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also well suited for presentation to students who
possess a limited knowledge of the theory of
determinants and matrices.

II. PROOF OF THE THEOREM

Theorem. If A and B are hermitian matrices of
order m, A being positive definite, the rank of the
matrix B—NA is exactly n—Fk, where k is the
multiplicity of the root \; of the secular equation
|B—24 | =0.

Let the rank of B—X\;4 be n—r. Then the equa-
tion

(1)

has r independent solutions, say £, - -, &. These
solutions can be so chosen®? that they also satisfy
the orthonormality relations

(B—A\:A)E=0

E/AE =64 (2)
By selecting arbitrarily #»—r additional vectors,®
say £,41, - -, £, SO that the entire set of # vectors
is orthonormal in the sense of (2), one obtains a
non-singular matrix X=[£;, ---, £ ] such that
X'AX=1I. In view of this relation and the fact
that the first » columns of X satisfy (1), the matrix
X'BX has the form

6 This device has been used by other authors to prove
similar theorems. See, for example, P. R. Halmos, “Finite
dimensional vector spaces,” Annals of Mathematics Studies
(Princeton University Press, Princeton, 1942), No. 7, pp.
125-126.
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where B, is hermitianand of order n —r. [t follows that
X' (B—\A)X
(Ni—X\

0 . B;—2\I

Since the roots of the equation |X'(B—N4)X|=0
are the same as the roots of the secular equation
and, in view of (3), \; is a root of the equation
| X'(B—N\A)X| =0 of multiplicity » at least, it
follows that » cannot exceed the multiplicity & of
the root \; for the secular equation. But if 7 is
less than k then X\; is necessarily a root of the
equation |B;—2\I| =0. This is impossible since the
rank of X'(B—N\;4)X is equal to the rank of
B—X\i4, which is n—r by assumption, and by (3)
the rank of X’(B~X\;4)X isalso equal to the rank of
B,—N\iI, which is less than n—r if |B;—N\,J| =0.
It follows that r=% and the rank of B—\4 is
n—Fk as asserted.
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The relativistic energy equation for an expanding universe of non-interconverting matter and
radiation is integrated. The above result, together with a knowledge of the physical conditions that
prevailed during the element forming process in the early stages of the expansion, is used to determine
the time dependences of proper distance as well as of the densities of matter and radiation. These
relationships are employed to determine the mean galactic diameter and mass when formed as
2.1X10? light years and 3.8 X107 sun masses, respectively. Galactic separations are computed to be
of the order of 108 light years at the present time.

I. INTRODUCTION

ITH the experimental and theoretical infor-
mation now available it is possible to give a

tentative description of the structure and evolution
of the universe. Investigations of cosmological
models of various types have been carried out

e . in m Y
* The work described in this paper was supported by the W-—-—hmh explain many of the features of the observed
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t A preliminary account of this work was given at the New 1949,
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universe.! It does not appear to have been possible
to complete these speculations principally for lack
of sufficient physical data. Recent studies of the
origin and relative abundances of the elements
have yielded new information concerning the phys-
ical state of the universe at the very early time dur-
ing which the elements were apparently formed.??
According to this theory the ylem (the primordial
substance from which the elements were formed)
consisted of neutrons at a high density and temper-
ature. Protons were formed by neutron decay, and
the successive capture of neutrons led to the forma-
tion of the elements. In order to predict the
observed relative abundances of the elements, it is
necessary to stipulate the magnitude and the time
dependence of the temperature, and density of
matter during the period of element formation.

On the basis of a simplified version of the neutron
capture theory, namely, one which involves the
building up of deuterons only, Gamow?® has exam-
ined the state of the universe at early times and
traced the evolution of the universe through the
formation of galaxies. For reasons which will be
discussed later, Gamow’s formulation gives rise to
certain difficulties.

