conservation of Force). Although 
Helmholtz’s style also exhibits the influence of Romantic natural philosophy, 
his arguments are presented in a form that would completely satisfy the tastes of 
today’s physicists.

Because of the importance of the law of conservation of energy, it is worth tak-
ing the time to read some of the reminiscences of those who participated in its 
discovery, and here we are thinking primarily of the sober, realistic Joule, who was 
raised in the tradition of English empiricism. We learn from the memoirs he wrote 
in 1850, that he, too, was of the opinion that the time was ripe for an articulation 
of the law of conservation of energy. Nevertheless, this was accepted only with 
great hesitation by the scientists of the time. Joule’s first report met with com-
plete indifference except for one enthusiastic young man who did pay attention 
to it—with skepticism, to be sure, but nonetheless sensing the importance of the 
discovery. This was William Thomson, the future Lord Kelvin (Quotation 4.48).

4.5.9 The Kinetic Theory of Gases
After the formulation of the law of conservation of energy, the kinetic theory of 
matter, at first in the form of a kinetic theory of gases, came back into the lime-
light. More to the point, we should say that this theory was discovered anew, and 
now nothing stood in the way of its general acknowledgment. Referring to Hera-
path, in 1848 Joule himself had attempted to calculate the velocity of a hydrogen 
molecule and the specific heat of a gas under constant volume. His work was pub-
lished in 1851 but did not arouse any particular attention.

The breakthrough in this approach came thanks to August Karl Krönig (1822–
1879). While his brief 1856 article contained no new ideas, because it was the opin-
ion of a noted professor, it gave the long-overdue impetus to the field. From this time 
on, macroscopic thermodynamics, the kinetic theory of gases, and classical statistics 
mutually reinforced their parallel development. Among those associated with this 
era were the likes of Rudolf Clausius (Figure 4.134), J. C. Maxwell, William 
Thomson (Figure 4.135), and Ludwig Boltzmann (Figure 4.136), to mention 
only the most important names.

It was Clausius who laid the cornerstone of both the macroscopic and micro-
scopic theories. In his 1857 Annalen der Physik article Über die Art der Bewegung, 
welche wir Wärme nennen (On the form of motion that we call heat), he derives 

��Figure 4.130 JULIUS ROBERT MAYER (1814–1878): His 
observations on the color of blood in Surabaya (Java), while 
serving as a ship’s surgeon in 1840, provided an impetus to 
the formulation of the energy conservation law. In 1841, the 
journal Annalen der Physik declined to publish his work, and 
it appeared a year later in the Annalen der Chemie with the 
title Bemerkungen über die Kräfte der unbelebten Natur. In 
1845, MAYER thoroughly investigated, in a way that is convinc-
ing even to today’s physicists, the relationship between the 
work of expansion of a gas and the participating heat quan-
tity. In 1848, he conjectured that the heat of the Sun stems 
from the kinetic and gravitational energy of the meteors that 
strike it. Physicists were slowly becoming aware of the law of 
conservation of energy, but they considered JOULE and HELM-
HOLTZ as its discoverers. MAYER fought long in vain for recogni-
tion of his contribution, suffered a nervous breakdown, and 
in 1850 attempted suicide. TYNDALL, in an 1862 lecture to the 
Royal Institution, finally conceded that ROBERT MAYER should 
be granted first place among the discoverers of the energy 
conservation law.

Quotation 4.46
The author deduces the properties of gases, with 
respect to heat and elasticity, from a peculiar form 
of the theory which regards heat as consisting in 
small but rapid motions of the particles of matter. 
He conceives that the atoms of a gas, being perfectly 
elastic, are in continual motion in all directions, 
being restrained within a limited space by their 
collisions with each other, and with the particles of 
surrounding bodies. The vis viva of those motions in 
a given portion of gas constitutes the quantity of 
heat contained in it. 
He shows that the result of this state of motion must 
be to give the gas an elasticity proportional to the 
mean square of the velocity of the molecular motions, 
and to the total mass of the atoms contained in unity 
of bulk; that is to say, to the density of the medium.

continued on next page
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the state equation
pv nmu
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3
,

where u2 is mean square velocity of the molecules. His derivation is similar to what 
appears in today’s textbooks on theoretical physics. Clausius determined that the 
pressure of a gas is a function of the energy of the translational motion of the mol-
ecules. The translational energy is a portion of the internal energy of the gas, to 
which other energies may also contribute. Thus, with increasing complexity of the 
molecules, the energy contribution resulting from the vibrational motion of the at-
oms within the molecules increases as well. Clausius derived the following relation-
ship between the kinetic energy of the translational motion Ek and the total heat q:

E
q

c c
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k v p
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,

where cv is the specific (related to the volume unit) heat of the gas at constant vol-
ume, and cp is the specific heat under constant pressure.

Clausius also introduced the notion of free path length into the theory and 
explained the apparent contradiction between the extraordinarily high velocities 
of the gas particles (for hydrogen, it is 1800 ms–1) and the small speed of diffusion.

For Maxwell, the kinetic gas theory was an interesting exercise in mechanics. In 
a letter, Maxwell writes that it would be worthwhile to investigate, independent-
ly of the kinetic theory of gases, the behavior of a large number of elastic spheres 
interacting exclusively by collision processes. The main result of his 1860 work is 
the derivation of the velocity distribution function that now bears his name. Using 
it, one can determine the number of particles with velocities in the interval from 
v to v + dv (Figure 4.137) via

d e d ,/N
N

v vv= − 24
3

2 2

α π
α

where Į2, defined by v2 3
2= 2α , is a quantity proportional to the mean square 

velocity.
Also of importance is Maxwell’s conclusion that for a mixture of gases in ther-

modynamic equilibrium, every molecule possesses the same average kinetic en-
ergy (equipartition theorem). This principle was generalized by Maxwell in the 
same article: the same energy is associated with each degree of freedom of the gas 
particles. But equal average energy is also additionally allotted to every degree of 
freedom that is bound to a potential energy. This average energy is equal to 1

2 kT , 
where T is the absolute temperature and

k = × = ×− − − −1 38 10 1 38 1023 1 16 1. . JK  ergK

is one of the universal constants of physics (the Boltzmann constant).
Maxwell then calls attention to the fact that the theoretical values thus derived 

for the specific heats differ from the experimental results by more than the margin 
of error in the experiments (Figure 4.138).

