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Newton's thoughts on dynamics were awakened late in 1679 by a series of letters from Robert Hooke,
who had recently become secretary of the Royal Society and was attempting to revive Newton's
interest in contributing to its proceedings. The Royal Society had been founded in London in 1661,
and its meetings and publications served to inform the intellectual community of progress in natural
philosophy. Newton had been elected to membership in 1672 but had threatened to resign the
following year because of criticism of his paper on the theory of colors. Hooke's letter of conciliation of
November 1679 opened with the observation that some individuals would misrepresent him to
Newton and Newton to him but that differences of opinion, "especially on philosophical issues," should
not be the basis of enmity.[1] Hooke offered an olive branch in the form of a request for Newton's
opinion on Hooke's hypothesis concerning planetary motion. In contrast to Newton's earlier Cartesian
view of curvilinear motion with a tangential endeavor and an outward endeavor counterbalanced by
an inward force, Hooke proposed that planetary motion was a dynamic compound of only two
motions: a motion along the tangent line due to inertia and a motion toward a central body due to an
inward attractive force.[2] The Cartesian outward endeavor is not mentioned.

This revision of the dynamical principle appears not to have been fully appreciated either by
Hooke (who never did solve the problem) or by Newton (who did not take up the problem at once). In
his immediate reply to Hooke's letter, Newton said that he had not had time to "entertain
philosophical meditations" and in fact had "long grudged the time spent in the study."[3] Hooke's
initial letter had spoken both of the dynamics of planetary motion and of the astronomer John
Flamsteed's claims concerning parallax. Newton had chosen not to respond to the topic of planetary
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motion but rather spoke to the question of falling bodies on a moving earth, a question that had been
raised indirectly by Hooke's report of Flamsteed's measurements of parallax. The correspondence that
followed was concerned with that topic. Newton did produce a response to Hooke's planetary
challenge, however, at least if one is to trust Newton's recall of his activities some thirty-five years
later. In the autumn of 1714, Newton was in the midst of a controversy with the German philosopher
and mathematician Wilhelm Gottfried Leibniz over who could claim the invention of calculus, and in
the course of that debate, Newton recalled his activities of the winter of 1679.

In the end of the year 1679 in answer to a Letter from Dr Hook then Secretary of the R.S. I wrote that whereas it had
been objected against the diurnal motion of the earth that it would cause bodies to fall to the west, the contrary was
true. . . . He had made some experiments thereof and found that they would not fall down to the center of the earth but
rise up again and describe an Oval as the Planets do in their orbs. Whereupon I computed what would be the Orb
described by the Planets. For I had found before by the sesquialterate proportion of the tempora periodica of the
Planets with respect to their distances from the sun, that the forces which kept them in their Orbs about the sun were
as the squares of their mean distances from the sun reciprocally: and I found now that whatsoever was the law of the
forces which kept the planets in their Orbs, the area described by a Radius drawn from them to the sun would be
proportional to the times in which they were described. And by the help of these two Propositions I found that their
Orbs would be such Ellipses as Kepler had described.[

Newton's statement produces as much confusion as it provides clarification. If taken to be literally
true, then he claimed to have solved the inverse problem (given the force, find the orbit) and not the
direct problem (given the orbit, find the force). Newton stated that he obtained the knowledge of the
inverse square nature of the force from Kepler's third law, in which the cube of the planetary period is
proportional to the square of the mean planetary radius. Independent of that result, he determined
that the planetary radius sweeps out equal areas in equal times for any central force. Then, using
these two propositions, Newton claimed that he found "their Orbs would be such Ellipses as Kepler



had described." The exact form of this solution of 1679 must remain a matter of conjecture, however,
for no copy of it has ever been found.[5]

Newton may have already settled the direct question for himself in 1679, but the problem of the
planets still remained one of the great unanswered questions for the rest of the academic
establishment. Halley admitted at a meeting of the Royal Society early in 1684 that he had tried to
solve it and failed. Hooke claimed that he had a solution but that he would not reveal it until others
tried and realized the difficulty involved. Sir Christopher

Wren offered a small prize of a book to the person who could give him a demonstration within two
months, but none was forthcoming within the time period (not even from Hooke). In August of that
same year, Halley had occasion to visit Cambridge, perhaps on family business, and took the
opportunity to call on Newton, with whom he had become acquainted during discussions of the comet
of 1680.[6] In the course of their meeting, the subject of the planetary problem arose. Newton's
report of the discussion comes secondhand from the French mathematician Abraham Demoivre who,
after Newton's death in 1727, told of a conversation that he had with Newton:

In 1684 Dr Halley came to visit him [Newton] at Cambridge. . . . The Dr asked him what he thought the Curve would be
that would be described by the Planets supposing the force of attraction towards the Sun to be reciprocal to the square
of the distance from it. Sir Isaac replied immediately that it would be an Ellipsis. . . . Dr Halley asked him for his
calculation without any further delay. Sir Isaac looked among his papers but could not find it, but he promised him to
renew it, and then to send it [to] him.

Demoivre recalled that Newton recalled that Halley requested the solution to the inverse problem
(i.e., given the force, find the path). In contrast to these recollections, however, stand the copies of
the solutions Newton actually produced in fulfillment of his promise to Halley "to renew it [the lost
solution of 1679] and then send it to him." The solution that Halley received from Newton after the
visit to Cambridge demonstrated that the force, given an elliptical orbit with a force center at a focus,
was inversely proportional to the square of the distance (i.e., the direct problem).[8]

True to his promise to Edmund Halley in August of 1684, Newton reproduced a version of the lost
solution to the direct Kepler problem that he had generated in 1679 following his correspondence with
Robert Hooke. In November of 1684, he sent it to Halley in London. If Halley's initial request in
August had been specifically for a solution to the inverse problem, then by December he must have
changed his mind, for he received the solution to the direct problem with nothing but exclamations of
great admiration.[9] The text that Halley received from Newton, however, contained much more than
a determination of the force required to maintain elliptical planetary motion about a focal sun center
of force. Newton sent him a tract in which the direct Kepler problem appears as "Problem 3." The tract
begins with a set of three definitions, four hypotheses, and two lemmas, each consisting of one or two
lines of text. Newton then gave three theorems (with demonstrations), to establish a general
procedure for solving direct problems.

Theorem 1. All orbiting bodies describe, by radii having been constructed to their center, areas proportional to the times

Theorem 2. For bodies orbiting uniformly on the circumferences of circles, the centripetal forces are as the squares of
the arcs described in the same time divided by the radii of the circles .

Theorem 3. If a body, by orbiting around the center S, should describe any curved line APQ, and if . . . [then] I assert

that the centripetal force would be reciprocally as the solid SP2 x QT2 / QR, provided that the quantity of that solid that
ultimately occurs when the points P and Q coalesce is always taken .

Newton then provided the solutions to three problems as examples of how the general dynamical
algorithm of Theorem 3 could be applied to a set of specific direct problems.

Problem 1. A body orbits on the circumference of a circle; there is required the law of centripetal force being directed to
some point on the circumference .

Problem 2. A body orbits on a classical ellipse; there is required the law of centripetal force being directed to the center
of the ellipse .

Problem 3. A body orbits on an ellipse; there is required the law of centripetal force directed to a focus of the ellipse .



Problem 1 derives the force function necessary to describe uniform circular motion with a force
center on the circumference of a circle, and Problem 2 derives the force function necessary to
describe elliptical motion with the force center at the center of an ellipse. The solution to Problem 1 is
much simpler than the solution to Problem 2, which in turn is simpler than the solution to Problem 3.
Further, since neither Problem 1 nor 2 has any obvious physical application, it appears that Newton
introduced them as exemplars to demonstrate how Theorem 3 could be used to solve direct problems.
[10] The solution to Problem 3, however, does have a physical application. It is the solution to the
distinguished direct Kepler problem of the planets (i.e., the force function necessary to describe
elliptical motion about a focal force center is an inverse square function of the distance). Although
others had anticipated this solution, Newton was the first to produce its demonstration.

The solution to the direct Kepler problem, however, did not exhaust the list of items Newton sent
to Halley. Theorem 4 demonstrates Kepler's law relating the periods of planets to their mean radii,
and Problem 4 is a version of an inverse problem in which the magnitude of an inverse square force is
given and the nature of the resulting orbit is sought. Newton assumes that the body is initially moving
in an ellipse with the center of the inverse square force located at a focus of the ellipse, a condition
that the solution in Problem 3 of the direct Kepler problem demonstrates is possible (a sufficient
condition but not yet demonstrated to be a necessary condition). He then demonstrates that for any
other given position and
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velocity the path will remain an ellipse or will become a parabola or a hyperbola.

Theorem 4. Supposing that the centripetal force is reciprocally proportional to the square of the distance from the
center, the squares of the periodic times in ellipses are as the cubes of their transverse axes .

Problem 4. Supposing that the centripetal force be made reciprocally proportional to the square of the distance from its
center, and that the absolute quantity of that force is known, there is required the ellipse which a body will describe
when released from a given position with a given speed along a given straight line .

Newton then turned from his analysis of celestial motion in a nonresistive medium to a
comparison of terrestrial motion in nonresistive and resistive media. Problem 5 derives the distance a
body would fall freely in a void under an inverse square force, and Problems 6 and 7 combine to
extend the analysis to the motion of projectiles in a uniformly resisting medium.

Problem 5. Supposing that the centripetal force is reciprocally proportional to the square of the distance from the
center, [it is required] to define the spaces which a body falling in a straight line describes in given times .

Problem 6. To define the motion of a body carried by its innate force alone through a uniformly resisting medium .

Problem 7. Supposing a uniform centripetal force, [it is required] to define the motion of a body ascending and
descending straight up and down in a homogeneous medium .

Newton did not explain why he included these problems of terrestrial motion in a tract that was
motivated by questions of celestial motion. It may well be that he wished to call attention to the
difference between calculated ideal terrestrial motion in a void and observed terrestrial motion in a
resistive medium, such as projectiles fired in the atmosphere of the earth. In contrast to the motion of
terrestrial projectiles, the motion of celestial bodies does not display a marked difference between
calculated ideal motion in a void and observed celestial motion in the ether. The law of equal areas in
equal times is derived for ideal motion in a void, and it appears to correspond to the observed motion
in the ether. Thus, any assumption of a mechanical ether, such as that made by Descartes, becomes
suspect. If the ether is so fine as to offer no resistance to the motion of celestial bodies, then it surely
is too fine to provide the necessary mechanical collisions to account for the gravitational force. The
implication of such a difference concerning the role of the ether in producing the gravitational force
has been discussed in chapter 2.[11]

The tract that Halley received from Newton in November of 1684 contained only a fraction of what
would shortly be demonstrated in the
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1687 edition of the Principia , but it was much more than anyone had thus far been able to
accomplish, and much more than Halley had requested. Shortly after receiving it, Halley made yet
another journey to Cambridge in order to consult Newton once again. He found Newton already at
work revising and enlarging the tract into what would ultimately become the 1687 edition of the
Principia . Halley returned to London and early in December 1684 he communicated the initial copy of



the tract to the Royal Society in order to secure Newton's rights of authorship, even as work on the
extended version continued. What follows includes a translation of the Latin copy of the tract that
appears in the Register Book of the Royal Society and now bears the title, On Motion of Bodies in
Orbit or, simply, On Motion . The version in the Register Book contains some obvious mistakes of
transcription, particularly in the diagrams. Corrections were made to the transcript used in this
translation by comparing it to other versions of this tract. Although the authenticity of the text is not
in question, the original manuscript that Newton sent to Halley has never been found.[12]

Introduction:
Definitions, Hypotheses, and Lemmas

Definitions

Newton began On Motion with three definitions: centripetal force, innate force, and resistance. The list
of definitions and the details of their descriptions were greatly enlarged in subsequent versions of the
work, but in this first text they were set out very simply and compactly.

Definition 1. I call centripetal the force by which a body is impelled or attracted toward some point which is regarded as
the center .

Definition 1 contains the first use of the term "centripetal" (center-seeking), which Newton coined
as a complement to the term "centrifugal" (center-fleeing) that Huygens had employed in his writings.
[13] The term signaled a major clarification of Newton's analysis of dynamics as found in the
demonstrations of circular motion in the Waste Book (1665) and On Circular Motion (pre-1669) that
were discussed in chapter 3. In those works, Newton, consistent with Descartes, refers to an outward
endeavor, and in On Motion Newton, consistent with Hooke, does not mention an outward endeavor.
Newton's rejection of both Cartesian perspective and terminology is not a change in Newton's method
of demonstration, however. In both the early work and this later tract Newton employs the parabolic
approximation in which the force is directly proportional to the radial displacement and inversely
proportional to the square of the time. Moreover, Newton continued to employ the term "centrifugal"
in other contexts, well after the writing of this work.[14]

Definition 2. Moreover, [I call ] the force of a body, [the force ] innate in a body, that by which it endeavors to
persevere in its own motion along a straight line .

In Newton's analysis, the use of the "force innate in a body" most closely conforms to the
contemporary use of the "magnitude of the linear momentum." Therefore, Newton's use of the word
"force" in this context is at variance with modern usage, which reserves the term "force" for the "time
rate of change of the linear momentum." Regardless of his choice of term, he uses "innate force" in a
manner consistent with modern analysis.

Definition 3. And [I call ] resistance the force which comes from a regularly impeding medium .

The topic of motion in a resistive medium will not be included in the material covered in this
study.

Hypotheses

Newton provided four hypotheses: the first sets out assumptions concerning resistance to motion; the
second describes force-free motion; the third states the parallelogram rule for the addition of
displacements produced by separate forces; and the fourth expresses a version of Galileo's time-
squared dependence of linear displacement under a constant force.

Hypothesis 1. In the next nine propositions the resistance is zero, in those propositions following, the resistance is
conjointly as the speed of the body and the density of the medium .

As noted, the first nine propositions consist of four theorems and five problems, all of which are
concerned with ideal motion in the absence of resistance. The final two propositions (Problems 5 and
6) treat motion in a resistive medium.



Hypothesis 2. Every body by its innate force alone progresses uniformly along a straight line to infinity unless
something impedes it from outside .

Following Descartes, Newton states that motion free from an external force (i.e., motion subject
only to "innate force") takes place at a uniform rate along an infinite straight line. An enlarged version
of this statement appears as the first law of motion in the Principia .[15

Hypothesis 3. A body, in a given time, with forces having been conjoined, is carried to the place where it is carried by
separated forces in successively equal times .

This rule for the combination of displacements as a measure of forces was implicit in Newton's
pre-1665 analysis of circular motion but is made explicit here. Although Newton gives it as a
hypothesis in On Motion , in the first revision of the tract Newton adds a demonstration and promotes
the hypothesis to the status of a lemma.[16]

PARALLELOGRAM A PARALLELOGRAM B

Figure 4.1
The area of parallelogram A is equal to the area of parallelogram B (Proposition 31,
Book 7, of the Conics of Apollonius of Perga).