We have reformulated this problem from a some-
what different point of view, following some of
Gamow's basic ideas.*8 This reformulation, which
is the main purpose of this paper, involves the use
of the general non-static relativistic cosmological
model together with knowledge of the physical
conditions of matter and radiation which prevail
now and also those which are required to predict
the observed relative abundances of the nuclear
species formed during the very early stages of the
universe. As a consequence, it is possible to obtain
the functional dependence of both the density of
matter and radiation on time. On the basis of the
foregoing, the formation of galaxies and other
cosmological consequences are considered.

II. FORMULATION OF THE PROBLEM

The model of the expanding universe that we
shall discuss is one in which there is a homogeneous
and isotropic mixture of radiation and matter,
assumed to be non-interconverting. This mixture
is treated as a perfect fluid. If the pressure due to

1 R. C. Tolman, Relativity, Thermodynamics and Cosmology
(Clarendon Press, Oxford, 1934).

2 G. Gamow, Phys. Rev. 70, 572 (1946).

3 R. A. Alpher, H. A. Bethe, and G. Gamow, Phys. Rev. 73,
803 (1948).

4 G. Gamow, Phys. Rev. 74, 505 (1948).

5 R. A. Alpher, R. C. Herman, and G. Gamow, Phys. Rev.
74, 1198 (1948).

6 R. A. Alpher, Phys. Rev. 74, 1577 (1948).
( 7R.) A. Alpher and R. C. Herman, Phys. Rev. 74, 1737

1948).
8 G. Gamow, Nature, 162, 680 (1948).
* R. A. Alpher and R. C. Herman, Nature 162, 774 (1948).
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matter is neglected, one may write the relativistic
energy equation for the non-static model in the
following form :!

d[exp(3g(¢)) 1/dt = =[(87/3)p exp(g(t)) — Ro~*T}, (1)

which is in relativistic units. The cosmological
constant A is taken equal to zero. In Eq. (1), p is
the density of mass and the radius of curvature, R,
is given by R=R, exp(g(¢)), where exp(g(t)) is the
time-dependent factor in the spatial portion of the
line element. Now,

exp(3¢(£)) =1/loy=R/Rq, (2)

where / is any proper distance, and J;, the unit
of length, together with Ry, must be determined
from the boundary conditions for Eq. (1). It should
be pointed out that solutions of Eq. (1) involve
l/ly and not [ alone. The density of mass p, which
determines the geometry of the space, is the sum
of the density of matter, pn, and the density of
radiation, p,. If matter is to be conserved we must
have

pml® = A =constant. (3a)

Furthermore, if the universal expansion is adiabatic,
the temperature, 7, must vary' as [7. If one
assumes that the universe contains blackbody
radiation, then

p.l*=B = constant. (3b)

It is to be noted that energy is not conserved in
models of this type. Equations (3a) and (3b)
obviously may be written as

p-pm4¥=constant. (4)

It is clear that this relationship must hold through-
out the universal expansion and that the density of
mass at any time is

p=pmtp,=Al7+Bl™, (5)

providing, as stated earlier, there is no intercon-
version of matter and radiation. If we substitute
Egs. (2) and (5) into Eq. (1), and convert to c.g.s.
units, we obtain

dl/dt=+[(87G/3)(Al-3+BI-)I2—c?/ R ]}, (6)

where the positive sign is taken to indicate expan-
sion and ¢ and G are the velocity of light and the
gravitational constant, respectively. Equation (6)
can be integrated and the result given in the form

t=K1+Ks[vpr+vpmL+K.L*]}
— (Ypmr+/2Ka}) In{[vpr'+vpm L+ Ko L* ]}
+K2*L+(’Ypm"/2K2*) } ’ (7)