In 1866, Maxwell derived the following general relationship that would later 
become so significant: cp / cv = ( f + 2)  / f, where f is the number of degrees of free-
dom of the gas molecules.

Quotation 4.46, continued
This elasticity, in a given gas, is the measure of 
temperature. Equilibrium of pressure and heat 
between two gases takes place when the number of 
atoms in unity of volume is equal, and the vis viva of 
each atom equal. Temperature, therefore, in all gases, 
is proportional to the mass of one atom multiplied 
by the mean square of the velocity of the molecular 
motions, being measured from an absolute zero 
491º below the zero of Fahrenheit’s thermometer. 
[Probably a misprint instead of 461º, the correct value 
being 459º.]
If a gas be compressed, the mechanical power ex-
pended in the compression is transferred to the 
molecules of the gas increasing their vis viva; and 
conversely, when the gas expands, the mechanical 
power given out during the expansion is obtained 
at the expense of the vis viva of the atoms. 
—J. J. WATERSTON, Abstract for “On a General Theory 
of Gases,” 1851 [Truesdell 1968, p. 294]

	�Figure 
4.131 JAMES 
PRESCOTT JOULE 
(1818–1899): 
Owner of 
a brewery, 
perhaps the 
last autodidact 
who made 
a significant 
contribution 
to science. His 
strength was 
a finely honed 
measurement 
technique. In 
recognition of 
his scientific 
accomplish-
ments, he 
was named 
president of 

the Literary and Philosophical Society of Manchester. In 1840, he 
worked out the laws for the heat generated by an electric cur-
rent. 1843: measurement of the heat equivalent of mechanical 
work. Over three decades, he determined the numerical conver-
sion factors for energy transformation with various techniques; 
these experiments contributed decisively to the general recogni-
tion of the concept of energy and the energy conservation 
law. His friendship with THOMSON (later LORD KELVIN) had a great 
influence on his work: The Joule–Thomson effect is the change in 
temperature that occurs in the expansion of a gas without doing 
work and while kept insulated so that no heat exchange with the 
environment occurs. At room temperature, all gases—with the 
exception of hydrogen, helium, and neon—will cool under these 
conditions, so that this effect can be used for the liquefaction of 
gases. At very low temperatures, hydrogen and helium can also 
be cooled this way.
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4.5.10 The Second Law of Thermodynamics
In macroscopic thermodynamics, Clausius again takes center stage. Having ac-
cepted the equivalence of heat and mechanical work, or, more generally, the prin-
ciple of conservation of energy, he noticed that for an explanation of thermody-
namic phenomena, yet another concept was also needed. He began with the 1854 
axiom that heat cannot of its own accord pass from a colder body to a warmer one. 
This axiom is a generally understandable way of stating the second law of ther-
modynamics (Figure 4.139(a)). An axiom equivalent to this is the following: it is 
impossible to construct a perpetual motion machine of the second type, by which 
is meant an apparatus that without violating the law of conservation of energy, 
nevertheless completely (with 100% efficiency) transforms heat into mechanical 
work (Figure 4.139(b)).

��Figure 4.133 JOULE’s experimental apparatus for determining the mechanical equivalent of heat.

Quotation 4.47
Forces are causes; therefore, the following 
fundamental law applies: causa aequat effectum. If 
cause c has effect e, then c = e. If e is itself the cause 
of another effect f, then e = f, etc., c = e = f = … = 
c. In a chain of causes and effects, as is illuminated 
from the nature of an equation, a term or a part of 
a term can never become zero. This first property of 
all causes we call indestructibility.
If the given cause c has caused the like effect e, 
then c has ceased to be; c has become e; if after the 
creation of e, c remains in whole or in part, then a 
further effect would have to correspond to this 
remaining cause, and the effect of c must therefore 
be > e, which contradicts the assumption c = e. 
Since therefore c changes into e, e into f, etc., these 
quantities must be seen as different manifestations 
of one and the same object. The capacity of being 
able to assume different forms is the second 
significant property of all causes. Summarizing 
both properties, we say, causes are (quantitatively) 
indestructible and (qualitatively) changeable objects.
Two categories of causes are to be found in nature 
between which, according to experience, no 
transformations take place. One category consists 
of the causes to which are associated the property 
of ponderability and impenetrability—matter. 
The others are the causes that do not have these 
properties—forces that we may call imponderable 
in recognition of a property that they lack. Forces 

continued on next page

	�Figure 4.132  
HERMANN VON HELMHOLTZ 
(1821–1894): Began 
his career as a military 
physician. Part of his 
scientific work was in 
the area of physiology: 
In 1851 he determined 
the velocity of nerve 
excitation. 1871: pro-
fessor at the University 
of Berlin. His work ex-
tended over almost the 
entire range of physics. 
1847: formulation of 
the law of conservation 
of energy in a form that 
is closest to our current 
view. 1859: working 
out of the hydrody-
namic vortex theorem 
that bears his name (J. 