Hypothesis 4. The space which a body, with some centripetal force impelling it, describes at the very beginning of its
motion, is in the doubled ratio of the time .

This relationship is critical to all of Newton's analysis of action under a continuous centripetal
force. It is the very core of his analysis; yet it is given here very simply and with little explanation.
This hypothesis will be revised by the addition of a demonstration, and it also will be promoted to the
status of a lemma.

Lemmas

Lemma 1. All parallelograms described around a given ellipse are equal to each other. This is established from the
Conics.

This lemma is demonstrated in Book 7, Proposition 31 in the Conics of Apollonius of Perga (c. 262-c.
200 B.C. ); see figure 4.1.137]1 The area of the circumscribed parallelogram A is 2PC x DK , and it is
equal to the area of the circumscribed parallelogram B , which is 2PF x DK . It is important to note in
parallelogram B that PF is the normal to DK , while in parallelogram A that PC is the normal to DK .
The sides of parallelogram B are tangent to the ellipse at points P and D , where DK is constructed
parallel to the line tangent at point P . This relationship will appear as Lemma 12 in the Principia ,
where it is employed in the solution of the direct Kepler problem.

Lemma 2. Quantities proportional to their differences are continuously proportional. Set A: (A -B) =B: (B-C) =C: (C
- D) = ... and by dividing there will be produced A:B = B:C=C:D = ...

This lemma has application only to motion in a resistive medium, a topic which does not appear in
the first three sections of Book One of the Principia .

Following the completion of the draft of On Motion of Bodies in Orbit (or simply On Motion ) that was
sent to Halley, and hence to the Royal Society, Newton produced a slightly enlarged version of the



tract, entitled On the Motion of Spherical Bodies in Fluids .[18] The body of the tract, which supplied
the method and solutions to the direct problem in nonresisting media, was essentially unchanged
from the first draft (except for the addition of a paragraph at the end of the scholium to Theorem 4).
Newton did expand, however, the rather sparse statement of the fundamental hypotheses that was
just discussed.

Hypothesis 3 Becomes Lemma 1

Hypothesis 3. A body, in a given time, with forces having been conjoined, is carried to the place where it is carried by
separated forces in successively equal times .

Hypothesis 3 of the first draft of On Motion now appears as Lemma 1 in the second draft. The initial
statement is slightly revised, and Newton appends a detailed demonstration. An earlier version of this
parallelogram rule was discussed in chapter 3 during the analysis of uniform circular motion. It is
important to note that the measure of a force is the displacement it produces in a given time, and it is
the displacements that are combined when the "forces are conjoined."

Lemma 1. A body, with forces having been conjoined, describes the diagonal of a parallelogram in the same time as it
describes the sides, with [forces ] having been separated .

If a body in a given time were to be carried from A to B by the action of the force M alone and from A to C by the force
N alone , [then ] complete the parallelogram ABDC, and it will be carried in the same time from A to D by both forces .
[See fig. 4.2.]

For since force N acts along the line AC parallel to BD, by Law 2 this force [N] will do nothing to change the speed of
[the body's ] approaching the line BD, impressed by the other force [M]. The body will therefore approach the line BD in
the same time whether the force AC [N] is impressed or not; and so at the end of that time it will be found somewhere
on the line BD. By the same reasoning it will at the end of the same time be found somewhere on the line CD, and
consequently must be found at the meeting D of both lines .

Newton applied the parallelogram rule implicitly in all his dynamics. He does not, however, give
an explicit formal defense of the application of this lemma to the polygonal and parabolic
approximations, either in this tract or in the first edition of the Principia . Only in the revised editions
of the Principia does he offer an explicit demonstration of its application.[19]

Figure 4.3 displays the situation to which the parallelogram rule is applied in the format of the
polygonal approximation in Theorem 1 (to follow). A body moves with uniform rectilinear motion from
point A to point
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Figure 4.2
Based on Newton's drawing for the
demonstration of Lemma 1.
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Figure 4.3
The parallelogram rule as applied to the polygonal
approximation. In a given time, Bc is the displacement
due to the initial "innate force," Bb is the displacement
due to the impulsive force, and BC is the resultant
displacement.

B in a given time DT . At point B an impulsive centripetal force, directed toward the center of force at
point d , acts for a vanishingly small time dt on the body. The body then moves with uniform
rectilinear motion from point B to point C in the given time DT . If the impulsive force had not acted
at point B , then the body would have moved with uniform rectilinear motion from point B to point c in
the time DT under the action of only its initial motion. If the body had been at rest at point B, then it
would have moved with uniform rectilinear motion from point B to point b in the time DT under the
action of only the motion produced by the impulsive force. (Note that the displacement Bb must be in
the direction of the line of action of the impulsive centripetal force.) The composite uniform motion
from point B to point C is along the diagonal of the parallelogram formed by the initial motion Bc (or
bC ) and the added motion Bb (or cC ). Thus, a body is carried in a given time [DT ] by combined
forces [the initial "force of the body's motion" plus the "change in the body's motion" due to the
impulse] to the place [B ®C ] where it is carried by separated forces [B®c by the initial motion and
B®b by the impulsive motion] in successively equal times [DT ].

If the force is continuous rather than impulsive, then the curve is also continuous rather than
polygonal. For a continuous force the body moves along the curved path between the points B and C,
and Newton considers a situation in which the point C approaches very closely to the point B . Thus,
the interval of time is extremely small, and the force can be assumed to be constant over that
interval. Galileo has demonstrated that ideal projectile motion under a constant force is parabolic, and
hence the element of arc BC is approximated by a parabolic element (i.e., the parabolic approximation
discussed in chapters 1 and 2). The displacement BC of any future point C on the elemental parabolic
arc can be found by using the parallelogram rule to combine the displacement BC due to the initial
tangential velocity with the deviation Bb due to the constant force. Thus, this rule is applied to both
impulsive and continuous forces in a consistent manner.

Theorem 1—
The Law of Equal Areas in Equal Times

In Newton's theorems that follow Theorem 1, the path of the particle appears as a continuous curve
and the force changes continuously as the particle traverses the path. In Theorem 1, however, the
particle travels with a given uniform rectilinear motion between points A and B . At point B it
experiences an impulsive force and then travels with a different uniform rectilinear motion between
points B and C . At point C it experiences
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Figure 4.4
Based on Newton's drawing for Theorem 1.

yet another impulsive force. The process is repeated again and again. Ultimately, Newton required
that the distance between points become infinitely small, and thus he required the polygonal path of
the particle to become a smooth curve. This type of approximation is similar to the polygonal
approximation that Newton used in his early work of 1665 on uniform circular motion and is
particularly well suited to the demonstration of this theorem. Figure 4.4 is based on Newton's diagram
that accompanies Theorem 1 in On Motion ; it is instructive to note how the diagram is constructed.

Line AB . One starts at point A and draws a line of arbitrary length to point B . The line AB
represents the displacement of the body for a given time with a given velocity. At point B an
impulsive force that is directed toward the center S acts on the body.

Line Bc . Then the line is extended from point B to point ¢ , where line Bc is equal in length to line
AB . The line Bc represents the displacement that would have taken place in the given interval of time
if no force had acted at point B .

Line BC . Because an impulsive force does act at point B , however, one must construct a line BC
that represents the actual displacement that does take place in that given time.

Line Cc . Then the actual displacement BC is connected to the hypothet-

ical force-free displacement Bc by a line Cc . The line Cc represents the deviation of the body from
Bc due to the action of the impulsive force at B . Therefore, Cc is constructed parallel to the line of
force SB because the displacement Cc must be in the same direction as the line of action of the
impulsive force. The rest of the construction is a repetition of the preceding procedure.

It simply remains to demonstrate (1) that the area ASB is equal to the area BSc and (2) that area
BSc is equal to the area BSC . Then, in a given time, (3) area ASB is equal to the area BSC , which in
turn is equal to area CSD , and so on. Thus, for a series of discrete impulsive forces, equal areas will
be swept out in equal times. The correspondence with a force that acts continuously is achieved by
passing to the limit by letting "the triangles be infinite in number and infinitely small, so that the
individual triangles correspond to the individual moments of time."

What follows is Newton's statement of this important theorem, one line at a time, each line
followed by a detailed discussion.

Demonstration

Theorem 1. All orbiting bodies describe, by radii having been constructed to their center, areas proportional to the times



The only restriction on the force is that it be directed to a given point S . For such a central force,
Newton demonstrates that the radius linking the point S and the body P sweeps out equal areas in
equal times. For the special example of uniform circular motion about a point at the center of the
circle, the radius also sweeps out equal angles in equal times. In his early analysis of such motion,
Newton employed this more restricted angular version of the area law to relate the period and
circumference to arc and deviation, and thus to express the results of the time / distance relationship
in the desired form (see chapter 2). In Theorem 1, however, Newton demonstrates that the law holds
true for any centripetal force acting in a medium devoid of resistance, and thus he can express the
time, and hence the force, in terms of the geometric elements of the figure for nonuniform motion.

[A] Let the time be divided into equal parts, and in the first part of the time let a body by its innate force describe the
straight line AB.

The line AB is the displacement due to the uniform rectilinear motion of the body between points
A and B . The body leaves point A with a given speed and travels to point B in the absence of any

external force.

[B] The same body would then, if nothing impeded it, proceed directly to c in the second part of the time, describing the
line Bc equal to itself AB,
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Figure 4.5
The area of triangle ASc is equal to twice the area of triangle
ASB and thus area ASB equals area BSc .

In this theorem rectilinear motion along the tangent occurs when nothing impedes the tangential
motion (i.e., in the absence of a centripetal "center-seeking" force). In the pre-1669 tract, On Circular
Motion , however, rectilinear motion along the tangent occurs when there is no impediment to the
Cartesian outward endeavor (i.e., in the presence of a centrifugal "center-fleeing" endeavor). After
1679, however, Newton set aside the Cartesian outward endeavor and was concerned only with the
two dynamical elements that Hooke stressed in his early paper, the tangential displacement and the
center-seeking force.

[C] so that, when the radii AS, BS, and cS were extended to the center, areas ASB and BSc would be made equal .

See figure 4.5. The line segment AB is the displacement the body makes during the first time
interval and the line segment Bc is the displacement, equal to AB , that the body would have made in
an equal time if no impulsive force had acted upon it at point B . Thus, the displacement Ac is equal to
twice the displacement AB and thus the height cc ' is equal to twice the height BB '. The area of a
triangle is equal to one-half the product of the base and the height. Triangles ASB and ASc have a
common base SA and the height of triangle ASc is twice the area of triangle ASB . Thus, the area of
triangle ASc is twice the area of triangle ASB . From figure 4.5 one can express the area of triangle
BSc as the difference between the area of triangle ASc and the area of triangle ASB . Thus, area BSc
= area ASc - area ASB and, because area ASc = 2 area ASB , then area BSc = area ASB .



Figure 4.6
The parallelogram rule as applied to Theorem 1.

[D] Now when the body comes to B, let the centripetal force act with one great impulse, and let it make the body
deflect from the straight line Bc and proceed along the straight line BC.

In the early discussion (1665) of circular motion in the Waste Book , the "force or pression" came
from the "collision" or "reflection" of the ball from the curve and was the impediment to the "outward
endeavor." In this more mature work (1684), the impulse delivered to the ball comes from an
external unbalanced "centripetal force" and there is no mention of the Cartesian "outward endeavor."

[E] Parallel to the same BS, let cC be extended, meeting BC at C, and when the second interval of time is finished, the
body will be found at C.

See figure 4.6. If no force had acted at point B, then the particle would have made the
hypothetical displacement Bc equal in length to the initial displacement AB . Because a force F does
act at point B, however, the particle is diverted and instead makes the actual displacement BC . The
deviation or difference between the hypothetical displacement Bc and the

Figure 4.7
The area of triangle SBC equals the area of triangle SBc .

actual displacement BC is given by the dashed line Cc . The small construction in figure 4.6 is an
application of the parallelogram rule given in Hypothesis 3. The two uniform rectilinear motions to be
combined at point B are (1) the uniform motion along Bc , which was retained from the body's initial
motion at point B, and (2) the uniform motion along Bb , which was generated by the impulsive force
F at point b . The resultant uniform rectilinear motion is along BC . In the given time, the particle will
make the displacement BC , where BC is the diagonal of the parallelogram BbCc formed with sides Bc
and Bb , where Bc and Bb are the displacements the body would have made separately in the given



time. Consistent with the parallelogram rule, the deviation Cc is constructed parallel to the line Bb and
hence parallel to the line of force SB .

[F] Join S and C and because of the parallels SB and Cc, the triangle SCB will be equal to the triangle SBc and hence
also to the triangle SAB.

See figure 4.7. The triangles SBC and SBc have the same base SB and, because the deviation Cc
is parallel to the line of force SB , they have the same perpendicular to that base through C and ¢
(i.e., the height C'C equals the height c'c ). Thus, the areas of triangles SBC and SBc are equal
because they have a common base and equal heights.

[G] By a similar argument, if the centripetal force should act successively at C, D, E, etc., making the body in separate
moments of time describe the separate straight lines CD, DE, EF, etc., the triangle SCD will be equal to the triangle
SBC, SDE to SCD, SEF to SDE (and so on ).

Simply repeat [F] for each of the successive blows at the points C, D, E, . . ., that are shown
above in the original drawing, figure 4.4.

[H] In equal times, therefore, equal areas are described .
The conclusion is drawn from [G].

[I] Now let these triangles be infinite in number and infinitely small, so that the individual triangles correspond to the
individual moments of time, the centripetal force acting without interruption, and the proposition will be established .

This limiting procedure is similar to that which Newton employed in the polygonal approximation
solution to the problem of uniform circular motion in the early work in the Waste Book (discussed in
chapter 3). Theorem 1 above becomes Proposition 1 in the 1687 edition of the Principia much in the
form that it appears here, and Newton revises and extends it in the later editions.[20]

Newton's demonstration of Kepler's law of equal areas in equal times in Theorem 1 is a major
step forward in his construction of a paradigm for the solution of direct problems. The challenge of the
direct problem is to find the functional dependence of the force upon the distance between the body
and the center of force necessary to describe the orbital motion. The only requirement imposed on the
nature of the force by Theorem 1 is that it be directed toward a fixed center. Theorem 1 enables
Newton to express the time of motion in terms of the area swept out and hence in terms of the
dimensions of the orbit. He employs it and the parabolic approximation in Theorem 3 to develop a
general measure of centripetal force.