where

Ky1=(vpm/2K2}) In[(vpr )+ (vom/2K1?) ]
—(vprr /KDL (8)
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In Eqs. (7) and (8), L=I/l, v=(87G/3), K,
=(c*/|Ro?|), and pm and p, are the densities of
matter and radiation when L=1. In order to
integrate Eq. (6) and evaluate the integration
constant, it is necessary to specify the parameter
Ry and consequently o, which gives the units in
which R, is measured. Examination of Eq. (6)
indicates that R, can be determined only if it is
possible to specify [(dl/dt)/l]i=10, pm, and p, at any
given time. Since [(dl/df)/l]i=1, is the expansion
rate of space as determined by Hubble!® and known,
therefore, only at the present time, since pn is also
known now, and if we assume that p,>>p, now, one
may evaluate R, and K, Introducing the value
of the present expansion rate of the universe
[(dl/dt) /1 Ji=1o=1.8 X 10717 sec.™}, taking pm» =10730
g/cm?® and [=1[,=10' cm, i.e., /o is the side of a
cube containing one gram of matter now, one
obtains Ry=1.7X10?"(—1)} cm and K,=3.2X10~*
sec.”2. The constants appearing in Eqgs. (7) and (8)
involve the present densities of matter and radia-
tion. Clearly, in utilizing Egs. (7) or (8) one may
introduce the density values at any other time
providing one specifies a value of L at that time
which leads to the present value of the density of
matter. For convenience we have chosen /, to be
the side of a cube containing one gram of matter at
the present time, so that L =1 now. Furthermore,
we have again for convenience assumed that L=0
at +=0. While Eq. (6) has a singularity at ¢t=0
which is physically unreasonable, we have employed
the solutions in such a manner that the singularity
is of no consequence.

For purposes of computation it is convenient to
employ an approximate form for Eq. (7) which is
valid for early ¢, i.e., when

L[(pm"/pr”)+(K2/'Ypr”)L]<1' (9)

The expansion of Eq. (7) which satisfies the above
inequality is

t=(4vp, )AL+ (pmr/6v}p, 1) L3+ (8o, 1)~
X[(3vpm:?/4p,) — KoLt --.  (10)

The validity of Egs. (7) or (10) is questionable for
very early times, i.e., in the vicinity of the singu-
larity at =0, when the energy of light quanta was
comparable to the rest mass of elementary particles.
In fact, Einstein!! has pointed out that there is a
difficulty at very early times because of the separate
treatment of the metric field (gravitation) and
electromagnetic fields and matter in the theory of
relativity. For large densities of field and of matter,
the field equations and even the field variables
which enter into them will have no real significance.

10 E. P. Hubble, The Observational Approach to Cosmology
(Clarendon Press, Oxford, 1937).

1t A, Einstein, The Meaning of Relativity (Princeton Uni-
versity Press, Princeton, 1945).
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However, since we do not concern ourselves with
the ‘‘beginning” this difficulty is obviated. In
addition to the fact that the relativistic energy
equation is not valid for very early times, there are
the problems of angular momentum of matter in
the universe, as well as certain physical factors
involved in the formation of the elements, which
we cannot handle satisfactorily at present.

In order to utilize the above equations, it is
necessary to specify pm, prs, and K,. While it may
appear that one need specify the matter and radia-
tion densities at the present time only, because of
Eq. (4), specifying p.- and p, is equivalent to
specifying p.- and p,,, these being the densities at
a time during the period of element formation.
This time is to be specified later. (The primed
quantities should not be confused with the running
variables.) It must be remembered that the value
of Ry employed is that calculated from the present
value of dL/dt.

III. PHYSICAL CONDITIONS DURING THE
EXPANSION

Some information is available regarding the
values of the matter and radiation densities at the
present time and, recently, studies of the relative
abundances of the elements have indicated values
for these densities prevailing very early in the
universe during the period of element formation.
Because of Eq. (4) a knowledge of p, and p,
during the element forming period together with
pm fixes a value for p,, the present radiation
density, which is perhaps the least well-known
quantity.

In a recent paper Gamow,® by considerations
which are different than those we have employed,
found a set of physical conditions which prevailed
during the early stages of the universe. He studied
the formation of deuterons only, by the capture of
neutrons by protons, taking into account the uni-
versal expansion. Equations for the formation of
deuterons were integrated from ¢=0, subject to the
condition that there were neutrons at the start (unit
concentration by weight) and that the final concen-
tration by weight of protons and deuterons was 0.5.
This solution determined a parameter a which in
turn defined the magnitude of the matter density,!?
pm=pot L.