J. THOMSON based his vortex atomic model on these theorems). Al-
though himself not an advocate of the atomic theory, in 1881 he 
emphasized that an atomic structure of matter implies an atomic 
structure of electricity. In the second half of the nineteenth 
century, HELMHOLTZ played an outstanding role in the system of 
higher education and the development of scientific life in Ger-
many. Many German scientists at the beginning of the twentieth 
century saw HELMHOLTZ as their intellectual father.
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We arrive at the notion of entropy and thereby a mathematical formulation of the second law of ther-
modynamics in the following way: In an ideal reversible Carnot cycle, we have Q1 / T1 = Q 2 / T2, or 
equivalently, Q1 / T1 – Q 2 / T2 = 0. More generally, we may write Q Ti i/∑ = 0, where the quantities of 
heat flowing into the system are taken as positive, and those flowing out as negative. Given a general ideal 
reversible cycle, it can be broken down into small “elementary” cycles. For each of these, the above equa-
tion holds with the incoming or outgoing heat quantity dQ and with the (variable) temperature T. Thus, 
in 1865, it was established by Clausius that for an arbitrary reversible cycle that is run to completion, 
one has the equation

 
d /Q Tx∫ = 0 .

From this, it follows that the quantity dQ / T is a total differential. The value of the line integral for 
a process that does not return to its original state therefore depends only on the initial and final states:
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If the point A is held fixed, then one has a quantity that depends only on the state B. This new quantity of 
state is the entropy of the material. For irreversible cyclical processes. Clausius was able to prove the equation

d ,Q
Tx∫ < 0

where heat flowing into the system must be taken as positive.
From this, it follows that the entropy of a closed system cannot decrease (Figure 4.139(c)).
The two laws of thermodynamics can now be written as

d d dU Q A= +

and
d dS,Q T≤

or equivalently:

1. The energy of a closed system is constant.
2. The entropy of a closed system can only increase or remain constant.

The work of the chemist Walther Nernst (1864–1941) and the physicist Max Planck then led (in 
1904 and 1911, respectively) to the formulation of the third law of thermodynamics:

3.  The entropy of a system in thermodynamic equilibrium approaches zero as the temperature ap-
proaches absolute zero. 

The further development of phenomenological thermodynamics and its extension to heterogeneous 
systems in the 1880s is due primarily to Helmholtz and Gibbs. Then in the twentieth century, the 
focus of interest moved to irreversible processes, with particular emphasis on biological phenomena 
(Prigogine, Onsager, Gyarmati).

At first glance, entropy appears to be a totally abstract quantity, of interest solely 
in theoretical physics. However, entropy is a quantity of state just like pressure, vol-
ume, and temperature, so it has practical engineering applications, for example, in 
the design of steam engines with temperature/entropy diagrams (see Figure 4.128).

Many of the phenomena in daily life can be related through the concept of en-
tropy. It makes it possible to describe quantitatively simple laws: for example, if 
we have in a closed system of bodies at different temperatures, sooner or later their 
temperatures will come into equilibrium.

This conclusion was projected to the whole universe in the so-called heat death 
theory, according to which the universe at present is in a state of relatively low 
entropy, which means that we can find bodies in it with widely differing tempera-
tures. But every process that takes place in the universe leads to an increase in its 
total entropy, so the universe must eventually reach a state of maximal entropy 
in which all temperature differences have been equalized, and thus one in which 
the possibility for life no longer exists. From the standpoint of physics, however, 
this conclusion is incorrect for two reasons. The first is that the law of increase in 

Quotation 4.47, continued
are therefore these: indestructible, changeable, 
imponderable objects.
It is now agreed that for vanishing motion in many 
cases (exceptio confirmat regulam), no other effect 
can be found than heat, for the created heat no 
other cause than motion; we therefore prefer the 
assumption that heat results from  motion to 
the assumption of a cause without effect and an 
effect without cause, like a chemist establishing 
a connection between H and O on the one hand 
and water on the other instead of unquestioningly 
allowing H and O to vanish and water to appear in 
an unexplained manner.
We may clarify the natural relationship that arises 
among gravitational force, motion, and heat in the 
following way. We know that heat appears when 
the individual mass elements of a body move closer 
together; compression creates heat; now, what 
holds for the smallest mass elements and their 
smallest interstices must hold as well for large 
masses and measurable volumes. The falling of a 
weight is an actual reduction in the volume of the 
Earth, and therefore must be related to the resulting 
heat; this heat must be precisely proportional to the 
size of the weight and its (original) distance. …
We close our theses, which arise necessarily from 
the fundamental law causa aequat effectum and 
stand in full accord with all natural phenomena 
with a practical consequence. …
We must find how high a given weight must be raised 
above the Earth’s surface so that its gravitational 
force is equivalent to the heating of an equal weight 
of water from 0º to 1º C. That such an equation can 
actually be established in nature can be considered 
the summary of what we have said above.
Using the established theorems on the heat 
and volume relationships of gases, one finds the 
sinking of a column of mercury compressing a gas 
to be equal to the heat quantity released by the 
compression, and it turns out—the relative powers 
of the capacities of atmospheric air under equal 
pressure and volume = 1.421—that the falling of a 
weight from a height of about 365 m corresponds 
to a warming of an equal weight of water from 
0º to 1º. If one compares the power of our best 
steam engines with this result, one sees how only 
a small portion of the heat generated in the boiler 
is actually converted into motion or lifting power, 
and this could serve as justification for searching 
for other ways to represent motion fruitfully than 
the sacrifice of the chemical difference of C and 
O, namely through transformation of electricity 
created by chemical means into motion.
—ROBERT MAYER, “Bemerkungen über die Kräfte der 
unbelebten Natur,” 1842
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entropy holds true only for closed, finite systems; the second objection relates to 
the probabilistic nature of the second law, which describes the probable course of 
events, from which, even if only with a small probability, deviations are possible.