Theorem 2—
Uniform Circular Motion

Theorem 2 on uniform circular motion employs the parabolic approximation as in the pre-1669 tract
On Circular Motion rather than the polygonal approximation as found in the solution given in the
Waste Book (both solutions are discussed in chapter 2). In Corollary 2 of the pre-1669 tract On
Circular Motion , Newton wrote that "the endeavors from the centers in diverse circles are as the
diameters divided by the squares of the times of revolution." Here in Corollary 2 of the post-1679
tract he wrote that "[the centripetal forces are] reciprocally as the squares of the periodic times
divided by the radii." The change from diameters to radii is trivial, but the shift in emphasis from the
"outward endeavor" to the center-seeking "centripetal force" is significant. For uniform circular
motion, the arcs are proportional to the speeds. Newton elected to express the theorem in terms of
the arc, however, and to reserve the statement in terms of the speeds for the first corollary, where
the force is given as proportional to the square of the speeds divided by the radii.[21]

Figure 4.8 is based on Newton's diagram that accompanies this theorem in On Motion . There are
two circles because the results are to be expressed as the ratio of the forces required to maintain
uniform circular motion for two different radii, SB and sb . As in his earlier analysis, the line segments
BC and bc represent the tangential displacements that would have taken place if no force had acted
on the bodies at points B and b ; the arcs DB and db are the actual circular paths followed under the
action of the centripetal forces; and the deviations that measure the forces are the
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Figure 4.8
Based on Newton's drawing for Theorem 2.

line segments DC and dc . Newton's shift in emphasis from a Cartesian outward endeavor to an
inward centripetal force does not affect his use of the parabolic approximation. In the limit, the force
still is assumed to be approximately constant and its magnitude still is proportional to the deviation
DB and inversely proportional to the square of the time. The following lines from the text are
interspersed with detailed explanations and discussions.

Demonstration

[A] Theorem 2. Let the bodies B and b orbiting on the circumferences of the circles BD and bd describe in the same
time the arcs BD and bd. By their innate force alone they would describe the tangent lines BC and bc equal to these
arcs .

As in previous examples, the important elements shown in the diagram in figure 4.8 above are the
inertial displacements BC and bc , which would have taken place along the tangent lines in the
absence of a force, and the arc lengths BD and bd of the actual path. The arc lengths BD or bd in a
given time are equal in length to the tangent lengths BC or bc . If the tangent BC were wrapped
around the circle, then the end of the tangent C would travel on a curved arc CD (its involute) about B
terminating on point D (see fig. 4.9).[22]1 Thus, the tangent length BC is exactly equal to the arc
length BD .

[B] The centripetal forces are those that perpetually draw bodies back from the tangents toward the circumferences [of
the circles ], and hence are to each other as the distances CD and cd surmounted by them ,

Or, Fc/ fc = CD / cd , where F¢c and f . are the centripetal forces and CD and cd are the
deviations from the tangential paths relative to the circular
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Figure 4.9
The length of the arc BD is equal to the length of the tangent segment



BC.

paths. The deviation CD is the chord of the arc CD about B (see fig. 4.9) and the deviation cd is
the chord of the arc cd about b . In his pre-1669 analysis (see chapter 3) Newton spoke of the
outward endeavor, and the deviation CD was directed incorrectly along a diameter of the circle, as
suggested by the Cartesian terminology. Figure 4.10 is a comparison of the form of the diagram in his
pre-1669 analysis of uniform circular motion with the form of the diagram in this post-1679 analysis.
Note how in this later figure the deviation CD is not along a diameter but along the chord DF . This
change in the slope and location of CD is now determined by the correct requirement in [A] that the
tangent length BC must equal the arc length BD (see fig. 4.9). The deviation CD is no longer a
potential but impeded outward displacement that acts in a radial direction, as suggested by
Descartes. The revision of the diagram does not invalidate Newton's earlier solution because the
Euclidean theorem to be employed in the next step is valid for both chords and diameters. The forces
in either case are proportional to the deviations DC and dc , or Fc / f. = CD / cd , as required.

[C] that is, on producing CD to F and cd to f, as BC2 / CF to bc? / cf or as BD? / (1/2)CF to bd? / (1/2)cf.
OrFc/fo=CD/cd=(BC?/CF)/ (bc?/cf)=(BC?/(1/2) CF)/ (bc?/ (1/2) cf). In the earlier

pre-1669 drawing (see fig. 4.10), Newton specifically called upon Proposition 36 of Book 3 of Euclid's
Elements to relate the lines CB (the tangent), CD (the deviation), and CE (the diameter plus the
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Figure 4.10

A comparison of the pre-1669 diagram with the post-1679 diagram in the
analysis of circular motion.

deviation) as follows: CE/ CB = CB / CD . In this later text he did not give a specific reference to
Euclid but the same relationship holds for the lines CB, CD , and CF (the chord of the circle plus the
deviation) in the revised post-1679 diagram. In figure 4.11A, Euclid's theorem is valid when CF
contains any chord of the circle.[23] Thus, in figure 4.11B, the deviation CD (dashed line) is obtained

from CD / BC = BC / CF or CD = BC? / CF . Newton chose to express the results in terms of the radius
(1/2) CF rather than the diameter CF . Thus, F/f=CD /cd = (BC2/ CF) / (bc? / cf) = (BC? / (1/2)
CF)/ (bc? / (1/2)cf).

[D] I am speaking of the very minute distances BD and bd, to be diminished into infinity, so that in place of (1/2)CF and
(1/2)cf, it would be allowed to write the radii SB and sb of the circles. This done, the Proposition will be established .

Or, as point D approaches point B, then line CF approaches line 2SB (see fig. 4.12). And, (1/2)
CF can be replaced by the radius SB . Thus, the proposition is demonstrated, and the forces are

proportional to the square of their arcs divided by the radii of their circles (i.e., Fc / fc = (BC 2 /((1/2)
CF)/ (bc? / ((1/2) cf ) = (BC?/ SB) / (bc? / (sb ).

Corollary 1. [Hence ] the centripetal forces are as the squares of the speeds divided by the radii of the circles .

For uniform circular motion, the arc is proportional to the tangential speed. From [D], the ratios of
the forces Fy / F5 = (arc12/ r1) / (arcz? / r» ) and because arcy / arcy; = vy / v 3 then Fy / Fy = (v42
/)] (v /).



Corollary 2. And reciprocally as the squares of the periodic times divided by the radii of the circles .

Or, F1 / Fa= (T2%/ r3 ) / (T1%/ ry ). The tangential speed v = circumference / period = 2pr/ T,
thus, v2/r=4p2(r/ T)2/r.From Corollary 1, Fy /

Figure 4.11A
From Proposition 36 of Book 3 of Euclid's
Elements , one has CD / BC = BC/ CF.

Figure 4.11B
In the diagram for Theorem 2, one has
CD / BC = BC / CF or the deviation

CD = BC? / CF.

Figure 4.12
As the point D approaches the point B, the line CF
approaches the diameter 2SB .

Fy = (v1?2/ry)/ (v22/ ry ), which becomes (4p? (r1 / T1 )2/ r1 )/ (4p? (ra /T2 )2 /) = (r1/
T12)/(ro/T22) = (T22/ry) /(T 1% /r1), or the force is reciprocally proportional to the squares of



the periods divided by the radii.

Corollary 3. From this, if the squares of the periodic times are as the radii of the circles, [then ] the centripetal forces
are equal, and conversely .

If T2 is proportional to r, then (T22/r5 )/ (T1%/r1) = 1. From Corollary 2, F1/ Fo= (T2%/r> )/
(T1%/ry ) = 1 and thus Fi= F 5 .

Corollary 4. If the squares of the periodic times are as the squares of the radii, [then ] the centripetal forces are
reciprocally as the radii, and conversely .

Or, Fi/ Fo=ry/rq . If T2 is proportional to r2 , then from Corollary 2, (T22/ r{)/ (T12/ ro) =
ry/r1 and thus Fi/ F>=ry/r1 .

Corollary 5. If the squares of the periodic times are as the cubes of the radii, [then] the centripetal forces are
reciprocally as the squares of the radii, and conversely .

Or, Fi/ Fo=r %/ ry? . If T2 is proportional to r3 , then from Corollary 2, (T2%/r> )/ (T1%/r1) =r
22/ F12 and thus Fy/ F>= I’22/ I‘12 .
Scholium

The case of the fifth corollary holds true in the celestial bodies. The squares of the periodic times are as the cubes of
the distances from the common center around which they revolve. Astronomers already agree that this holds true in the
major planets orbiting around the sun and in the minor ones around Jupiter and Saturn .

Newton did not give credit here to Kepler for the relationship in this scholium, but the result is
found in Book 5 of Kepler's World Harmony (1619).[24] In Theorem 4 of this tract, Newton
demonstrates that for elliptical motion the square of the period is as the cube of the transverse
(major) axis of the ellipse.

Theorem 3—
The Linear Dynamics Ratio

Theorem 3 is Newton's crowning achievement in dynamics. It sets forth the combination of geometric
elements that provide the basic paradigm for his primary solution of direct problems. Figure 4.13
makes visual these basic geometric elements: the displacement QR is the deviation from the linear
path PR produced by the centripetal force directed toward the center of force S, and the triangular
area PSQ is given by one-half of the product QT x SP . In the limit as the point Q approaches the
point P, the force is assumed to be constant and its magnitude is proportional to the displacement QR
divided by the square of the time (i.e., the parabolic approximation). From Theorem 1, the time is
proportional to the area PSQ . Thus, combining the parabolic approximation and the area law, the

force is shown to be proportional to the linear dynamics ratio QR / (QT2 x Sp? ), or as Newton
preferred, "the centripetal force would be reciprocally as the solid (SP2 x QT2 )/ QR."

The results of Theorem 3 are valid for any general curve and are not restricted to circles or
ellipses (for example, Newton employed it to calculate the force necessary to produce a spiral
motion). Nevertheless, New-
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Figure 4.13
Based on Newton's diagram for Theorem 3.

ton's thoughts must have been on the distinguished Kepler problem when he drew the diagram
for this theorem, because the general curve in figure 4.13 looks very much like an ellipse (in fact, it is
an ellipse). He does not employ any of the specific properties of an ellipse, however, in obtaining the
general relationship between the force and the dynamic elements of the general curve. In the
following, the theorem is divided into a humber of separate lines and detailed commentaries are given
for each line.

Demonstration

[A] Theorem 3. In the indefinitely small figure QRPT the line segment QR is, with the time given, as the centripetal
force ,

Or, QRuF for a given time. The applied force is assumed to be approximately constant in magnitude
and direction in the limit as the point Q approaches the point P, or as Newton puts it, "in the
indefinitely small figure QRPT ." Thus, the elemental arc of the general curve can be approximated by
an elemental arc of a parabola. The tangential displacement PR is the inertial displacement the body
would have made in a given time in the absence of a centripetal force under the sole action of the
velocity it had at point P . The deviation QR is the linear displacement the body would have made in
the same given time under the sole action of a constant applied force directed along the line SP from
the initial point P to the center of

force S . The resultant displacement PQ is given from the parallelogram rule by the sum of the
tangential displacement PR due to the initial "innate force" at point P and the linear displacement QR
due to the continuous applied force. [In terms of modern notation, the displacement QR = (1/2) (F/

m) (L“2 ) for a constant force F and mass m , where F / m is the acceleration. Thus, for a given time,
QR = (t2 / 2m ) F = k{F , (where k4 is a constant equal to t2/2m ) or the displacement QR is directly
proportional to the force F .]

[B] and, with the force given, as the square of the time ,

Or, QR/Jl'2 for a given force. This condition follows from Hypothesis 4 (or in the revised Lemma 2:
"The space with which a body, with some centripetal force impelling it, describes at the very
beginning of its motion, is in the doubled ratio of the time"). [In modern notation, from section [A],

QR = (1/2) (F/m )(t2) = (F/2m ) (t? ) = kx>t 2, where k> is a constant equal to F /2m . Thus, for a
given force F the displacement QR is directly proportional to the square of the time t .]

[C] and hence, when neither is given, as the centripetal force and the square of the time conjointly ;

Or, QRu (F) (t%). From the expressions [A] and [B], when neither the time nor the force is given,
the line segment QR depends directly upon both the force and the square of the time. [In modern



notation, QR = (1/2m ) (F) (t2) = k3 (F) (t2 ), where k3 is a constant equal to 1/2m . Thus, QR is
directly proportional to the product of the force and the square of the time.]

[D] that is, as the centripetal force taken once and the area SQP proportional to the time (or its double , SP x QT)
taken twice .

Or, QRu (F) (t2) u (F) (SP x QT )2 . From [C], the displacement is proportional to the first
power of the force ("taken once") and the second power of the time ("taken twice"). From Theorem 1,
the time is proportional to the triangular area SQP , which is equal to one-half the base SP times the
height QT (see fig. 4.14), or the product SP x QT is the double of the area where ultimately the arc
QP will approach the chord QP .

[E] Let each part of this proportionality be divided by the line segment QR and there will result unity as the centripetal

force and SP? x QT2 / QR conjointly, that is the centripetal force reciprocally as SP? x QT2 / QR. Which was to be
proven .

Or, 1/Fu (SP? x QT?) / (QR ). Thus, "the centripetal force would be reciprocally as the solid SP2
x QT? / QR ." [Divide QR = k3 (F) (SP? x QT2 ) by QR , and one has 1 = k3 (F) (SP?) x QT2) / QR
=k3(F)/(QR)/(SP* x QT?), or 1/F = k3 (SP2 x QT? ) / (QR).]

Py

Figure 4.14
The shaded triangular area is equal to one-half of the
product of the base SP and the height QT . As the
point Q approaches the point P, the arc QP
approaches the chord QP .

Corollary. Hence if any figure is given, and on it a point toward which the centripetal force is directed , [then ] it is
possible for a law of centripetal force to be found which will make a body orbit on the perimeter of that figure .

The result above represents a general theorem to be employed in obtaining solutions to direct
problems: Given the orbit of the particle and given the center of force relative to that path, one seeks
to find the law of force that will maintain the given orbit in terms of the distance SP from the particle
P to the force center S .

[Corollary] Specifically, the solid SP? x QT2 / QR reciprocally proportional to this force must be computed. We shall give
examples of this point in the following problems .

Specifically, from the geometry of the given orbit and force center, one must express the

discriminate ratio QR /QT? in terms of SP and constants of the orbits. The force will then be expressed
in terms of the distance SP alone.

Conclusion

In what follows in the next chapter, Newton gives detailed solutions for three direct problems:
Problem 1, find the force that generates a circular orbit with the center of force on the circumference
of the circle; Problem 2, find the force that generates an elliptical orbit with the center of force at the
center of the ellipse; and finally, Problem 3, find the force that generates a planetary elliptical orbit
with the force center (the sun) at a focus of the ellipse. Theorem 3 provides the fundamental
paradigm for solving direct problems in which one is given an orbit and a center of force fixed relative
to that orbit. The theorem enables one to express the discriminate ratio QR / QT2 in terms of SP and
constants of the orbits and thus to determine the nature of the force required to maintain the given
orbit about the given center of force. In Theorem 3, Newton fashioned the ratio that



measures the force QR / SP? x QT2 from three elements: (1) the parabolic approximation: in the limit
as the point Q approaches the point P, then the force is approximately constant in magnitude and
direction; (2) Galileo's relationship (in Hypothesis 4): the displacement is proportional to the square
of the time for a constant force; and (3) Kepler's relationship (in Theorem 1): the area swept out is
proportional to the time for a centripetal force. The result is simplicity itself. From items (1) and (2)
the force F is proportional to the deviation QR and inversely proportional to the square of the time t .
From item (3) the time t is proportional to the area SP x QT . Thus, the force F is proportional to the

linear dynamics ratio QR / SP 2 x QT2 . In the following chapter, this basic result is applied to three
specific direct problems, of which the final one is the distinguished Kepler problem of planetary
motion.