2 The expression for the parameter «, as given by Gamow
in reference 8, has been found to be incorrect (see reference 9).
We find that a(=pmvot/m, where pm=pot~3/2 is the density of
matter, v is the mean velocity of particles of mass m, and ¢ is
the capture cross section of protons for neutrons) is correctly
given by

29/478/14GLI4g 1 I4g2h
=Siengireg kel a2 (2+ o) /%0,

In this expression all the quantities have been defined by
Qamow in reference 8 except up and uw, the magnetic moments
in nuclear magnetons of proton and neutron, respectively, e,

[24
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F1G. 1. The time dependence of the proper distance L, the
densities of matter and radiation, pns, and p,, as well as the
temperature, T, are shown for the case where p,=10"%
g/cmd, pp2107% g /cmd, pn 21076 g/cmd, and p, 21 g/cmd.
[See Eq. (12).]

We believe that a determination of the matter
density on the basis of only the first few light
elements is likely to be in error. Our experience
with integrations required to determine the relative
abundances of all elements®7 indicates that these
computed abundances are critically dependent upon
the choice of matter density. Furthermore, all
formulations of the neutron capture process which
have been made thus far neglect the thermal
dissociation of nuclei, which is one of the important
competing processes during the element forming
period if elements are formed from a very early time.

In order to clarify the difficulties associated with
the singularity at t=0, we digress here for an
examination of the equations employed to describe
the formation of the elements. These equations,
recently given by the authors,” include neutron
decay and universal expansion but do not take into
account the effects of nuclear evaporation or any
processes other than radiative capture of neutrons.
In terms of concentrations by weight, x;=m;n;/pm,
rather than particle concentrations, 7;, Eqgs. (6)—(8)
of reference 7 may be written as

7
dxo/dt = —No— 2 (Pipm/m;)%x %0, (11a)

=1

the binding energy of the virtual triplet state of the deuteron,
and the radiation density constant a=7.65X1071% erg cm™
deg.™%. Our expression differs from that originally given by
Gamow because of algebraic errors contained in his results
and because he neglected the magnetic moment factor.
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dx1/dt =Nxo— (P1pm/mM1)X1%0, (11b)
and
dxj/dt =7(pj—1pm/M;i-1)Xj-1%0—J(Pipm/M;)X %0,
j=2,3,---,J, (11c)

where x,, x;, and x; are the concentrations by
weight of neutrons, protons, and nuclei of atomic
weight 2=j=/, respectively, m; the nuclear mass,
pom the density of matter, N the neutron decay
constant, and p; the effective neutron capture
volume swept out per second by nuclei of species j.
Gamow? has solved Eqgs. (11a) and (11b) numeri-
cally, taking J=1, and thereby describing the
building up of deuterons only. In general, Egs. (11)
have a singularity at the origin because when {—0,
pm— as t} In the approximation used by
Gamow this singularity is reduced because a rela-
tion for the capture cross section of protons for
neutrons is employed which makes pipn(=017pm)
vary as 7.

It may be seen readily that Eq. (11c) can be
written in the form

dxj/dz= (pj—1/Nm;_1)x; 1 — (p;/Nm;)x;,

J=2y37"'y~]’ (lld)

where

T

a= f ipm()o(r)dr, (11e)

and
7=\

In general, the integrand in Eq. (11e) is singular at
r=0, so that one must take 7o>0. This implies
the choice of an initial time at which the element
forming process started. Physically, one may not
speak of an initial time because there were com-
peting processes which became unimportant as the
neutron capture process became important. Com-
peting processes such as photo-disintegration and
nuclear evaporation fall off approximately expo-
nentially with time so that neutron capture would
become significant rather rapidly, say in a time of
the order of 10? seconds. The inclusion of this type
of competing process in principle could be handled
and would yield a better estimate of the relative
abundances of the elements. However, without a
better knowledge of cosmology at very early ¢ it
does not appear to be possible to avoid the above-
mentioned difficulty. Finally, if Egs. (11a), (11b),
and (11c) are solved simultaneously for J=4, the
remaining equations for j>4 are given by Eq.
(11d) which is a simple first-order linear differential
equation with constant coefficients. Nevertheless,
Egs. (11a) and (11b), which are the controlling
equations for the process, are not reduced to a
simple form and must still be solved in their present
form. Because of the above difficulties we find it
necessary to introduce the concept of a starting
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time for the element forming process. Equations
(11) have not yet been solved but are given to
illustrate the singularity. So far as we know, any
formulation of a theory of element building which
includes the type of cosmology discussed will reflect
these same difficulties.