It was Kelvin who, in 1852, first emphasized that in natural processes, there is 
a general tendency for all forms of energy to be transformed eventually into heat, 
equalizing any temperature differences. The pessimism of Schopenhauer, which 
came into fashion at this time, provided the philosophical background for these 
fresh scientific theories.

The vision of the French poet Jules Laforgue (1860–1887) in Funeral March 
for the Death of the Earth (Quotation 4.49) is just as viable today as it was then, but 
at the time the catastrophe was going to be due to the blind laws of nature; today, 
however, it is human nature (or perhaps the blind laws of human nature) that is 
responsible for what will come.

Furthermore, from what we now know, it seems that the laws of nature are more 
likely to incinerate us than to freeze us: After a few billion years, our Sun will be 
transformed into a red giant and will eventually become so large as to encompass 
Earth’s orbit.

4.5.11 Entropy and Probability
By the mid-1860s, the two laws of macroscopic (phenomenological) thermody-
namics had firmly taken root; following the interpretation of the state equation, 
the kinetic theory of gases successfully dealt with the problems of heat conduction 
and viscosity (Maxwell, On the Dynamical Theory of Gases, 1866–1868).

The state equation and even the first law of thermodynamics had been derived 
from simple mechanical laws (conservation of momentum and energy), so it is 
no wonder that the need immediately arose to interpret the second law of ther-
modynamics in terms of the kinetic theory. Entropy plays a central role in the 
mathematical formulation of the second law, so the first serious efforts were di-
rected toward proving within the framework of the kinetic theory—by investigat-
ing reversible processes—that the expression dS = dQ / T is a complete differential, 
in other words, that the entropy S exists as a quantity of state (Rankine 1865, 
Boltzmann 1866, Clausius 1871).

Their starting point was the principle of least action in a somewhat more general 
form; but to reach the desired goal, in the beginning the movement of individual 
particles had to be restricted in extremely unnatural ways, for example, with each 
particle having to move in a closed path with identical periods. Although these 
restrictions could be moderated later, by the beginning of the 1870s it had become 
clear that particularly in the case of irreversible processes, an interpretation of the 
second law using solely mechanical principles was not possible.
The trains of thought followed by Clausius and Boltzmann can be summarized as follows [Spassky 
1977]: We write the action function of an individual particle:
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HereE is kinetic energy, U is potential energy, and E0 is total energy. For the variation, the constant E0 is 
irrelevant, and so the last term may be omitted. We therefore have
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Suppose our system consists of n particles each with three degrees of freedom. And suppose that the state

��Figure 4.134 RUDOLF CLAUSIUS (1822–1888): After 
studies at the University of Berlin, taught at a number of 
German universities as well as the Swiss Federal Institute 
of Technology, in Zurich. 1865: formulation of the second 
law of thermodynamics and introduction of the notion of 
entropy. His work on the kinetic gas theory, which began 
in 1857, is also of significance.

Quotation 4.48
[T]he conversion of heat […] into mechanical effect is 
probably impossible,* certainly undiscovered. In actual 
engines for obtaining mechanical effect through the 
agency of heat, we must consequently look for the 
source of power, not in any absorption and conversion, 
but merely in a transmission of heat. … 
*[In the footnote] This opinion seems to be nearly 
universally held by those who have written on 
the subject. A contrary opinion however has been 
advocated by Mr. JOULE of Manchester; some very 
remarkable discoveries which he made with 
reference to the generation of heat by the friction of 
fluids in motion, and some known experiments with 
magneto-electric machines, seeming to indicate an 
actual conversion of mechanical effect into caloric. 
—Sir WILLIAM THOMSON (Lord KELVIN), Mathematical 
and Physical Papers [pp. 102–103]
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of the system is characterized by specifying the 3n positional coordinates in 3n-dimensional space:

x(1), y(1), z(1); x(2), y(2), z(2);…; x(n), y(n),  z(n).

Suppose that at time t1, the system is at the point
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in configuration space and is moving along a curved path in this space, arriving at time t2 at the space 
point
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If we supply the system with heat įQ, then the system describes a different, neighboring path between 
P1 and P2. The variation in the action function for the entire system is given, after some not very compli-
cated intermediate calculations, by
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Here E  is now the sum of the kinetic energies of all the particles, U is the potential energy, L is the work 
of the system against external forces, and E+U E is the total energy of the system. If we now take the 
average values for all the quantities that appear, for example, in the equation 
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for the kinetic energy, we obtain the equation
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However, the heat added to the system serves, on the one hand, to increase the internal energy and, on 
the other hand, to perform work against the external forces; therefore, we have

δ δ δE L Q+ = .

We thereby obtain
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To make the last term disappear, we require the above-mentioned overdetermined conditions. If the par-
ticles move over closed paths with a common period Ĳ = t2 – t1, then each individual term will be zero in 
the sum: the state of each particle is the same for times t1 and t2. A weaker condition would be to require 
the entire sum to be equal to zero. In this case, we obtain

2δ τ τδE =( ) Q .

However, the average kinetic energy is proportional to the temperature:

E = KT ,

that is,

δ δ τ
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This proves that—under the given condition—įQ/T is a complete differential, that is, its integral de-
pends only on the final state of the system and not on the manner in which this state was achieved. Here 
we are considering the initial state as fixed.

Boltzmann clearly understood in 1872 that “the problems of the mechanical theory of heat are also 
problems of probability theory.” He presented his famous kinetic equation for the change in the general
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4.135 WIL-
LIAM THOMSON 
(LORD KELVIN) 
(1824–1907): 
From 1846 to 
his retirement, 
professor at 
the University 
of Glasgow. 
Known pri-
marily for his 
experiments in 
the theory of 
heat (Joule–
Thomson 
effect, intro-
duction of the 
absolute tem-
perature scale, 
1848) and 
the formula 
ω = 1/ LC
for the reso-

nance frequency of an oscillating electrical circuit, but he was also 
instrumental in designing and laying the transatlantic telegraph 
cable (1854–1866). His thermodynamic experiments were col-
lected in the 1851 publication On the Dynamical Theory of Heat.