Four— The Paradigm Constructed:On Motion ,
Theorems 1, 2, and 3
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Five— The Paradigm Applied:On Motion , Problems 1,
2,and 3

Five—
The Paradigm Applied:
On Motion , Problems 1, 2, and 3

Theorem 3 in Newton's tract On Motion provides the basic paradigm for solutions to direct problems:
Given the orbit and the location of the force center, find the force. As Newton put it, "specifically the

solid SP2 x QT2 / QR must be computed." He concluded Theorem 3 with the statement, "We shall
give examples of this point in the following problems." In this tract, he elected to solve three
examples of direct problems. The most important example was Problem 3, the Kepler problem: find
the centripetal force required to maintain planetary elliptical motion about a center of force located at
the focus of the ellipse. Kepler had demonstrated that a planet P moves in an elliptical orbit about the
sun S located at a focal point of the ellipse, and in Theorem 3 Newton demonstrated that the nature
of the force required to maintain that motion is inversely proportional to the square of the distance SP
, which is the mathematical statement of the law of universal gravitation. Problem 3 clearly has
important physical significance. Preliminary to the solution of that very important problem, however,
Newton presented the solutions to two other direct problems: find the force that generates (1)
circular motion with a center of force on the circumference of the circle and (2) elliptical motion with a
center of force at the center of the ellipse (see fig. 5.1). Problems 1 and 2, however, have no clear
physical significance, that is, they have no direct application to physical phenomena such as Problem
3 does to the motion of planets.[1] They appear as relatively simple preliminary mathematical
exercises in the application of Theorem 3, and they serve only to prepare the reader for the more
complex solution that follows them in Problem 3. In an attempt to make clear the general method
employed by Newton in applying Theorem 3 to these specific examples, I repeat the suggestion I
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Figure 5.1
In the three direct problems analyzed in On Motion ,
a body P moves on a given path APB about a
given center of force S : (1) circular
path/circumference, (2) elliptical path/center, and
(3) elliptical path/focus.

made in chapter 2 that Newton's exemplar solutions for direct problems be distilled into the
following general pattern of analysis:

Step 1. The Diagram . A drawing is provided that identifies the specific orbit corresponding to the
general orbit QPA in Theorem 3. The immediate position P of the body is located, and the line of force
SP is constructed that connects the body P with the force center S . Then the future position Q of the
body is located, and the two lines QR and QT are constructed. Thus, all three elements of the linear

dynamics ratio QR / QT2 x SP? are identified in the diagram.

Step 2. The Analysis . Given the full diagram, Newton begins the search for the geometric

relationships that will reduce the discriminate ratio QR / QT2 to a form in which it is expressed as a
function of the distance SP alone. It is in this search that Newton displays his command of geometry,
conic sections, and mathematical insight; and it is here that the reader must be careful not to lose
sight of the general structure of the dynamics in the flurry of mathematical details.

Step 3. The Limit . The general theorem holds only in the limit as the future point Q approaches
the immediate point P . Thus, Newton need not search for exact geometric relationships, but only for
those that will reduce to the desired functional form in that limit as the point Q approaches the point P
. Such relationships will eventually be sought out by others employing the methods of the calculus,
but here Newton employed his unique geometric/limiting technique that serves in its stead.

I divide the following detailed discussion of each of the three problems into the three steps just
outlined. No such explicit formal division exists in Newton's tract, but I offer it here as a guide for the
first-time reader.

Problem 1—
A Circular Orbit with the Center of Force on the Circumference of the Circle



As the first example of the application of the paradigm of Theorem 3 to the solution of direct
problems, Newton determined the nature of the force required to maintain a circular orbit with the
center of force on the circumference of the circle. This problem had no obvious physical application,
but it is the simplest of the three examples he presented and thus serves the reader in understanding
the more difficult examples to follow.

Problem 1. A body orbits on the circumference of a circle; there is required the law of centripetal force being directed to
some point on the circumference .

Step 1—
The Diagram

Figure 5.2 is based on the diagram that accompanies this problem in Newton's manuscript. The
dynamic elements of Theorem 3 are evident in this figure: the projected tangential displacement PR ,
the actual circular arc PQ , and the deviation QR . The center of force S is located on the
circumference of the circular arc SQPA . The chord QL and the normal QT are also elements in the
analysis of the force.

[1-A] Let SQPA be the circumference of a circle , S the center of centripetal force , P a body carried on the
circumference, and Q a nearby position into which it will be moved .

Figure 5.2
Based on Newton's diagram for Problem 1. A body P moves
in a circular orbit APQLS about a center of force S located
on the circumference of the circle.

The general curve QPA from Theorem 3 appears here as a portion of the specific circular path
SQPA of Problem 1.

[1-B] To the diameter SA and to SP drop the perpendiculars PK and QT,

The line QT , which is constructed perpendicular to the line SP, is one of the two elements in the

discriminate ratio QR / QT2 from Theorem 3, which is needed to express the force law in terms of the
radius SP .

[1-C] and through Q draw LR parallel to SP, reaching the circle at L and the tangent PR at R.

The second element of the determinate ratio QR and the chord of the circle QL are defined.

Step 2—
The Analysis

In what follows, Newton expressed the discriminate ratio QR / QT? in terms of the radius SP and the
given constant diameter of the circle SA .

1. He first demonstrated from similar triangles that SA2 / SP2 = RP2 / QT? .

2. Then he called upon a proposition from Euclid to show that RP? = QR x LR .

3. Finally, he argued that the line LR can be replaced by the line SP in the limit as point Q
approaches point P .



Thus, SA2/ SP? = RP2/ QT2 = (QR x LR ) / QT? = (QR x SP ) / QT2 , which can be solved for
the discriminate ratio (i.e., QR / QT? = SA 2 / SP3). When that is done, the linear dynamics ratio QR /
(QT2 x SP?), and hence the force F, can be expressed in terms of SP .

Figure 5.3A
A revised diagram for Problem 1. The perpendicular RX and
the radius OP are added.
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Figure 5.3B
The triangle RPX is similar to the triangle SAP.

1. From Theorem 3, FUQR / (QT%2 x SP2) = (QR / QT?) (1 / SP?).

2. Substituting for QR / QT? from above, Fu (SA2/SP3) (1 / SP?) = SA2/ SP°> .

3. Because SA is the given constant diameter of the circle, the force is inversely proportional to
the fifth power of the radius, that is, Fu 1/SP> .

Thus, the proportional dependence of the force F on SP is known and so the solution to Problem 1
is given (i.e., Fu 1/SP° ). What follows is Newton's detailed analysis for this problem.

[2-D] There will be RP? (that is , QR x LR) to QT2as SA2to SP2 .

First, one must demonstrate that RP%2 / QT 2 = SA%2 / SP? . See figure 5.3A for a revised
diagram[zl that defines another perpendicular to SP at a point X . From the similar triangles RXP and
SPA (see above) one has RP / RX = SA /SP , and from the parallelogram RPXQ one has RX = QT .

Thus, RP /QT = SA / SP . Newton expresses the ratio RP2 / QT2 = SA 2 / SP? as squares because QT2
is needed in the discriminate ratio, QR / QT2 .

Similarity: (1) Angle OPR = 90° because OP is a radius of the circle and PR is the tangent to the
circle. Angle PXR = 90° by construction. Thus,
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Figure 5.4A
From Proposition 36 of Book 3 of
Euclid's Elements : CF / CB =/CB / CD .

Figure 5.4B
Thus, RL /RP =RP / QR or

RP? = QR x RL as required in Problem 1.

angle SPR is the complement of both angles OPS and PRX and thus angles OPS and PRX are
equal.

(2) Angle PSO = angle OPS because OS and OP are both radii of the circle. Thus, angle PSO =
angle PRX .

(3) Angle APS = 90° because PS and PA are chords of the circle terminating on the diameter SA .
Thus, triangles RXP and SPA have all angles equal and are thus similar. Note in figure 5.3B that line
RX equals line QT and thus the ratio RP /RX = RP /QT = SA /SP as required above.

Second, one must demonstrate that RP? = QR x LR, a relationship that introduces the deviation
QR into the analysis. Newton obtained this result from Proposition 36 of Book 3 of Euclid's Elements to
relate the following lines (see fig. 5.4A): CB (the tangent), CD (the deviation), and CF (the chord plus

the deviation). Euclid's basic relationship is given as CF /CB = CB /CD , or BC2 = CD x CF . Figure
5.4B extends Euclid's relationship to the diagram for Problem 1, where CB = RP, CD = QR , and CF =

LR . Thus, QR/RP=RP/ LR, or RP2 = QR x LR , as required above.
[2-E] Therefore (QR x LR) x (SP2/SA2) = QT2.

The first result from [2-D] gives RP%2 / QT 2 = SA%2 / SP?2 or QT? = (SP? / SA2 ) RP? . The second
result from [2-D] gives RP 2 = (QR x LR ). Substituting the second value for RP? into the first
expression gives the desired result (i.e., QT2 = (QR x LR ) (SP? / SA?)). Thus, Newton has obtained
an expression relating the two elements QT? and QR of the discriminate ratio QR /QT? , which is
required in the linear dynamics ratio QR /(QT? x SP? ) to measure the force.
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Figure 5.5
As the point Q approaches the point P, the line segment LR
approaches the line segment SP .

Step 3—
The Limit



[3-F] Multiply these equals by sp2 / QR, and, with the points P and Q coalescing, let SP be written in place of LR. Thus ,
SP5 / SAZ = QT2 x SP?/ QR.

From [2-E], QT2 = (QR x LR ) (SP%2 / SA 2). The linear dynamics ratio can be obtained if both sides of
the expression above are multiplied by SP? / QR (i.e., QT2 x SP2 / QR = (QR x LR ) (SP% / SA?) (SP?
/ QR )) which, upon canceling QR and combining powers of SP, reduces to QT%2 x SP2/ QR = LR x
SP* / SAZ | In the limit, "with the points P and Q coalescing," Q ®P , then LR ®SP (see fig. 5.5).
When SP is substituted for LR , the expression above reduces to QT2 x SP?2/ QR = LR x SP* / SA%®
SP>/ SA%, or SP° /| SA2 = QT? x SP? / QR as required above.

Conclusion

[3-G] Therefore the centripetal force is reciprocally as sp> / sA2 , that is (because SAZjs given ), as the fifth power of
the distance SP. Which was to be proven .

Or, Fu 1/SP> . The centripetal force F is given by the linear dynamics ratio QR / (SP2 X QT2 ), which

from [3-F] is equal to (SAZ / SP> ). Since SA is the given constant diameter of the circle, the force F is
inversely proportional to the fifth power of the distance SP and the solution to Problem 1 is given (i.e.,

Fu1/SP°).
Scholium

In this case and in other similar cases, it must be understood that after the body reaches the center S, it will no longer
return to its orbit, but it will depart along the tangent.
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Recall that the force center was located on the circumference of the circle and therefore the body will
eventually pass through the force center. In such a singular situation both the force and speed would
increase without limit and, as Newton states, the body would shoot off along the tangent. The
statement is not carried through to the 1687 edition of the Principia .

In a spiral which cuts all the radii at a given angle, the centripetal force being directed to the beginning of the spiral is
reciprocally in the tripled ratio of the distance, but at that beginning no straight line in a fixed position touches the
spiral.

A full solution to the problem of the equiangular spiral appears as Proposition 9 in the 1687
edition of the Principia with the force center at the pole (or "beginning") of the spiral. At the pole, no
tangent can be defined, but elsewhere the force is proportional to the inverse cube of the distance SP

Newton has thus demonstrated that the centripetal force required to maintain a circular orbit with
a center of force located on the circumference of that circle is inversely proportional to the fifth power
of the distance SP . As has been previously noted, such an orbit with such a center of force does not
serve any particular physical situation. The example is intended purely as a demonstration of how the
general paradigm in Theorem 3 can be applied to a very simple problem. The analysis requires only
one set of similar triangles and a single reference to a proposition from Euclid. (In contrast, the
analysis for the Kepler problem in Problem 3 has some sixteen sub-steps.) The particular example of
Problem 1 is carried forward to the 1687 edition of the Principia in much the same form as given in
the tract On Motion .

Problem 2—
An Elliptical Orbit with the Center of Force at the Center of the Ellipse

As the second example of the application of the paradigm of Theorem 3 to direct problems, Newton
determined the nature of the centripetal force required to maintain an elliptical orbit with the force
center located at the center of the ellipse. Figure 5.6 is based on the diagram that Newton provided
for this problem. As in the previous problem, the dynamic elements of Theorem 3 can be identified:
the projected tangential path PR , the elliptical arc PQ , and the deviation QR , here constructed
correctly as being parallel to the line of force PC . I break Newton's statement of the problem and its
solution down into three steps as outlined earlier and provide a line-by-line commentary. I have not
given a discussion of Problem 2 as detailed as that in the preceding problem or as detailed as that I
shall give in the distinguished Kepler problem (Problem 3). Readers may
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Figure 5.6
Based on Newton's diagram for Problem 2. A body P moves on an
elliptical orbit APQB about a center of force C located at the center of the
ellipse.

want simply to follow the flow of the solution to Problem 2 and reserve their energy for the
solution to Problem 3.

Problem 2. A body orbits on a classical ellipse; there is required the law of centripetal force being directed to the center
of the ellipse .

Step 1—
The Diagram

[Problem 2] Let CA and CB be the semi-axes of the ellipse; GP and DK conjugate diameters; PF and QT perpendiculars
to these diameters; QV ordinate to the diameter GP; and QVPR a parallelogram .

[1-A] Let CA and CB be the semi-axes of the ellipse;

The semi-major axis CA and the semi-minor axis CB are constructed perpendicular to each other (see
fig. 5.6). Note also that the conjugate diameters GP and DK (defined next) are not, in general,
mutually perpendicular.

[1-B] GP and DK conjugate diameters;

The transverse diameter GP is constructed from the point P through the center C of the ellipse to
the point G opposite point P (see fig. 5.6). The conjugate diameter DK is constructed parallel to the
tangent PR, and it passes through the center C . The diameters GP and DK are said to be a
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conjugal (united) pair. Many properties of the ellipse can be expressed in terms of these conjugate
diameters.

[1-C] PF and QT perpendiculars to these diameters;

PF is normal to DK and will be used in the calculation of the circumscribed area to the ellipse
given in Lemma 1. The line QT is constructed perpendicular to the diameter GP and will be used in the
discriminate ratio QR / QT? (see fig. 5.7).