In what follows we continue the discussion of the
physical conditions employed in the solutions of
the relativistic energy equation. The mean density
of matter in the universe at the present time has
been determined by Hubble!® to be

pm 2210730 g /cmd, (12a)

An estimate of the density of matter, pn, prevailing
at the start of the period of element formation is
obtained by integration of the equations for the
neutron capture theory of the formation of the
elements. Integrations in which neutron decay is
explicitly included, but in which the expansion of
the universe is not included, yield a matter density of
5X107° g/cm3. Preliminary investigations of the
equations, including the universal expansion, indi-
cate that this density should be increased by a factor
roughly of the order of 100 in order that one may
correctlydetermine the relative abundance of the ele-
ments with the universal expansion taken into ac-
count. In fact, we have numerically integrated for
the light elements the complete equations (see Eqgs.
(11)) with an “‘initial” density about 100 times the
density used in obtaining solutions without the
universal expansion.” We find that the above factor
of ~100 is roughly what might be required. Ac-
cordingly, we have taken

(12b)

As discussed elsewhere,®7 the temperature during
the element-forming process must have been of the
order of 10%-10'°K. This temperature is limited,
on the one hand, by photo-disintegration and
thermal dissociation of nuclei and, on the other
hand, by the lack of evidence in the relative
abundance data for resonance capture of neutrons.
For purposes of simplicity we have chosen

pm 221078 g/cmd.

P2l g/cm?, (12¢)

which corresponds to 720.6X10*°K at the time
when the neutron capture process became impor-
tant.

In accordance with Eq. (4), the specification of
pmety pmry and p, fixes the present density of radia-
tion, p,+. In fact, we find that the value of p,
consistent with Eq. (4) is

(12d)

which corresponds to a temperature now of the
order of 5°K. This mean temperature for the uni-
verse is to be interpreted as the background tem-
perature which would result from the universal

pr 2210732 g /cm3,
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expansion alone. However, the thermal energy
resulting from the nuclear energy production in
stars would increase this value.

Since we have p,>>p. at early time the energy
relation given in Eq. (6) may be integrated in a
simpler form, with the result

T =[(327Ga)/(3c) ]-4—1°K

=1.52X 101K, (13a)

The density of radiation, p,, may be found from
pr=(a/c)T*, or

pr=4.48X10%"2 g/cm3. (13b)

These expressions for T and p, at early time are the
consequence of the assumption of an adiabatic
universe filled with blackbody radiation. It can
also be shown that with the densities chosen in
Eq. (12) we have for early time

pm=1.70X10"%% g/cm3. (13c)

Using ! and /, as already defined, we may determine
the constants A and B in Eq. (3). With the densities
discussed above we find 4 =1 g and B=108 g cm.
These values of 4 and B fix the dependence of p,
and p, on time through L(=I/l;). Using these
values of 4 and B, we have computed L, pm, pr,
and T'. These quantities are plotted on a logarithmic
scale in Fig. 1. It should be noted in Fig. 1 that
all the quantities plotted bear simple relationships
with the time to within several orders of magnitude
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F1G. 2. The time dependence of the proper distance L, the
densities of matter and radiation, pn, and p,, as well as the
temperature, 7, are shown for the case where p,.=210-%
g/cm?, pp 21073 g/cm?, ppm21.8X107* g/cmd, and p,.=1
g/cmd. [See Eq. (15).]
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of the time when the universal expansion changes
from one controlled by gravitation to one of free
escape. This transition occurs in the region of
about 10¥-10“ sec. Following this transition the
quantities L, pm, pr, and T again are simple functions
of the time. The relations for large ¢ are as follows:

L=K,k,
o= (pms+/ K272,
pr="(pr/K2)t™4,

T =(c%./aK )t

It is to be noted that in the region of transition to
free escape the densities of matter and radiation
become equal so that, in fact, prior to the transition
the expansion is controlled chiefly by radiation and
subsequent to the transition by matter. The uni-
verse is now in the freely expanding state, and,
since the radius of curvature is imaginary, is of the
open, hyperbolic type.