	�Figure 
4.136 LUDWIG 
BOLTZMANN (184 4–
1906): After studies 
in Vienna, assistant 
to J. STEFAN. Taught 
theoretical physics 
in Graz, then in 
Vienna, Munich, 
and Leipzig. Was 
also an outstanding 
experimentalist; for 
example, he verified 
the relationship n2 = 
İr ȝr required by the 
Maxwell electro-
magnetic theory of 
light for the case 
of sulfur. His main 
results: relationship 
between entropy 
and thermody-
namic probability, 
MAXWELL–BOLTZMANN 

distribution function, theoretical foundation of the STEFAN–
BOLTZMANN law for blackbody radiation.

BOLTZMANN was a multifaceted personality. He studied music 
with BRUCKNER and was also active as a writer. In 1906, probably 
less on account of the attacks of the “energists” than from a 
deterioration of his mental faculties, he took his own life.
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distribution function f x y z x y z t( , , ; , , , )� � � in the following form:
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where X, Y, Z denote the components of the external force acting on the particles; the term on the right-
hand side gives the change in the distribution function per unit time due to the collisions. This quantity 
depends in a rather complicated way on the form of the distribution function itself. It is at once clear that 
the collisions change nothing in the Maxwell–Boltzmann distribution; indeed, they ensure that a gas with 
such a complicated distribution function at a given point in time will enter into a state of equilibrium 
with the Maxwell–Boltzmann distribution if no external effects on the gas are permitted. However, that 
is but one of the consequences of the theorem presented by Boltzmann in 1872 and later called the H 
theorem, which states that if the distribution function f x y z x y z t( , , ; , , , )� � � satisfies the kinetic equation, 
then as a function of time, the quantity

E f f x y z x y z= ∫∫∫∫∫∫ ln d d d d d d� � �

can only decrease (or remain constant at a minimal value), that is, 

∂
∂

≤E
t

0.

The integration extends over all possible values of the six variables. The thought immediately arises that 
E must be closely related to the entropy. A simple calculation shows that in the equilibrium state, E is 
proportional to the negative entropy.

As a curiosity, we should mention that, according to tradition and not completely verified, the name 
“H theorem” is based on a misunderstanding: The letter E had long been reserved to denote energy, and 
so the uppercase letter eta (H) was taken from the Greek alphabet. 

Below, we sketch Boltzmann’s ideas published in 1877 in a somewhat modern-
ized form.

We consider a system consisting of N molecules, where the structure of the mol-
ecules can be arbitrarily complex. We therefore need more information in order to 
be able to characterize the state of the molecules.

The position of a molecule with f degrees of freedom can be uniquely specified 
by the f coordinates q1, q2,…, qf  . To describe the state of such a molecule, the 
spatial coordinates x, y, z generally do not suffice; rather, one must introduce an 
f-dimensional space with coordinates q1, q2,…, qf in which the molecule’s position 
is represented by this point.

For a complete specification of the state of a molecule, we need in addition to the 
information about its location, information about its motion. The most useful ap-
proach is to use “canonically conjugate” momenta p1, p2, …, pf , associated with the 
spatial coordinates. The canonically conjugate quantities q and p also play a role, as 
we have seen (Section 4.2.7) in the Hamiltonian equations of motion in mechanics.

The position and motion of a molecule, or, more generally, its state of motion, 
are described by the set of 2f generalized coordinates q1, q2, …, qf ; p1, p2,…, pf . 
We now use these as ordinary Cartesian coordinates in a 2f-dimensional space. To 
this end, we place q1 on the first axis, q2 on the second, and finally pf on the 2fth. 
It should not cause any difficulty that we are only able to visualize up through 
coordinate q3. We call the space thus obtained the phase space of the molecule. We 
can now say that the state of a molecule corresponds to a particular point in phase 
space because each point specifies both the spatial and momentum coordinates. We 
now divide the phase space into volume elements with volume d d dq q pf f1$ $
and number the resulting “cells” consecutively. Using this enumeration, we can 
identify individual locations in the phase space. We now know the state of a gas 
if at a given point in time we know, for each marked “individual” distinguishable 
molecule, the cell in phase space in which it is located. We call this state, which is 
determined by specifying all coordinates of the molecules that we consider to be 

Quotation 4.49
O vast convocation, magnificent suns, 
Gather and loosen your masses of gold; 
Lead tenderly, sad, to solemn accords 
The majestic funereal march of your sister, asleep. 
The sands have run out! The Earth, forever dead, 
After a final gasp (where a sob trembled!) 
Among the nocturnal silence of echoless calm, 
Float, an immense and solitary wreck. 
That dream! swept away by the night, is it true? 
You are only a shroud, inert and tragic mass; 
And yet remember! Oh, epic saga, unique! … 
No, sleep; it’s over now. Eternally, sleep. 
…
And yet, remember, Earth, that primal age 
When you could summon through the monoto-
nous days 
Only the wind’s pantoums, the muffled clamor of  
 waves, 
And silvery whispers among the leaves. 
But the rebel, frail and impure, appears! 
He plunders sacred Maya’s beautiful veils, 
And the sob of Time springs upward toward the 
 stars …  
But sleep; it’s over now. Eternally, sleep. 
…
Oh! can you forget the medieval night 
When Terror would intone the “Dies irae” 
While famine ground the old exhuméd bones 
For Plague whose fury gluts the charnel house! 
Remember that hour when man in his ultimate 
 fear, 
Under the barren sky, still clinging to Grace, 
Cried “Glory to God the Just,” and cursed his race! 
But sleep; it’s over now. Eternally, sleep. 
…
And the stake! the irons! tortures! jails! 
Bedlam and towers, brothels! 
Alchemy! and music! and the arts! 
Science! and the war to fertilize the land! 
And luxuries! spleen, love, and charity! 
Hunger and thirst, drink, ten thousand ills! 
Oh, what a drama you lived, fast-cooling ashes! 
But sleep; it’s over now. Eternally, sleep. 
…
And nothing remains! O marble Venus, rain 
 etchings!  
Insane Hegelian brain! sweet consoling songs! 
Belfries of filigree woven, upspringing, consumed! 
Books which held man’s useless victories! 
All that was born of your children’s wrath, 
All that was once your filth and your transient 
 splendor, 
O Earth, has become like a dream, a noble dream. 
Go to sleep; it’s over now. Eternally, sleep. 
…
Eternally sleep; it’s done. Believe if you will 
The whole fantastic drama an evil dream.