[1-D] QV ordinate to the diameter GP;

QV is constructed parallel to the tangent PR and hence is parallel to the conjugate diameter DK
and furthermore is said to be ordinate to the transverse diameter GP (see fig. 5.7).



[1-E] and QVPR a parallelogram .

The deviation QR must be constructed parallel to the line of force PC , and is thus parallel to the
conjugate diameter PV . The line segment QV is parallel to the tangent RP from [1-D]. Thus, QVPR is
a parallelogram (see fig. 5.7).

Step 2—
The Analysis

In the analysis to follow, Newton expresses the discriminate ratio QR / QT2 in terms of the given
constant circumscribed area of the ellipse (BC x AC ) and the radius PC . Note that the particular
radius PC from Problem 2 is equal to the general radius SP from Theorem 3. When the discriminate
ratio was determined in terms of PC, then the linear dynamics ratio was also expressed in terms of
PC . Thus, the proportional dependence of the force F on PC was known, and so the direct problem

was solved (F uQR / (QT 2 x PC?)).

[2-A] After these have been constructed, there will be [from the Conics] PV x VG to QV2as PC2to CD2andQV2 / QT 2 =
PC2 / PF2 , and on combining these proportions PV x VG / QT2 =pc2/ (CD2 x PF2 )/PC2 .

Find QT2 : An expression for the line QT is obtained from the similarity of triangles QTV and PFC
(i.e., QT / QV = PF / PC or QT2 = QV2 (PF? / PC 2)). Then, a relationship from Apollonius (i.e., PV x
VG / QV2 = PC? / CD? or QV2 = (PV x VG ) (CD? / PC?)) is used to eliminate QV2 from the
expression for QT2 (i.e., QT2 = (PV x VG ) (PC2 / CD? ) (PC? / PF2)).

[2-B] Write QR in place of PV and BC x CA in place of CD x PF,

Find QR : The relationship PV = QR (from the parallelogram QRPV ) is used to introduce the
deviation QR into the expression for QT2 and to obtain
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Figure 5.7
The bottom figure is abstracted from the full figure above. The line QT
is constructed perpendicular to the conjugate diameter GP, and the line
QV is constructed parallel to the tangent ZPR .



the following expression: QR / QT2 =PC*/ (VG) (CD x PF )2, where (CD x PF) is a constant
equal to area (CA x CB).

Step 3—
The Limit

[3-A] and in addition (with the points P and Q coalescing ) 2PC in place of VG, and, when the ends and middles are
multiplied into each other, there will result QT2 x PC2 / QR = 2BC2 x CA2/ PC.

Find QR /(QT? x PC?): Finally, when the point Q approached the point P, then the line VG
approached the value 2PC , and the expression for the discriminate ratio becomes QR / QT2 =pPC3/
2(CA x CB )2 .
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[3-B] The centripetal force is therefore reciprocally as 2BC2 x CAZ / PC, that is (because 2BC2 x CAZjs given ), as 1/PC,
that is, directly as the distance PC. Which was to be found .

Dividing both sides by PC 2 gives the linear dynamics ratio QR / (QT? x PC2) = PC / 2(CA x CB )?
, Which, because the area (CA x CB ) is a constant, gives the ratio as directly proportional to PC .

Conclusion

From Theorem 3, Fu QR / (QT2 x PC2 ) UPC , or the centripetal force F required to maintain elliptical
motion about a center of force located at the center C of the ellipse is directly proportional to the
distance PC , which is the solution for Problem 2. Newton has thus demonstrated that the centripetal
force required to maintain an elliptical orbit about a center of force located at the center of the ellipse
is directly proportional to the first power of the distance PC . As noted earlier, such an orbit with such
a center of force did not represent any particular physical situation. Newton intended this example
purely as a demonstration of how the general paradigm in Theorem 3 was to be applied to yet
another direct problem. The analysis for Problem 2 is more complicated than that for Problem 1, but it
is relatively simpler than that for Problem 3. The particular example of Problem 2 is carried forward to
the 1687 edition of the Principia in much the same form as given above for the tract On Motion .

Problem 3—
An Elliptical Orbit with the Center of Force at a Focus of the Ellipse

The challenge set forth in Problem 3 is a distinguished one: find the solution to the "Problem of the
Planets." Kepler had demonstrated in 1609 that Mars moved in an elliptical orbit with the sun at a
focus. The question that remained to be answered, however, was the mathematical nature of the
force required to maintain that motion. In On Motion , the solution follows the two preliminary
examples without any fanfare. In the Principia , however, Newton called attention to "the dignity of
the problem and its use in what follows" by separating Problem 3 from the preceding direct problems
and giving it a place of honor at the beginning of a new section. It is the keystone of both works in
terms of the dignity of the problem and in the degree of mathematical difficulty.

As in all the previous problems, Newton's diagram identifies the dynamic elements to be
employed in the demonstration (see fig. 5.8 in the following statement of the problem): the projected
tangential path PR , the elliptical arc PQ , and the deviation QR from the point R on the tangential
path to the point Q on the elliptical arc. Note in this diagram that
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the deviation QR is constructed parallel to the line of force SP, which is directed toward the focus S,
and that the line segment QT is constructed perpendicular to SP . The challenge for this problem is, as

it was for the two previous problems, to express the discriminate ratio of the force QR / QT2 in terms
of the radius SP and / or constants of the orbit. The final expression of the solution appears

deceptively simple: the discriminate ratio QR / QT 2 is found to be proportional to the reciprocal of the
constant /atus rectum L of the ellipse (where L = 2BC / AC ), and therefore the force is proportional to

the inverse square of the distance, 1/SP? .



Fee QR/(QT2x §P2) e 1/ (Lx SP?) < 1 / SPt

where L is a constant of the ellipse. Thus, once it is demonstrated that the discriminate ratio QR /

QT? is a constant for the elliptical/focal motion, then the problem is solved. That initial demonstration,
however, requires a number of steps, and the reader must remember that the goal is to demonstrate
that the discriminate ratio QR / QT2 is a constant. Once that goal has been achieved, it is a simple
matter to determine from Theorem 3 that the force is inversely proportional to the inverse square of
the distance SP .

I have divided Step 2, the analysis, into some sixteen sub-steps between line [2-B] and line [2-
Q]. The journey is not for the faint of heart; but then if it had not been challenging there would have
been no reward for Newton. In honor of the dignity of the problem, I give the statement of the entire
proposition and follow it with a line-by-line analysis. I suggest reading the full statement to get an
overview of the problem without attempting to justify each point and then following the details of the
proof in the line-by-line analysis.

Problem 3. A body orbits on an ellipse; there is required the law of centripetal force directed to a focus of the ellipse .

Let S be a focus of the ellipse above. Draw SP cutting the diameter of the ellipse DK at E. It is clear that EP is equal to
the semi-major axis AC, seeing that, when from the other focus H of the ellipse the line HI is drawn parallel to CE,
because CS and CH are equal , ES and EI are equal, and hence EP becomes half the sum of PS and PI, that is, of PS and
PH which are conjointly equal to the total axis 2AC. [See fig. 5.8.]

Let drop the perpendicular QT to SP, and, after calling the principal latus rectum (or 2BC2/ AC) of the ellipse L, there
will be

L x QR to L x PV as QR to PV, that is, as PE (or AC) to PC;
and L x PV to GV x VP as L to GV;

and GV x VP to QV2as CP2to CD? ;
and QV2to QXZas, say ,MtoN;
and szis to QTzas EP2to PF2 , that is, as CAZ2to PF2 , oras CD2to CBZ .

And when all these ratios are combined ,

L x QR / QT2will be equal to (AC / PC) x (L / GV) x (CP2/ CD? ) x (CD2 / CB2),
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Figure 5.8
Based on Newton's diagram for Problem 3. A body P moves in an
elliptical orbit APQB about a center of force S located at a focus of the
ellipse.

that is, as AC x L (or 2BC2 ) / (PC x GV) x (CP2/CB2) x (M/ N) or as (2PC / GV) x (M / N).

But with the points P and Q coalescing, the ratios 2PC / GV and M / N become equal [and approach unity 1, and
therefore the combined ratio of these L x QR / QT2 [equals unity (i.e., L = QT2 / QR)]. Multiply each part by SP2 / QR
and there will result L x SP?2 = SP2 x QT2 / QR.



Therefore the centripetal force is reciprocally as L x sp? , that is , [reciprocally ] in the doubled ratio of the distance.
Which was to be proven .

The concluding statement of Problem 3 sets forth the mathematical nature of the gravitational
force; that is, it is reciprocally as the square of the distance SP between the sun and the planet. It is
this result that provided the answer to the problem of the planets. I how give a detailed analysis of
each portion of Newton's demonstration.

Step 1—
The Diagram

[1-A] Let S be a focus of the ellipse above. Draw SP cutting the diameter of the ellipse DK at E.

The body is located at a general point P, and the center of force is located at a specific point S, the
focus of the ellipse (see fig. 5.8). The diameter DK is one of the conjugate diameters to the point P,
and it is drawn parallel to the tangent PR and through point C, the center of the ellipse. The
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intersection of the diameter DK with the line of force SP defines the point E . Note that the diameter
PG is not perpendicular to the diameter DK but that the line segment PF is constructed perpendicular
to the diameter DK .[3]

Step 2—
The Analysis ([2-B] to [2-Q])

In Problem 3, as in the solutions to the two previous direct problems, Newton expressed the
discriminate ratio QR / QT2 in terms of the radius SP and / or constants of the figure. When the

discriminate ratio was determined in terms of SP , then the linear dynamics ratio QR / QT2 x SP? was
also expressed in terms of SP . So, the proportional dependence of the force F, given by the linear
dynamics ratio, was also known, and the direct Kepler problem was solved.

As an overview for the reader, I summarize Newton's determination of the discriminate ratio QR /
QT2 here in an effort to provide a general guide to the multiple details in the analysis.

Find QR : A relationship for the deviation QR is obtained from the similarity of triangles PXV and
PEC , where QR = PX by construction (i.e., PE/ PC = PX/ PV = QR /PVor QR =PV (PE/PC)).
Newton also demonstrated that the line PE (defined in fig. 5.8) is equal to the semi-major axis AC (a
useful relationship for an ellipse that was not found in the standard works on conics). Thus, QR can be
written as PV (AC / PC ). From the same proposition of Apollonius's used in the solution of Problem 2,

Newton obtained an expression for PV (i.e., PV x VG / QV2 = PC2 / DC? or PV = (QV2 / GV) (PC? /

DC?)), and he used it to eliminate PV from the expression for QR (i.e., QR = (QV2 / GV ) (PC? / DC?)
(AC/ PC)).

Find QT 2 : From the similarity of triangles EPF and XQT , he obtained an expression for the

second element of the discriminate ratio QT2 (i.e., QT / QX = PF/ PE or QT? = QX 2 (PF%2 | AC?),
where as above PE = AC ). From Euclid's relationship for circumscribed areas (also used in the

solution of Problem 2) one has PF/ AC = BC/ DC, and thus QT2 = Qx2 (BC 2/ DC?).

Find QR / QT2 : The discriminate ratio QR / QT? can then be written from QR = (QV2 / GV ) (PC? /
DC2?) (AC/PC) and QT2 = QX2 (BC2/ DC% ) or QR/ QT? = (QV2/ QX2 ) (PC/ GV ) (AC/ BC?).
Given the definition of the constant /atus rectum L = 2BC? / AC , the discriminate ratio becomes (QV2
/QX2)(PC/GV) (2/L).

In the limit as the point Q approaches the point P, the line QV approaches the line QX , and the

line GV approaches a value of 2PC . Thus, the discriminate ratio QR / QT2 approaches 1/L , and the
linear dynamics ratio QR /
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Figure 5.9
The triangle SIH below is abstracted from the shaded area of the
ellipse above. Line EC is parallel to line IH and thus triangles SEC
and SIH are similar.

QT2 x SP? approaches 1/ (L x SP?). The force, therefore, is inversely proportional to the square
of the distance SP, as was to be demonstrated. What follows is a detailed analysis of Newton's
demonstration of the solution.

[2-B] It is clear that EP is equal to the semi-major axis AC,

At least it will be "clear" that EP = AC after Newton's demonstration in the next three steps ([2-C]
to [2-E]). This particular relationship for an ellipse, EP = AC, is not found in the standard works on
conic sections and appears to be original with Newton.[4]

[2-C] seeing that, when from the other focus H of the ellipse the line HI is drawn parallel to CE, because CS and CH are
equal , ES and EI are equal .

Or, ES = EI . The lines CS and CH are equal because they both locate a focus (S or H ) relative to
the center C . The equality of ES and EI follows from the similarity of triangles SEC and SIH and the
equality of line segments CS and CH (see fig. 5.9).
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The sum (SP + PH ) is a constant for any given ellipse,



and when the point P goes to A that sum is equal to
2AC .

Similarity: HI was constructed parallel to CE , and these two parallel lines are cut by the two
transversals SCH and SEI , as demonstrated in figure 5.9 by the small diagram abstracted from the
full diagram. Hence, all the angles a, b , and c in triangles SEC and SIH are equal and thus the
triangles are similar.

Because the triangles are similar, C bisects SH , then E bisects SI , and thus ES = EI , as was to
be demonstrated.

[2-D] and hence EP becomes half the sum of PS and PI,

Or, EP = 1/2(PS + PI'). From figure 5.9, PS = EP + ES = EP + EI (because ES = EI from [2-C]).
Moreover, PS + PI = (EP+ EI ) + PI = EP + (EI + PI ) = 2EP . Thus, EP = 1/2(PS + PI ).

[2-E] that is, of PS and PH which are conjointly equal to the total axis 2AC.

Or, 2EP = (PS + PI') = (PS + PH ) = 2AC . From the properties of conics (Apollonius, Proposition
48, Book 3)[5] the angles made by the tangent and focal lines (i.e., angles RPS and APH ) are equal,
and since the line IH is constructed parallel to the tangent RPZ , the line PI = PH . An ellipse is a
curve such that the sum of the distances from two fixed points (the foci) to a general point is given
(i.e., the sum (PS + PH ) is a constant). When the general point P is on the major axis A (see fig.
5.10) then the sum (PS + PH ) equals the sum (AS + AH ) equals (2AC ) because AH = A'S . Thus,
(PS + PH ) = 2AC . Therefore, from [2-D] 2EP = (PS + PI ) = (PS + PH ) = 2AC, or "clearly" EP = AC
, as was to be demonstrated in [2-B].

[2-F] Let drop the perpendicular QT to SP, and, after calling the principal latus rectum (or 2BCZ / AC) of the ellipse L,
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In [2-F], Newton calls upon the Apollonian definition of the /atus rectum L , which states that the /atus
rectum L is in the same ratio to the minor diameter 2BC as the minor diameter 2BC is to the major
diameter 2AC (i.e., L : 2BC :: 2BC : 2ACor L/ 2BC =2BC/ 2AC)orL = 2BC? / AC as given above.