In order to study how sensitive this model is to
the choice of densities, we have considered the
following additional set of density values which
satisfy Eq. (4):

pm==21.78 X107 g/cm?,
pr =21 g/cm?,
pm=210730 g /cm?,

(14)

and,

(15)

and
pr 221073 g/cm?,

The value obtained for p,+ in this case corresponds
to a present mean temperature of about 1°K. The
constants 4 and B are found to be 1 g and 10° g
cm, respectively. In Fig. 2 we have plotted the
time dependence of the quantities of interest. One
finds that the transition occurs at an earlier time
than in the previous case, namely, at ~10! sec.,
which implies that this universe would have been
in a state of free expansion for a considerably longer
time. Apparently the behavior of the model is
extremely sensitive to the choice of density condi-
tions. However, the simple type of relations for
L, pm, pr, and T that were given previously still
apply, but with different constants and different
regions of validity.

The time at which pn=pm and p,=p, for both
sets of densities given in Egs. (12) and (15) are
found from Eq. (13b) to be 6.7 X10? seconds, with
a corresponding temperature of 0.59X10°K. We
have chosen p,»=21 g/cm? in both cases because the
corresponding temperature is seen by independent
considerations to be that required for the element
forming process. As will be seen later, the densities
given in Eq. (15) with p.=1.78 X10~* g/cm® do not
vield a satisfactory description of the size and mass
of galaxies. On the other hand, as already stated a
density p,=2100(5X10~* g/cm?® is apparently
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enough to overcome the effect of the universal
expansion and give the correct relative abundances
of the elements. Thus, on the basis of these con-
siderations one is led to the conclusion that when
$226.70X 102 sec., and p,==1 g/cm? we have

5.0X1077 g/cm? > p, 1.8 X 10~ g/cmé,

While it is not particularly germane to the study
reported in this paper, it is interesting to note that
one may find the dependence of the universal
expansion rate on the time in this type of model.
This rate is the percentage change in proper dis-
tance per unit time determined by Hubble!® from
the red-shift in spectra of nebulae, and is given in
V=Hd, where V is the velocity of recession of a
nebula at a distance d. In our notation, we have,
in general,

H=(dL/dt)/L=L"(ypL*+K,)*. (16)
For early time this reduces to
H=(2t)", (16a)
and, for late time, to
II=¢1 (16b)

For early and late ¢, the value of H does not depend
upon the choice of densities. However, in the
transition region where the functional form of H
changes, the manner of change does depend on the
existing density conditions. The universal expansion
rate is the reciprocal of the age of the universe if
measured during the period of free expansion.

IV. THE FORMATION OF GALAXIES

In his discussion of the evolution of the universe,
Gamow?® suggested that galactic formation occurred
at the time when the densities of matter and radia-
tion were equal. He assumes that the Jeans’
criterion of gravitational instability may be applied
at this time and as a consequence derives expres-
sions for the galactic diameter and mass.’® We have
carried out calculations® based on Gamow's formu-
lation using the corrected expressions for D and M
given in footnote 13. We find that p,=p, when
£.~20.86X10'® sec., which is greater than the age
of the universe. This arises out of the fact that, in
addition to the difficulties with density determina-
tions mentioned earlier, there is involved an extra-

13 Using the corrected form of « described in footnote 12,

we find for the galactic diameter, D, and mass, M, the follow-
ing corrected expressions according to Gamow's formulation:

1072k
D= 36—"::1—,8,6—5; (Jep |+ [ux 22+ et ) P2t

and

531274112k
( 1/2
343G T3 A gy 16Tig2g 112 lup| +un]) (e +eo

M=pnDd= 1) e,

where #. is the time at which the densities of matter and
radiation were equal.
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polation of relations valid only for early ¢ past their
region of validity. It is evident from our choice of
densities that the densities of matter and radiation
must be equal at a time {, which is earlier than now.
We have retained Gamow's basic idea of galactic
condensation at ¢, and have applied the Jeans’

criterion,!
2= (57kT.)/ (3Gmpm, .), (17)

where T, and pn, . are taken at t=¢.. We may write

D =KB?Y8, (18)
where
K =[(57kct)/(3a'Gm) ]}, (18a)
B=p.pn 5, (18b)
and
M=p,D?=K3B38, (19)

For the set of density conditions as given in Eq.
(12), we obtain for D and M the values 2.1 X103
light years and 3.8 X107 sun masses, respectively.
When the densities of matter and radiation were
equal, £.223.5X10"* sec.=107 vyears, pn 2107
g/cm® and T'.:225.9X10*°K. For the set of densities
given in Eq. (15) we obtain D=1 light year,
M=22.8% 105 sun masses, {,221.8 X 10! sec.=26 X 10?
years, pm 10718 g/cm?, and T.=~10%°K. In the
former case we find values for the galactic mass,
diameter and density which are roughly of the
order of magnitude observed for the average nebula.
In the latter case the values differ by many orders
of magnitude. Thus, the values one obtains for the
galactic mass and diameter appear to be extremely
critical to the choice of densities. One might
interpret the large discrepancy in the latter case as
arising from the fact that the density conditions
chosen appear to be incompatible with the neutron-
capture theory of the formation of the elements.
The Jeans’ criterion of gravitational instability
was derived by the consideration of an acoustic
wave propagating in a static medium. If the Jeans’
criterion is satisfied, regions of condensation whose
size is of the order of D, D being the acoustic wave-
length, would have separated and would have been
gravitationally stable. The separation between
condensations would then also have been of the

4], H. Jeans, Astronomy and Cosmogony (Cambridge
University Press, London, 1929). Except for a numerical
factor, Jeans’ criterion may be obtained by equating the aver-
age thermal energy of a particle with the gravitational poten-
tial energy of this particle on the surface of a sphere of diam-
eter D.
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order of D. The separation distance would increase
with time, however, because of the universal ex-
pansion, whereas the condensations, being gravita-
tionally stable units, would not expand. Subse-
quently, stars would evolve in these condensations
and nebular configurations would be established.!
From the time variation of proper distance the
separation between galaxies is computed to be
about 10° light years at the present time, in general
agreement with observed separations.

The applicability of Jeans' criterion of gravita-
tional instability to this situation must be seriously
questioned since it does not contain the possible
effects of universal expansion, radiation, relativity,
and low matter density. However, it seems reason-
able to attach some significance to the time at which
radiation and matter densities are equal, because
beyond this time the expansion is free and it would
become increasingly difficult to form condensa-
tions.!s It should be mentioned that Lifshitz!¢"has
considered the problem of gravitational instability
associated with infinitesimal perturbations of an
arbitrary nature in a general relativistic expanding
universe and has found that the system is stable and
the perturbations do not grow. Until such time as a
physically satisfactory criterion for the formation
of galaxies is found, it does not appear to be
profitable to delve further into such questions as
the variation in galactic mass and size with time of
formation.
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15 See G. Gamow and E. Teller, Phys. Rev. 55, 654 (1939).
In this paper it is shown that if galaxies were formed during
a period of free expansion then

Gon[(47/3)(D/2)*1/(D/2)=(H?/2)(D/2)?,

where H is Hubble’s expansion rate and D is the diameter of
the condensation. This condition sets a lower limit to pm,
namely pn=(3H2?/87G)=0.6X107?" g/cm? and is satisfied by
the density value we obtain for galaxies at the time of for-
mation.

16 £, Lifshitz, J. Phys. U.S.S.R. 10, 116 (1946).