continued on next page
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distinguishable, the microstate. We now proceed from the assumption that each 
microstate of a gas thus defined appears with equal probability.

The measurable macroscopic state of a gas is given by the number of molecules 
in the various phase-space cells, or, in other words, by the density of the molecules 
in phase space.

If there are N1, N2, …, Nn, molecules in the N cells of phase space numbered 
1, 2, …, N, then we are dealing with the macroscopic state characterized by the 
numbers N1, N2, …, Nn. The number of possible microstates associated with this 
macroscopic state is

 
P N

N N Nn
td  

!
! ! !

.
1 2 $  

(2 )

This number is called the thermodynamic probability of the associated macro-
scopic state.

A gas left to itself progresses in a brief period of time from a given initial state to 
a state with maximal thermodynamic probability. For example, consider two parts 
of a container separated by a partition that contain gas at different pressures; for 
the volume of the entire container, the probability of this distribution is much less 
than the probability of a uniform distribution. Hence, if we remove the partition, 
then the pressures will equalize. A further example: If a jet of gas enters a gas-filled 
container at a uniform speed, then the velocities of the molecules in the jet will 
rapidly change: the molecules will scatter uniformly in every direction and the 
absolute values of their velocities will satisfy the Maxwell distribution because this 
state is much more probable than the initial state.
Expression (2) for the thermodynamic probability has its maximum at N N Ni1 2    $ $ , that is, 
at constant density, assuming that each element of phase space is assigned the same energy. However, if 
we associate energy Ei with the element that contains Ni particles and if the total energy E is a specified 
constant, then a different result is obtained. Expressed mathematically, we are now seeking a maximum 
for the thermodynamic probability Ptd with the constraint that 

N E Ei ii∑ = 0 ; in addition, there is the 
natural (at least in classical problems) constraint N Nii∑ = that the number of particles is constant. 
The solution with the greatest probability is the following “Boltzmann distribution”:

N Ai
E kTi= −e ./

In the derivation, N and all the Ni are taken to be large; it is therefore possible to calculate with continu-
ously variable values of Ptd, and one can also use Stirling’s asymptotic formula for N!:

N N N N

!
e

� 2π ⎛
⎝⎜

⎞
⎠⎟

.

We have found in the thermodynamic probability a quantity that says something 
about the direction of processes. In nature, processes run in such a way that the 
total thermodynamic probability for all bodies involved in the process increases. 
This statement seems familiar to us because in thermodynamics, the same is said 
about the entropy: Entropy is the quantity that in macroscopic thermodynamics 
determines the direction of processes. We recall that according to the second law 
of thermodynamics, the entropy in a closed system can only increase. Therefore, 
there must be a close connection between the thermodynamic probability of the 
macroscopic state of a gas and the entropy. That is, the entropy should be a func-
tion of the thermodynamic probability.

This function can easily be determined. According to the laws of thermodynam-
ics, the total entropy of two gases confined in containers isolated from each other 

��Figure 4.137 The Maxwell velocity distribution.

��Figure 4.138 Temperature dependence of the specific 
heat of hydrogen gas measured at constant volume. As the 
temperature increases, it appears that the number of degrees 
of freedom increases. This phenomenon will be explained 
later only by quantum theory.

Quotation 4.49, continued
You have become a tomb which aimlessly wanders 
…. Nameless within the unremembering darkness – 
It was a dream! Oh no, you never lived! 
All is alone! no witness! nothing to see or to think. 
Nothing but darkness, time, and the silence… 
Sleep; you’ve been dreaming. Eternally, sleep.  
 
O vast convocation, magnificent suns, 
Gather and loosen your masses of gold; 
Lead tenderly, sadly, to solemn accords 
The majestic funeral march of your sister, asleep.
—JULES LAFORGUE, “Funeral March for the Death of 
the Earth,” 1881
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is equal to the sum of the individual entropies of the two gases: S = S1 + S2. The 
probability W that at a given time the entire system will be in a particular state is 
given by W = W1 ! W2 , where W1 and W2 are the thermodynamic probabilities 
of the two gases. We know that the probability for the simultaneous occurrence 
of two independent processes is equal to the product of the probabilities of the 
individual processes, so from what we have said, it follows that S = f  (W  ) must be 
chosen such that S = S1 + S2 can be satisfied with f  (W1 ! W2) = f  (W1) + f  (W2). 
This requirement determines the function  f  (W  ) as

S k W ln ,

since the logarithm of a product is equal to the sum of the logarithms of the fac-
tors. Here k is the well-known universal Boltzmann constant. This relationship was 
first formulated by Boltzmann in 1877 and generalized in 1879 by Maxwell.