[2-G] there will be L x QR to L x PV as QR to PV,

The deviation QR is introduced in the format (L x QR ) / (L x PV) = (QR ) / (PV ), which will be
extended next. Given (QR ) / (PV ), then simply multiply by (L / L ), which can be writtenas (L /L)
(QR/PV)=(LxQR)/(LxPV)=(QR)/(PV).

[2-H] that is, as PE (or AC) to PC;

Or, L(QR) /L (PV)=AC/ PC.The expression for the deviation QR is extended. Triangles PEC
and PXV are similar because XV and EC are parallel lines (see fig. 5.11). Thus, from the ratio of sides
of the similar triangles, PX /PV = PE / PC . Moreover, PX = QR because QRPX is a parallelogram, and
PE = AC, as demonstrated in [2-E]. Therefore, the ratio of sides can be written as QR / PV = AC/ PC
. Thus, from this result and [2-H], one obtains L (QR ) /L (PV) = AC/ PC, as required.

[2-I]and L x PV to GV x VP as L to GV

The element PV is introduced in a similar format to that employed to introduce QR in [2-G]. Given
L/ GV, simply multiply by PV / PV , which can be writtenas (PV/PV)(L/ GV )= (L x PV )/ (GV x
VP)=L/GV.

[2-]] and GV x VP to szas CP2to CD?2 ;

Or, GV x VP / QV2 = pPC2 / DC? . This property of an ellipse will be used to eliminate PV from the
expression for QR . The particular reference is to Proposition 15 of Book 1 of Apollonius's Conics , in
which it is demonstrated that any chord parallel to a diameter of an ellipse is bisected by the
conjugate diameter and, moreover, its square is equal to the product of the portions of the conjugate
diameter. In figure 5.12, if the chord is given by QVQ ' and the conjugate diameter by PVG , then (PV
x VG ) = (QV x VQ "), where QV = VQ '. The same relationship holds for the chord DK, that is (DC x



CK) = (BC x CG ), where DC = CK and BC = CG . Thus, the ratio PV x VG / QV? about point Vis
equal to the ratio PC2 / CD? about point C, as required above.

[2-K] and QV2to QX2as, say , M to N;

The ratio M / N is simply a definition of the ratio of QV / QX , a step that Newton eliminates in the
1687 edition of the Principia .

[2-L] and QXZ2is to QT2as EP2to PF2,

Figure 5.11
The shaded area CEP from the ellipse above is abstracted as the similar triangles
PXV and BEC below. The parallelogram QRPX from the ellipse is shown enlarged
below.

The second element of the discriminate ratio Q72 is now introduced. Because triangle EPF is
similar to triangle XQT (see fig. 5.13), the ratio of similar sides gives the ratio QX / QT = EP / PF .

Similarity: Lines QX and EF are parallel lines cut by the transversal EP , as demonstrated in the
small drawing abstracted from the full drawing in figure 5.13. Thus, angles PEF and QXT are equal, as
are the right angles EFP and XQT . Thus, all the angles of triangles EPF and XQT are equal and the
triangles are similar.

Thus, QX / QT = EP / PF and as given above, QX2 / QT? = EP2 / PF2 .
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Figure 5.12
The diameter PG bisects the chords QQ ' and
DK . From Proposition 15 of Book 1 of

Apollonius's Conics , the ratio of PV x VG / QV?2
is equal to the ratio PC% / DC? .

Figure 5.13

The shaded area in the ellipse is abstracted as the triangles EPF and XQT . Since the lines

QX and EF are parallel, the triangles are similar.

[2-M] that is, as CA2to PF2 , or as CD2to CB2 . [Finally, that is , QX%to QT2as CD2to CB2 .]

From [2-B] or [2-E], EP = CA , thus EP / PF = CA / PF . Also, from Lemma 1, area 4(CA ) (CB ) =
area 4(CD ) (PF) (see fig. 5.14), or CA/ PF = CD / CB . Thus, from [2-L] QX / QT = EP/ PF = CA/ PF

= CD /CB , which can be written in the square as in line [2-L] (i.e., QX2 / QT 2 = CD? / CB?).
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FPARALLELOGEAM A

Figure 5.14

PARALLELOGRAM B

The area of parallelogram A (= 4BC x CA) is equal to the area of parallelogram B

(= 4CD x PF).

[2-N] And when all these ratios are combined , L x QR / QT2



Multiply together the five preceding relationships (i.e., lines [2-H] to [2-L]) and consider the
products of the left- and right-hand sides separately. The product of the left-hand side of [H] [I] [J]

[K] [L] is equal to the product (L x QR ) (L x PV) (GV x PV ) (QV?) (Qx? ) divided by the product (L
x PV) (GV x PV) (QV2) (QX?) (QT? ). By simple cancellation of equals, this ratio of products
reduces to (L x QR ) / QT?.

[2-07 will be equal to (AC / PC) x (L / GV) x (CP%2/CD2) x (M/ N) x (CD2/ CB2),

The product of the right-hand side of [H] [I] [J] [K] [L] equals the product (AC) (L) (PC2 ) (M)
(CD? ) divided by the product (PC ) (GV ) (CD% ) (N ) (CB? ), which is equal to (AC /PC ) x (L /GV ) x
(CP%2/CD?) x (M/N) x (CD?/ CB?).

[2-P] that is, as AC x L (or 2BC2 ) / (PC x GV) x (CP2/CB2) x (M/ N)

That is, by simple cancellation of CD? in the ratio given in [2-0], one has (AC ) (L ) (PC2) (M)
divided by (PC ) (GV ) (N ) (CB? ). Also, from the definition of the /atus rectum L (see [2-F]), AC x L
= 2BC 2 . Substituting 2BC 2 for AC x L , the ratio can be further reduced to (2BC? ) (CP% ) (M)
divided by (PC ) (GV ) (N ) (CB? ). This ratio can be rearranged into the ratio given above (i.e.,
[(2BC2) / (PC x GV )] x [(CP? / CB2 ) x (M /N)]).

[2-Q] or as (2PC / GV) x (M / N) or [(L x QR) to QT2 ]

Upon canceling BC? and PC , [2-P] reduces to (2PC / GV ) (M /N ), as in [2-Q]. Thus, the left-
hand side [2-N] equals the right-hand side [2-Q], or (L X QR )/ QT2 = (2PC/ GV )M/ N).
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Figure 5.15
As the point Q approaches the point P, the line QV approaches the line QX
and the line GV approaches the line GP , which is equal to 2PC .

Step 3—
The Limit

[3-R] But with the points P and Q coalescing, the ratios 2PC / GV and M / N become equal [and approach unity] ,
In the limit as the point Q approaches the point P, then the line GV approaches the line PG = 2PC

(see fig. 5.15), and thus the ratio 2PC / GV approaches unity. Also in the limit, the line QV approaches
the line QX and from [2-K], (QV/ QX )2 = M/ N, thus the ratio M / N, also approaches unity.

[3-S] and therefore the combined ratio of these L x QR / QT2 [equals unity (i.e ., L = QT2 / QR)]



At long last, QR /QT 2 = 1/L ! Thus, from [2-Q], one has (L x QR )/ QT2 = (2PC/ GV ) (M / N)
® 1, or L = QT? / QR . Recall that Newton concluded Theorem 3 by stating that the force was to be
computed from the ratio QR /QT 2 x SP? . Everything in this proof has been directed toward showing

that the discriminate ratio QR /QT 2 is a constant equal to the reciprocal of the constant /atus rectum
L . The long journey is over.

[3-T] Multiply each part by SP2 / QR and there will result L x SP2 = SP2 x QT2 / QR.
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To obtain the reciprocal of the linear dynamics ratio (QR / SP? x QT2 ), simply multiply the expression
for the discriminate ratio in [3-S] by SP2 . Thus, SP2 (L ) = SP2 (QT 2/ QR ) = 1 / linear dynamics
ratio.

Conclusion

[U] Therefore the centripetal force is reciprocally as L x sp? , that is, [reciprocally 1 in the doubled ratio of the distance.
Which was to be proved .

From Theorem 3, the force is proportional to the linear dynamics ratio QR / SP?2 x QT? , or

reciprocally as L (SP 2 ), where the latus rectum L is a constant of the ellipse. Thus, the force is
proportional to the inverse square of the distance SP.

Scholium

[V] Therefore the major planets orbit in ellipses having a focus at the center of the sun, and with their radii having been
constructed to the sun describe areas proportional to the times, exactly as Kepler supposed .

By 1609, Kepler had obtained both the area law and the general ellipticity of solar planetary orbits
by analyzing Tycho's observations of the motion of the planet Mars. In 1664, Newton demonstrated
that both relationships can represent motion in the absence of any resistance. Note, however, that
Newton demonstrated only that if the planet moves in an ellipse, and if the force center is at a focus,
then the force is as the inverse square of the distance (a solution to the direct problem). He has not
here demonstrated that if the force is as the inverse square of the distant, then it necessarily follows
that the orbit is an ellipse with the force center at a focus of the ellipse (a solution to the inverse
problem). In the solution to Problem 4 (to follow) he demonstrates that if the body is initially moving
in an arbitrary ellipse under the action of an inverse square force, and if the speed and angle of
inclination are changed to take on all possible values, then the resulting motion will be an ellipse, a
hyperbola, or a parabola. Newton did not formally address the question of the uniqueness of the
solution of the direct problem in the 1678 edition of the Principia ; however, he did speak to that
question in the 1713 edition (to be discussed in chapter 10).

[W] Moreover, the latera recta of these ellipses are QT2 / QR, where the distance between the points P and Q is the
least possible and, as it were, infinitely small .

For infinitely small displacements the discriminate ratio QT2 / QR is equal to the constant /atus
rectum L . Newton considers this property of elliptical motion (derived in [3-S]) to be so important
that it is elevated to the position of a scholium for easy future reference. Given the detailed analysis
required to provide the demonstration, it is a result worthy of the elevation.

— 118 —
Conclusion

Thus, Newton demonstrated that the centripetal force required to maintain a body P in elliptical
motion about a focal point was inversely proportional to the square of the distance SP . From this
solution he developed the concept of a force of universal gravitation that controlled the motion of the
planets as they sweep around the sun. All the mathematical astronomers to follow used and extended
the solution and, from its beginning here in Newton's reply to Halley's request of 1684, it has
developed into the sophisticated gravitational astronomy of the eighteenth, nineteenth, and twentieth
centuries. Of all the contributions that Newton made to mathematics, to optics, to astronomy, and to
areas other than science, no other received as much public recognition as this solution of the Kepler



problem. It elevated both Newton and mathematical astronomy to new heights. One wonders,
however, when (if ever) Newton would have made his results public had not Halley happened to visit
Cambridge after his discussion with Robert Hooke and Christopher Wren concerning such a proof. As
one historian has put it (no pun intended, I am sure), "by 1684, the general question of gravitation
was in the air."[6] It is reasonable to assume, therefore, that Newton would eventually have become
aware of the general interest in his demonstration. Nevertheless, Halley asked his question at the
right time and of the right person, and Newton's answer caught the attention of the academic world.
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Five— The Paradigm Applied:On Motion , Problems 1,
2,and 3
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Six— The Paradigm Extended:On Motion , Theorem 4
and Problem 4

Six—
The Paradigm Extended:
On Motion , Theorem 4 and Problem 4

Contemporary textbooks in astronomy or physics attribute three laws governing planetary motion to
the work of Kepler: the first law states that a planet moves in an elliptical path about the sun located
at a focus of the ellipse; the second law states that a line joining the sun and a planet sweeps out
equal areas in equal times; and the third law states that the period of a planet about the sun is
proportional to the three-halves power of the transverse axis of the elliptical orbit. In Theorem 1 of
On Motion , Newton demonstrates that the second law is valid for any central force; in Problem 3 he
demonstrates that, given the first law, it follows that the force will be inversely proportional to the
square of the distance; and in Theorem 4, he demonstrates the third law.

Theorem 4—
The Three-Halves Power Law

Theorem 4. Supposing that the centripetal force is reciprocally proportional to the square of the distance from the
center, the squares of the periodic times in ellipses are as the cubes of their transverse axes .

Figure 6.1 is based on the diagram that accompanies the theorem in the tract On Motion . In the
following, I consider each line of Newton's demonstration of the theorem in detail.

[A] Let AB be the transverse axis of an ellipse , PD the other axis , L the latus rectum, S one of the foci ;
Thus, AB is the major axis and PD is the minor axis. Newton employed the Apollonian definition of

the latus rectum L , which states that the /atus rectum L is in the same ratio to the minor diameter PD
as the minor diameter PD is to the major diameter AB (i.e., L : PD :: PD : ABor L/ PD = PD / AB
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Figure 6.1
Based on Newton's diagram for Theorem 4.

orL = PD?/ AB ). From the definition of an ellipse, the distance (SP + PH ) is a constant equal to
the principal axis AB . In this construction SP = PH , therefore AB = 25P and thus L = PD? / 2SP , a

relationship that will be employed in the following.

[B] /et the circle PMD be described with S as the center and SP as the radius .

Thus, the circle PMD has a radius SP and its diameter, 2SP , is equal to the major axis of the
ellipse, AB .

[C] And at the same time let two orbiting bodies describe an elliptical arc PQ and the circular arc PM, with the
centripetal force directed to the focus S.

It will be demonstrated next that the period of the body orbiting on the circle is equal to the
period of the body orbiting on the ellipse when the diameter of the circle is equal to the transverse
axis of the ellipse.

[D] Let PR and PN be tangent to the ellipse and circle at the point P. Parallel to PS draw QR and MN meeting those
tangents at R and N.

The deviation QR measures the elliptical departure from the tangential inertial motion along PR
(see fig. 6.2), and the deviation MN measures the
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D

Figure 6.2
The ellipse abstracted from the general diagram for Problem 4.

circular departure from the tangential inertial motion along PN (see fig. 6.3). Both are employed
in the linear dynamics ratio as a measure of the force.

[E] But let the figures PQR and PMN be indefinitely small, so that (by the scholium to Problem 3) there results L x QR =
QT2and 2SP x MN = MV2 ,

In the scholium to Problem 3, Newton demonstrates that the ratio QT2 / QR approaches the /atus

rectum L of the ellipse as the point Q approaches the point P, or ultimately L x QR = QT? . Fora
circle, the major axis, the minor axis, and the /atus rectum are all equal to the diameter, 2SP . Thus,

for the circle, L = MV2 / MN = 2SP or 2SP x MN = MV? .

[F1 On account of their common distance SP from the center S and therefore equal centripetal forces , MN and QR are
equal .

The centripetal force depends only upon the distance SP, which is the same for the common
point P on both orbits (see fig. 6.1). Thus, for a given time, the displacements MN and QR are equal
because the forces are equal.

[G] Consequently QT2is to MV2as L to 2SP, and so QT to MV as the mean proportional between L and 2SP;
Taking QT2 = L x QR and MV2 = 25P x MN from [E], QT2 / MV 2 =L x QR / 2SP x MN = L / 2SP

, since MN = QR from [F]. Thus, QT2 / MV2 = L / 2SP, or what is equivalent, QT / MV is the mean
proportional between L and 2SP .
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Figure 6.3
The circle abstracted from the general diagram for Problem 4.

[H] [that is , PD to 2SP]

From [G], QT?/ MV2 = L /(25P ). From [A], L = (PD 2 / AB ) and AB = (2SP ), therefore L = PD? /
(2SP). Thus, L / (2SP ) = PD? / (2SP )2 . Therefore, QT / MV = PD / (2SP).

[I] for this reason the area SPQ is to the area SPM as the total area of the ellipse to the total area of the circle .

The area of the ellipse equals p (AB / 2) (PD / 2) = (1/4)pAB x PD , and the area of the circle

equals pSP 2 . Hence, the ratio of areas = AB x PD /4SP? = PD /2SP because AB = 2SP from line [B].
The ratio of the triangular areas SPQ = (1/2)SP x QT and SPM = (1/2) SP x MV reduces to QT / MV,
which from line [H], is as PD / 2SP . Thus areas (SPQ / SPM ) = PD / 2SP = areas (ellipse / circle).

[J] But the parts of the areas generated at individual moments are as the areas SPQ and SPM, and hence as the total
areas ,

The incremental areas of the circle DAc and the ellipse DAE are in the same ratio as the total
areas given in [I] (i.e., DAc /DA g = Ac / Ag).
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[K] and consequently when multiplied by the number of moments they will likewise turn out equal to the total areas .

The total areas equal the sums of the N incremental areas or A = SDA = NDA . Thus, DAc / DAE =
(Nc DAc )/ (NeD Ag ) = Ac/ Ak .

[L] Revolutions on ellipses, therefore, are accomplished at the same time as those on circles whose diameters are equal
to the transverse axes of the ellipses .

From line [K], the number of moments N must be equal (i.e., Nc = Ng ). Moreover, the number of
moments to sweep out the total area equals the period T divided by the size of the equal time
increment D t (i.e., N=T/Dt). Thus, Nc/ Ng = (Tc/Dt)/ (Tg/Dt) =Tc/Tgor Tc=Tg.

[M] The squares of the periodic times in circles (by Corollary 5 of Theorem 2) are as the cubes of their diameters. And
hence also in ellipses. Which was to be proven .



In the 1687 edition, Newton proves this result (Kepler's third law) directly from the limiting

relationship given in the scholium to Problem 3 (i.e., QR / QT?® L ) without using the concentric circle
employed here in On Motion (1684).

When Newton published the 1687 edition of the Principia , which builds directly upon On Motion ,
he adds a third book devoted to the analysis of the actual observations of celestial phenomena. Thus,
he brings to life rather abstract mathematical demonstrations of the nature of gravitational force by
comparing them to the actual data compiled by astronomers. In the following, Newton adds a
scholium to the theorem just discussed, Theorem 4, that suggests one way in which the
measurements of the periods of the planets can be used to determine the dimensions of their orbits.

Scholium

Hence in the celestial system from the periodic times of the planets we come to know the proportions of the transverse
axes of their orbits. We shall assume one axis, from which others will be given.

The assumed axis usually will be the diameter of the earth's orbit. Then, using Theorem 4, the
ratio of the other axes will be known from their observed periods.

[Scholium] When the axes have been given, however, the orbits will be determined in this way. Let S be the position of
the sun, or one focus of the ellipse ; A, B, C, D positions of the planets found by observation; and Q the transverse axis
of the ellipse. With center A and radius Q - AS let the circle FG be described, and the other focus of the ellipse will be in
its circumference . [See fig. 6.4.]

The points A, B, C, and D all lie on the planetary ellipse. It is a property of an ellipse (see [2-E]

in Problem 3) that the sum of the distances from any point on the ellipse to the foci is a constant
equal to the length of the
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Figure 6.4
The first diagram for the scholium to Theorem 4.

transverse axis, Q . Thus AS + AF = Q or AF = Q - AS . Thus, the circle FG of radius Q - AS about
the point A will intersect the transverse axis at the focus F .

[Scholium] Likewise, with centers B, C, D, etc., and intervals Q - BS, Q - CS, Q - DS, etc., let any number of other
circles be described, and that other focus will be in all their circumferences and hence at the common intersection of all
of them. If all of the intersections do not coincide, a mean point for the focus must be taken. The advantage of this
procedure is that as many observations as possible may be made to elicit a single conclusion, and they may be
expeditiously compared with one another .

The transverse axis Q and the positions A, B, C, D, etc., are only known approximately. Thus, the
various circles will not intersect at a single point. If all the points are known with equal accuracy,
however, then the mean point for F could be defined as the simple arithmetic mean.[1]

[Scholium] Halley has shown, however, how to find the individual positions A, B, C, D, etc., of a planet from pairs of
observations, once the great orbit of the earth is known. (2117 that great orbit is not yet considered to be exactly enough
determined, then by knowing it approximately, the orbit of any other planet, like Mars, will be determined more closely.
Then from the orbit of the earth, the orbit of the planet will be determined more accurately by far than before. And so in
turn, until the intersections of the circles in the focus of each orbit concur exactly enough .



By this method we may determine the orbits of the earth, Mars, Jupiter, and Saturn; but for the orbits of Venus and
Mercury, do the following .
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Figure 6.5

The second diagram for the scholium to Theorem 4.

The method Newton describes employs pairs of solar oppositions to fix the position and relative
sizes of the planetary radii. Since the two inner planets, Venus and Mercury, can never be in
opposition to the sun, then another method, such as the following, must be used for them.

[Scholium] From observations made in the greatest digression of the planets from the sun, let tangents of the orbits be
obtained. To such a tangent KL let the perpendicular SL be dropped from the sun, and with center L and radius half the
axis of the ellipse let the circle KM be described,; the center of the ellipse will be in its circumference . [See fig. 6.5.]

Whiteside suggests that Newton may here assume that his reader would know an equivalent
proposition from Apollonius to demonstrate that the center of the ellipse would lie on such a circle.[3]

[Scholium] and thus when several circles of this kind are described, it will be found at the intersection of all of them.
Then, when the dimensions of the orbits are known, the lengths of these planets will be determined more exactly from
their passage through the disc of the sun .

This technique only gives proportions relative to an assumed size of the earth's orbit. The
reference here is to the determination of the absolute size of the distance from the sun to the earth
by observations of the transits of Mercury and Venus across the solar disc. Halley had traveled to the
island of St. Helena (latitude 16°S) in October of 1677 to observe a transit of Mercury, and he may
have called Newton's attention to the possible use of such observations during his famous visit to
Cambridge in August of 1684.[4]

Problem 4—
Given an Inverse Square Force, Find the Resulting Conic Section

In Problem 3, the elliptical orbit and focal force center were given, and the force function was found to
be inversely proportional to the square of
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the distance. In Problem 4, the force function is given as inversely proportional to the square of the
distance and the orbit is to be determined. Newton considers a body projected at a given point, with a
given speed, acted upon by an inverse square force whose absolute value (gravitational constant) is
given. From the solution to Problem 3, it is known that one possible orbit under such conditions is that
of an ellipse with the center of force at a focus of the ellipse. Newton begins with the assumption that
the body is moving in such an ellipse. Moreover, he assumes the existence of an auxiliary circular
orbit that is centered on the focus of the ellipse.[5]1 He then proceeds to determine all the relevant
parameters of the initial ellipse from the given elements of the problem. Having done so, he then
allows the initial speed of the body to increase and demonstrates that the initial elliptical path
becomes a parabolic path and then a hyperbolic path. Newton makes no explicit claim that this
solution provides a demonstration that the conic sections exhaust all possible types of motion under
the action of an inverse square force (i.e., that it is a solution of the inverse problem). But others saw
the possibility of such a solution in his demonstration of Problem 4, which also appears as Proposition
17 in the Principia . As Bertoloni Meli points out, support came from both the English mathematician
John Keill and the continental mathematician Leonhard Euler.



In 1716 Keill claimed that Proposition 17 [Problem 4] contained a demonstration of the inverse theorem. In his reply
through his student Johann Kruse, however, Johann Bernoulli objected that Proposition 17 [Problem 4] assumes the
result rather than proving it. Surprisingly Johann Bernoulli's most talented pupil and possibly the most gifted
mathematician of the Enlightenment sided with Keill: Leonhard Euler, in his 1736 Mechanica , claimed that the inverse
problem of central forces could be solved on the basis of Proposition 17 [Problem 4]. 6

The composite nature of the solution, however, is such that it has been the subject of
considerable controversy, and the debate still continues.[71

I give the statement of the problem and then follow it with a line-by-line analysis of Newton's
demonstration of the solution. Figure 6.6 is based on Newton's diagram for Problem 4.

Problem 4. Supposing that the centripetal force be made reciprocally proportional to the square of the distance from its
center, and that the absolute quantity of that force is known; there is required an ellipse which a body will describe,
when released from a given position with a given speed along a given straight line .

[A] Let the centripetal force directed to point S be that which makes the body P orbit in a circle pq described with center
S and any radius Sp.

The body p moves in a reference circle pg of radius Sp about the center of force S . For a given
"absolute quantity of force" (i.e., a given force con-
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Figure 6.6
Based on Newton's diagram for Problem 4.

stant) there exists a particular constant tangential speed for which the body p will move uniformly
in a circle, as has been demonstrated in Theorem 2. In what follows, Newton assumes that the proper
set of initial conditions has been met and he will relate various aspects of this constant uniform
circular motion to the more general conic motion of the orbit PQ (see fig. 6.6).

[B] Let the body P be released from the position P along line PR, and soon after let it deflect under the compulsion of
the centripetal force into the ellipse PQ. The straight line PR, therefore, will touch this at P.

This description of the elements of the diagram constitute Newton's standard method of analysis
of direct problems. The line PR represents the tangential linear displacement the body would have
made had no force acted on it. The possibility of elliptical motion under an inverse square centripetal
force has been demonstrated in Problem 3, and here Newton assumed that the proper set of initial
conditions had been met for the body P to move on an ellipse. Moreover, from Theorem 1, the motion
will be such that the radius will sweep out equal areas in equal times because the force is directed to
a fixed center. Newton was aware that other initial conditions will produce other motions than
elliptical ones, and he addressed those alternate motions in what follows.

[C] In the same way let the straight line pr touch the circle at p,

— 128 —
The tangent is defined for the reference circle.



[D] and let PR be to pr as the initial speed of the body P sent out to the uniform speed of the body p.

The implicit assumption is made that the tangential displacements PR and pr take place in equal
times. If v, is the projection speed at P and vy, is the uniform circular speed at p , then the

displacements PR and pr are equal to the product of the speed and the time, or are proportional to
those speeds in the same time t (i.e., PR/ pr=vpt/ vpt =vp/vp).

[E] Let RQ and rq be drawn parallel to SP and Sp, the latter meeting the circle at q, the former the ellipse at Q,

The deviations QR and gr are the first elements required for the respective linear dynamics ratios.

[F] and let the perpendiculars QT and qt be drawn from Q and q to SP and Sp.

The perpendiculars QT and gt are the second elements required for the respective linear dynamics
ratios.

[G] RQ is to rq as the centripetal force at P is to the centripetal force at p:

For a given time, the force Fj is proportional to the deviation QR and the force Fp, is proportional
to the deviation gr, as has been discussed in detail in the previous problem solutions.

[H] that is, as Sp%to SP2 , and hence that ratio is given .

From the statement of the problem, F, / F, = (C/ SP?) / (C /Sp? ) = Sp? / SP? , where Cis a
constant set by the given absolute value of the force. Since the ratio of the displacements RQ /rq is
given in [D] by the initial projection speed, and since that ratio equals the ratio of the forces [from

line [G]], then ratio Sp% / SP 2 is also given, and it equals QR / gr .
[1] The ratio QT to qt is also given .

The ratio of the areas, (QT x SP ) / (gt x Sp ), is equal to the ratio of the times (Theorem 1:
Kepler's law of equal areas in equal times). Since the times are equal, then (QT x SP ) = (gt x Sp ),
or QT / gt = Sp / SP, and the ratio QT / gt is thus given (because the ratio Sp / SP is given in line
[H]).

[J] From this latter ratio doubled let the given ratio QR to qr be taken away, and there will remain the given ratio of QT2
/ QR to qt? / ar,

Divide the square of the given ratio of (QT / gt )2 by the given ratio of (QR / gr ), and there
results the given ratio of (QT2/ QR )/ (qt% / gr).

[K] that is (by the scholium to Problem 3 ) the ratio of the latus rectum of the ellipse to the diameter of the circle;
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Figure 6.7
Angle RPS equals angle ZPH , and thus angle RPH is the
supplement of angle RPS .

That is, (QT2/ QR )/ (qt2/ gr) = L / Sp . The scholium to Problem 3 states that the limiting

value for the ratio QT2 / QR for an ellipse as Q®P is the latus rectum, L . Thus, since the ratio in line
[3] is known, the ratio of Lg for the ellipse to L¢ for the circle is known. The /atus rectum L for the

circle, however, is its diameter Sp . (From the definition, L = (minor diameter)2 / (major diameter);
for a circle the two diameters are equal; thus, Lc = diameter.)

[L] and therefore the latus rectum of the ellipse is given. Let that be L.

Thus, since the diameter of the circle Sp is given, the /latus rectum L of the ellipse is known (i.e.,
from [K] L/ Sp = (QT2 /QR)/ (qt2 / gr ), where the final ratio is given from line [J]).

[M] In addition, the focus of the ellipse S is given .
The focal point S is given in the opening statement in line [A].
[N] Let angle RPH be the complement of angle RPS to two right angles [i.e., angle RPH is the supplement of angle RPS],
From figure 6.7, angle RPH + angle HPZ = 180°. From the properties of conics (Apollonius,
Proposition 48, Book 3) the angles RPS and ZPH that are made by the tangent and focal lines are

equal.[8] Thus, the angle RPH = 180° - ZPH = 180° - RPS , or angle RPH is the supplement of angle
RPS .

[O] and there will be given in position the line PH in which the other focus H is located .
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Figure 6.8
The focal distances SC and CH are equal, and thus SH can be
given as 2CH .

The angle RPS is known from the projection velocity. From line [P] the angle SPH is known; it is
180° - 2RPS . Thus, the direction of the line on which the second focus H is located is known relative
to the line SP, or as Newton puts it, "There will be given in position the line PH ." The distance PH ,
however, is not yet known. Lines [P] to [V] are required to determine the length of PH and thus to
locate the second focus H .

[P] After the perpendicular SK is let down to PH and the semi-minor axis BC is erected, there is SP2 - 2KP x PH + PH?
= SH?2

This result is found in Euclid, Book 2, Proposition 13.[91 (Otherwise, from the law of cosines, SH?
= SP? - 25P x PH x cos(angle SPH ) + PH? . From figure 6.7, cos (angle SPH ) = KP / SP . Thus, SP?
- 2KP x PH + PH? = SH? )



[Q] SH2 = 4BH? - 4BC?