Having succeeded in establishing a relationship between entropy and the prob-
ability of the state of a gas, we may state that the second law of thermodynamics, 
with its statement about the growth in entropy, is no longer to be seen as absolute 
and valid under all circumstances. Namely, if every microstate of a gas is realized 
with equal probability, then over a sufficiently long period of time, the gas will take 
on every possible state. We know, however, that the maximal entropy is associated 
with the majority of these states; nevertheless, other states with a smaller entropy 
must occur, even if only very seldom.

One formulation of the second law—the one closest to our common sense—is 
that heat does not of its own accord pass from a colder body to a warmer body. By 
the above, this is not strictly true. It is not out of the question that when two bod-
ies of different temperatures touch, the result will be that the colder one becomes 
colder and the warmer one becomes warmer. Within the kinetic theory of heat, 
this means that spheres moving at an average low velocity collide with the faster 
ones in such a way that the velocities of the faster spheres increase, while those of 
the slower ones correspondingly decrease. According to the laws of mechanics, this 
is possible: possible yes, but by the above, highly unlikely. To understand the order 
of magnitude involved, let us calculate the probability that the very small heat 
quantity of 1 erg flows by itself from one body at temperature 14º C to a body at 
15º C: As the measure of change in entropy, ǻS/k is given by
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from which we obtain the value
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1011

is an unimaginably large number, and we must execute correspondingly 
many experiments if we expect to observe the result indicated above. We may 
therefore be certain that we will never observe energy flowing from a colder body 
to a warmer body.

We can now state the second law of thermodynamics more precisely: If a gas is 
in a state whose entropy is significantly smaller than the maximum possible value, 
then the probability is very great that at a later time, a larger value for its entropy 
will be measured.

��Figure 4.139 Various formulations of the second law of 
thermodynamics.

(a) Heat cannot of itself pass from one body to a hotter body 
without additional processes participating in the system. The 
possibility of other processes must be emphasized, because in 
a refrigeration system, a body can have heat extracted from 
it and passed to the warmer environment; however, there 
complex processes are involved.

(b) A quantity of heat cannot be transformed into mechanical 
work with 100% efficiency. The work done by the motor here 
is transformed completely into heat, but this heat cannot be 
completely turned back into work. Hence, the arrangement 
shown will not work, even though it does not contravene the 
law of conservation of energy.

(c) The entropy of a closed system cannot decrease. Closed 
systems move on their own only into states of greater en-
tropy, that is, states that are more probable or more disor-
dered. Because entropy is a state quantity, this formulation is 
the best for deciding which end states in complex processes 
can be reached from given initial states. Thus, for example, 
recently the question was discussed whether the efficiency 
of fuel cells can be greater than 100%. Fuel cells are galvanic 
cells in which the chemical energy of fuels is transformed 
directly into electric energy using chemical reactions that may 
take place even at room temperature. At first glance we may 
think that an efficiency of more than 100% would be in viola-
tion of the first law of thermodynamics, the conservation of 
energy, because we would get more energy out of the system 
than we put in. However, we must consider that the

continued on next page

(a)

(b)

(c)
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Boltzmann’s statistical interpretation of entropy, as presented above, made it 
possible to provide a convincing answer to all objections to the interpretation of 
thermodynamic phenomena within the framework of mechanics. These were the 
two most important objections:

1. Let the particles of the gas move as a mechanical system, which is to say that the 
gas assumes a series of states. According to the laws of mechanics, the opposite 
movement, where the gas traverses the same states in the opposite direction, 
is also possible.  However, the laws of thermodynamics allow only changes in 
state in the direction in which entropy increases (Loschmidt, 1876).

2. Every closed mechanical system in its movement will repeat any of its states 
arbitrarily closely after sufficient time, so that every intermediate increase in 
entropy must be compensated for by a loss in entropy at some other time 
(Zermelo’s objection, 1896, based on Poincaré’s inversion theorem).

Yet another objection should be mentioned. We again start from the point of view 
that a gas can be seen as a mechanical system whose course of motion is determined 
by the laws of mechanics, and we also assume that every microstate of a gas is realized 
with equal probability. However, given the laws of mechanics, the specification of the 
initial state determines all future states of the gas over the course of time, so that the 
gas passes through deterministic, not probabilistic, states. But if we assume that the 
microstate is measured at stochastically chosen points in time, then it is reasonable to 
ask about the frequency with which we find that the gas obeys the deterministic laws 
of motion, in any given state. The question is whether we can then also show, using 
the equations of mechanics, that under such conditions every microstate of a gas will 
be found with the same frequency. Indeed, using Hamilton’s equations of motion, 
John von Neumann was able to show that a system with a great many degrees of 
freedom runs through all the energetically allowed microstates (ergodic hypothesis) 
or at least approaches such states arbitrarily closely (quasiergodic hypothesis). With 
this it has been proven that, if we make our observations at random times, we will 
encounter a gas in every microstate with equal frequency, meaning that every micro-
state occurs with equal probability.

Yet before the fundamental problem of classical statistical mechanics could fi-
nally be explained in this way, it had lost its significance. It turned out that the 
phenomena of microphysics do not satisfy the equations of classical mechanics but 
must be described in terms of the probabilistic laws of quantum mechanics, which 
make possible a much simpler justification for the assertion that all microstates 
occur with the same frequency. The most important result for our further con-
sideration is therefore not the complete reduction of the laws of thermodynamics 
to the laws of mechanics, but instead the derivation of strictly valid, apparently 
causal laws of macroscopic physics from probabilistic statements about elementary 
events, such as the occurrence of microstates.
The statistical treatment of thermodynamic processes in the framework of classical physics reached its 
zenith with the work of Gibbs (Figure 4.140) in the first years of the twentieth century. Gibbs envisioned 
a macroscopic system under investigation as a single object with a large number of degrees of freedom. 
Thus, a gas consisting of n pointlike particles has N = 3n degrees of freedom.