From figure 6.8, SH = SC + CH = 2CH or SH? = 4CH? . From the right triangle BCH , one has CH?
= BH? - BC? . Thus, 4CH? = 4(BH? - BC? ) or SH2 = 4BH? - 4BC? .

[R] 4BHZ - 4BC2 = (SP + PH)Z - L x (SP + PH)

From the definition of an ellipse, (SP + PH ) = 2AC = 2BH , thus 4BH? = (SP + PH )2 . From the
definition of the latus rectum , L = 2BC2 / AC, thus 4BC2 = L x 2AC = L x (SP + PH )2 . Thus, 4BH?
- 4BC? = (SP + PH )2 - L x (SP + PH ) as given above.

[S](SP + PH)Z - [L x (SP + PH)] = (SP2 + 2SP x PH + PH2 ) - [L x (SP + PH)].
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Simply expand the square, (SP + PH )2 = (SP? + 2SP x PH + PH?).

[T] To each side add 2KP x PH + L x (SP + PH) - SP2 - PH2and there will result L x (SP + PH) = 2SP x PH + 2KP x
PH,

Starting at line [P], SP2 - 2KP x PH + PH? has been shown to be equal at line [S] to (SP? + 2SP

X PH 4+ PH?) - L x (SP + PH ), which upon cancellation and rearrangement becomes L x (SP + PH )
= 2SP x PH + 2KP x PH .

[U] or (SP + PH) to PH as (2SP + 2KP) to L.

Dividing both sides by L x PH ,one has (SP+ PH )/ PH = (2SP+ 2KP ) /L

[V] From which the other focus H is given .

The direction of the line PH was determined in line [P]. The length of PH was determined by the
ratio in line [U], because the elements, SP, L , and KP are given. (KP = SP cos (SPH ), where the
angle SPH is given in line [P].) Thus, the direction and distance of PH relative to S is determined, and
therefore the second focus H is known.

[W] Given the foci, however, along with the transverse axis SP + PH, the ellipse is given. As was to be proven .

Knowledge of the position of both foci and the distance (SP + PH ) permits construction of the
ellipse. A simple demonstration is accomplished by putting a tack at each of the foci and joining them
with a loose string of length (SP + PH ). When a pencil is moved so that the string remains taut, the
ellipse is drawn.

[X] This argument holds when the figure is an ellipse. But it can happen that a body moves in a parabola or a hyperbola

The initial conditions set in line [B] restricted the motion to an ellipse, but in [X] Newton
demonstrates that the motion under an inverse square force could also be a parabola or a hyperbola
(i.e., any conic section). In doing so, he permits the projection speed v, of the body P to take on
greater values than the specific value that produced elliptical motion at a given point under an inverse
square centripetal force with a given force constant. He demonstrates that the resulting motion will be
one of the conic sections.

[Y] But if the speed of a body is so great that the latus rectum L is equal to 2SP + 2KP, [then ] the figure will be a
parabola having its focus at the point S and all its diameters parallel to the line PH.

As the second focus H recedes to infinity, the figure becomes a parabola. From line [N ], as PH
increases without limit, (SP + PH ) / PH® 1 or the latus rectum L approaches (2SP + 2PK ).
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[Z] But if the body is released at an even greater speed, [then ] it will be moved in a hyperbola having one focus at the
point S, the other at the point H taken on the opposite side of the point P, and its transverse axis equal to the difference
of the lines PS and PH.

The second focus H , having receded to infinity, now approaches the other focus S from the
opposite side of the general point P .

Newton did not address the full question of the uniqueness of this solution to Problem 4 (i.e., do
the three conic sections exhaust all the possible solutions for motion under an inverse square force?).
Perhaps he thought the affirmative answer self-evident, since for every initial speed, angle of
projection, and value of force constant, a unique conic is defined: an ellipse, a parabola, or a
hyperbola.[101 Moreover, the subject of the uniqueness of the solution was not discussed in the
revised solution to Problem 4 that appeared as Proposition 17 in the 1687 edition of the Principia . In
Propositions 11, 12, and 13, however, he presented the solutions for the direct problems of each of
the conic orbits: an ellipse, a hyperbola, and a parabola. In the 1687 edition, he included the
following corollary to Proposition 13, which directly assumed uniqueness.

Corollary. From the last three propositions it follows that if any body P should depart from Position P along any straight
line Pr, with any velocity, and is at the same time acted upon by a centripetal force that is reciprocally proportional to
the square of the distance from the center, this body will be moved in one of the sections of conics having a focus at the
center of forces; and conversely .

In the 1713 edition, however, he added a statement to the corollary in Proposition 13 that was
intended to address and to justify the assumption of uniqueness. (See chapter 10 for a discussion of
that revised corollary.) That demonstration is important because, if established, the solution to the
direct problem in combination with this solution serves as a solution to the inverse problem. Following
Newton, it has been demonstrated to the satisfaction of the most demanding of mathematicians that
the conic sections are the unique set of solutions for motion under an inverse square force. In On
Motion and in the 1687 edition of the Principia , however, Newton is satisfied with a much more
intuitive demonstration of uniqueness.

In the scholium to Theorem 4, Newton discussed the theorem's application to the computation of
the relative size of planetary orbits from the observation of planetary periods. In the scholium to
Problem 4, he applies his techniques developed in Problem 4 to the determination of orbits of comets.
Again, he applies the ideal mathematical world of the tract to the actual observational world of the
heavens. The topic of comets caused Newton much concern. In a letter to Halley, written more than a
year after sending the following scholium on comets, Newton states that "in Autumn

— 133 —

Figure 6.9
The diagram for the scholium to Problem 4.

last I spent two months in calculations to no purpose for want of a good method." Not until
Newton replaces the linear approximation discussed next with a parabolic approximation for the
elliptical path does the "good method" appear as Proposition 41 of Book Three of the 1687 Principia .

Scholium



Now indeed with the help of this problem when it has been solved, it is possible to define the orbits of comets, and from
that the times of their revolutions, and from a comparison of the magnitude of their orbits, eccentricities, [perihelia ],
inclinations to the ecliptic plane and their nodes, to know whether the same comet returns to us frequently.

The most celebrated example of a returning comet is the comet of 1682, which Halley correctly
identified as the return of the comet of 1531 and 1607 (a period of 75 or 76 years) and which he
correctly predicted to return in 1758 (after his death).

[Scholium] To be sure, from the four observations of the comet's position, according to the hypothesis that a comet
moves in a straight line, its rectilinear path must be determined. Let that [path ] be APBD, and let A, P, B, D be
positions of the comet on that path at the times of observations, and let S be the position of the sun. Imagine that with
the speed at which it regularly traverses the straight line AD, the comet is released from one of its positions P, and,
7224 forced by centripetal force, it is deflected from the straight path and goes off into the ellipse Pbda. [See fig. 6.9.]

— 134 —
By the time of this analysis of 1684, Newton had come to accept the universality of the gravitational
force (i.e., that the force derived in Problem 3 for planetary motion also applied to all celestial bodies,
such as comets). Previously there had been a question in Newton's mind concerning the curved
nature of cometary paths. The rectilinear hypothesis (that is, comets move in straight lines), however,
islszi;nply an approximation: one that will be replaced by a more sophisticated method in the Principia

[Scholium] This ellipse must be determined as in the problem above. In it let a , P, b, d be positions of the comet at the
times of observations. Let the longitudes and latitudes of these positions from the earth be known. As much as the
observed longitudes and latitudes are greater or less than these, let new longitudes and latitudes be taken greater or
less than the observed ones. From these new [measurements ] let the rectilinear path of the comet again be found, and
from that the elliptical path as before. And the four new positions on the elliptical path, having been augmented or
diminished by previous errors now will agree sufficiently precisely with the observations .

In the determination of the elliptical orbit in Problem 4 above, one must assume a value for the
magnitude of the gravitational force (see the statement of the problem). Moreover, it is not clear how
one is to know that the new position will produce convergence with the actual path of the comet.
Clearly, Newton is struggling with the procedure.

[Scholium] But if perchance palpable errors should still remain, it is possible for the entire task to be repeated. And, so
that the computations may not be annoying to the astronomers, it will suffice to determine all these things by a
geometrical procedure .

There then follows another paragraph in which Newton discusses the difficulty in assigning areas
proportional to the times. Whiteside observes that the method outlined in this scholium is a
"makeshift construction . . . more optimistic of a chance success than solidly reasoned."[13] In fact,
the entire subject of the motion of comets was a challenge. Newton claimed that "this discussion
about comets is the most difficult in the whole book."[14] This challenge continued to receive his
attention and would eventually be met in the Principia .

In Book Three of the Principia Newton will consider many more such observational problems. The
following is an example taken from the 1687 Principia in which Newton discusses the application of
the theorems from Book One to the phenomena discussed in Book Three. In On Motion , and in its
extension into Book One of the Principia , Newton has discussed the ideal case of a single planet
orbiting about a single stationary center of force in the sun. In the following proposition from Book
Three he discusses the influence of adjacent planets upon their mutual motion (that is, a three-body
versus a two-body problem). Now Newton is less a mathematician and more of a practical
astronomer. He must call into action estimates of the relative masses of the sun and planets as well
as their relative
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distances. He calls on demonstrations in Propositions 66 and 67 in Book One concerning motion about
the center of mass to relate the ideal mathematical problem with a fixed center of force to the actual
problem of the sun and planet moving about their center of mass.

Book Three
Proposition 13
Theorem 13

Book Three. Proposition 13. Planets move in ellipses having a focus in the center of the sun, and with radii having been
constructed to that center they describe areas proportional to the times .



We have talked above about these motions from the phenomena. Now that we have understood the principles of
motions, from these [principles 1 we infer celestial motions a priori. Since the weights of the Planets toward the sun are
reciprocally as the squares of the distances from the center of the sun; if the sun were at rest and the other Planets
were not acting on each other, [then ] their orbits would be elliptical having the sun in a common focus and areas would
be described proportional to the times (by Propositions 1 and 11 and Corollary 1 Proposition 13 Book One [Theorem 1
and Problem 3 in On Motion 1). But the actions of the Planets reciprocally on each other are very small (so that they
might be able to be neglected ), and they disturb the motions of the Planets in ellipses around the sun in motion less
(by Proposition 66, Book One ) than if those motions were being performed around the sun at rest .

Indeed, the action of Jupiter upon Saturn must not be altogether neglected. For the gravity toward Jupiter is to the
gravity toward the sun (the distances being equal ) as 1 to 1,100 ;

Modern values of the masses of the sun and Jupiter give a ratio of 1 to 1,047, which compares to
Newton's value of 1 to 1,100 (a value that appears as 1,067 in the revised Principia ), values which
Newton obtained using Kepler's third law (Theorem 4) and measurements of the periods of their
satellites (Venus for the sun, its moons for Jupiter).[15]

[Proposition 13] and therefore in the conjunction of Jupiter and Saturn, since the distance of Saturn from Jupiter is to
the distance of Saturn from the sun, almost as 4 to 9;

Modern value of the semi-major axis of Jupiter is 5.203 AU, for Saturn it is 9.539 AU, and thus
the distance between Jupiter and Saturn at conjunction is the difference, or 4.336 AU. Thus, the ratio
of distances is 4.336 to 9.539 or, as Newton states, 4 to 9.

[Proposition 13] the gravity of Saturn toward Jupiter will be to the gravity of Saturn toward the sun as 81 to 16 x
1,100; or 1 to about 217 .

The gravitational force is directly proportional to the mass and inversely proportional to the
square of the distance. Thus, the force on Saturn due to Jupiter is as 1/42 and that due to the sun as
1,100/92 , or a ratio of (1/16) / (1,100/81) = 81/(16 x 1,100) = 1/217.
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[Proposition 13] Yet the whole error in the motion of Saturn around the sun, arising from so great a gravity toward
Jupiter, can be avoided by constructing a focus of the orbit of Saturn in a common center of gravity of Jupiter and the
sun (by Proposition 67, Book One) and hence when the error is greatest it hardly exceeds two minutes. But in the
conjunction of Jupiter and Saturn, the accelerative gravities of the sun toward Saturn, of Jupiter toward Saturn, and of
Jupiter toward the sun, are almost as 16, 81, and 16 x 81 x 2,360/25 or 122,342 ,

Using modern notation, the forces between two masses can be expressed as
GM,M, / R?,,
where G is the universal gravitational constant and R is the distance between their centers. The
accelerative gravities given are those forces divided by the mass of the force center (that is, the

"accelerative gravity" of the sun toward Saturn is GMgatur /92 , of Jupiter toward Saturn is GMsaturn
/4% , and the sun toward Jupiter is GMyypiter /52 ). Thus, the ratios are as GMsaturn /92 : GMsaturn /42
: GMjupiter /52 . Newton simplifies the results by dividing by (GMsatyrn ) / (9% x 42 ), which gives the

result 42 :92 : (Myypiter /Msaturn )/5° , where the ratio of Myypiter /Msaturn iS given by 2,360 in the first
edition and by 3,021 in the revised editions.

[Proposition 13] and thus the differences of gravities of gravities of the sun toward Saturn, and of Jupiter toward
Saturn, is to the gravity of Jupiter toward the sun as 65 to 122,342 or as 1 to 1,867. But the greatest power of Saturn
to disturb the motion of Jupiter is proportional to this difference: and hence the perturbation of the orbit of Jupiter is far
less than that of Saturn's. The perturbations of the remaining orbits are even far less .

Thus, does Newton the mathematician and Newton the practical astronomer relate the
demonstrations of the theorems and solutions of abstract problems to the observations of the motion
of celestial bodies. The applications and examples are increased in the editions of the Principia that
follow the tract On Motion . The demonstration of a universal gravitational force that depends upon
the inverse square of the distance is to be found in the heavens as well as in the pages of the
Principia .

Conclusion

Following his receipt in London of Newton's tract On Motion in November of 1664, Halley returned to
Cambridge to consult with Newton once again. He found Newton occupied with the task of rewriting



the work in more detail. That project would eventually require two years to complete. Under Halley's
personal encouragement, careful editorial eye, and financial support, it would ultimately result in
publication as the first edition of the Principia in 1687. Upon his return to London, Halley reported to
the Royal Society at its meeting on 10 December 1684, about his interchange with Newton and of his
intent to have the tract entered in the Register of the
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Society, which it was. It was not until two years later, however, at the meeting of the Royal Society
on 21 April 1686, that Halley announced that the work was almost ready for the press. At the
following meeting, on 28 April 1686, he presented the manuscript of Book One to the society. He
delivered Book One to the printer that same month, but it was not until March of the following year
that Halley delivered Books Two and Three to the printer.[16] On 5 July 1687, Halley wrote to Newton
about the details of the final publication figures and to announce, "I have at length brought your Book
to an end."[17]
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Six— The Paradigm Extended:On Motion , Theorem 4
and Problem 4
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