The state of the entire system can therefore be characterized at any moment in time by specifying N 
generalized spatial coordinates q1, q2, …, qN and the N generalized momentum coordinates p1, p2, …, pN. 
In the 2N-dimensional phase space of the system, a single point therefore corresponds to the associated 
state. The movement of this point is prescribed by the Hamiltonian equations. The result is an extensive 
domain of validity for Gibbs’s method applicable to every system whose laws can be given in Hamilto-
nian canonical form. This method can, for example, be extended even to electromagnetic fields.

Figure 4.139 continued

 environment belongs to the total system, and the apparatus 
could “pump” heat out of the environment. But what does 
the second law say about the possibility of such a process? By 
itself it cannot occur. However, if the entropy in the reaction 
products is greater than the entropy of the initial fuel, then 
this increase of entropy can compensate for the decrease of 
entropy due to the “pump” and the entropy of the entire sys-
tem can increase. Consequently, the efficiency of certain fuel 
cells can—theoretically—be greater than 100%. In practice, 
however, such efficiencies are yet to be demonstrated.

��Figure 4.140 JOSIAH WILLARD GIBBS (1839–1903): Studied 
at Yale University. First doctor of engineering in the United 
States (1862) with a dissertation titled On the Form of the 
Teeth of Wheels in Spur Gearing. After a three-year study of 
mathematics and physics at various European universities, 
from 1871 professor of theoretical physics at Yale. One of his 
most significant works is A Method of Geometrical Repre-
sentation of the Thermodynamic Properties of Substances by 
Means of Surfaces (1873), in which the connections between 
volume, entropy, and energy are studied. MAXWELL was so 
impressed by this method that he built a model and sent it to 
GIBBS. In 1876, GIBBS’s best-known work, On the Equilibrium of 
Heterogeneous Substances, appeared, in which he introduces 
the thermodynamic potentials, presents the most general 
conditions for equilibrium, and discusses the thermodynam-
ics of surface phenomena and of electrochemical processes. 
In 1902, his book on the fundamental principles of statistical 
mechanics was published. The Great Soviet Encyclopedia of-
fers the following evaluation: 

In GIBBS’s work, not a single error has thus far been dis-
covered, and every one of his ideas is still valid in today’s 
science.

continued on next page
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Let us now picture our system as existing in a large number of instances with identical physical struc-
ture except for the initial state. Suppose that the corresponding point in 2N-dimensional phase space 
is specified for each instance. We thus have before us a Gibbs ensemble that can be characterized by a 
distribution function f (qi, pi, t) of these points. It then turns out that the various distribution functions 
correspond to various physical situations. The most important role is played by the Gibbs canonical en-
semble (1901), whose distribution function has the form

f q p Ai i

H p q
kT
i i

( , ) e .
( , )

=
−

This function describes the behavior of a system in thermal equilibrium with its environment; H( pi, qi ) 
is the well-known Hamiltonian function: the total energy expressed in terms of the conjugate spatial and 
momentum coordinates. 

4.6 The Structure of Matter and Electricity:  
The Classical Atom

4.6.1 Chemistry Hinting at the Atomic Structure of Matter

Earlier in this book, we became acquainted in some detail with the beginnings of 
atomic theory. We went back as far as Parmenides and his world model of a  static 
homogeneous sphere that represented the denial of all change, but whose broken-
up fragments we tried to link to the atomic ideas of Democritus. While for 2000 
years, atomism was only able to explain qualitative, or philosophical, questions, we 
saw the first signs of a quantitative theory advanced by Daniel Bernoulli in the 
middle of the eighteenth century, which was subsequently expanded by Water-
ston and Joule, and then, above all, by Clausius, Maxwell, and Boltzmann 
in the completed form of the kinetic theory that is more or less valid today. To be 

Figure 4.140 continued

The Encyclopaedia Britannica explains somewhat more con-
cretely that GIBBS’s principles have been formulated so generally 
and abstractly that the possibilities for their application were 
fully recognized only decades after the fact and that even 
quantum statistics can be built on this sturdy foundation. As an 
additional example of progress in this area, one might mention 
the thermodynamics of irreversible processes, or nonequilibrium 
thermodynamics, which developed only recently.

Thermodynamic potentials are, in general, functions of the 
state variables: volume (V ), pressure (p), temperature (T ), 
entropy (S), and internal energy (U ). They make possible or 
simplify the calculation of characteristic quantities of a given 
system such as specific heat capacity or heat of reaction. 
Specifying the conditions for the equilibrium state is also 
simplified with their help:

1.  The “free energy” introduced in 1882 by HELMHOLTZ: 
F = U – TS, dF = –SdT – pdV. It yields, under constant 
temperature (dT = 0), the “freely transformable en-
ergy of the system.” If dT = 0 and dV = 0, then dF = 
0; that is, in constant-temperature, constant-volume 
systems, the free energy approaches an extreme 
(minimal) value.

2.  The Gibbs heat function H = U + pV (HEIKE KAMER-
LINGH ONNES gave it the name enthalpy): For dp = 0, a 
change in enthalpy yields the heat of reaction of the 
chemical processes taking place.

3.  The free enthalpy or Gibbs function: G = H – TS = 
F + pV plays the same role for dT= 0, dp = 0—that 
is, for constant-temperature, constant-pressure 
processes—as free energy plays for constant-temper-
ature, constant-volume systems; its value reaches a 
minimum at equilibrium.

��� Figure 4.141 Title page of LAVOISIER’s epoch-making book on chemistry with a double page of figures. (Library of the University for Heavy Industry, Miskolc.)


