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D ALEMBERT'S PRINCIPLE.

1. One of the most important principles for the History ofr f r the prin-

rapid and convenient solution of the problems of me- cipie.

chanics is the principle ofD'AIembert. The researches

concerning the centre of oscillation on which almost all

prominent contemporaries and successors of Huygens
had employed themselves, led directly to a series of

simple observations which D'ALEMBERT ultimately gen-
eralised and embodied in the principle which goes by
his name. We will first cast a glance at these prelim-

inary performances. They were almost without excep-
tion evoked by the - desire to replace the deduction of

Huygens, which did not appear sufficiently obvious, by
one that was more convincing. Although this desire was
founded, as we have already seen, on a miscompre-
hension due to historical circumstances, we have, of

course, no occasion to regret the new points of view
which were thus reached.

2. The first in importance of the founders of the James Ber-

theory of the centre of oscillation, after Huygens, iscomribu-
T. , , , rir tionstothe

JAMES BERNOULLI, who sought as early as 1686 to ex- theory of

plain the compound pendulum by the lever. He ar- of osciiia-

rived, however, at results which not only were obscure

but also were at variance with the conceptions of Huy-
gens. The errors of Bernoulli were animadverted on

by the Marquis de L'HOPITAL in the Journal de Rotter-

dam, in 1690. The consideration of velocities acquired
in infinitely small intervals of time in place of velocities

acquired infinite times a consideration which the last-

named mathematician suggested led to the removal
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of the main difficulties that beset this problem ;
and in

1691, in \hQActaEruditorum, and, later, in 1703, in the

Proceedings of the Paris Academy James Bernoulli cor-

rected his error and presented his results in a final and

complete form. We shall here reproduce the essential

points of his final deduction.

james Ber- A horizontal, massless bar AB (Fig. 166) is free to

duction of rotate about A ; and at the distances r, r' from A the
the law of ,..,,,
the com- masses ;;/, m 1

are attached. The accelerations with which
pound pen-
duiumfrom these masses as thus connected

^4 will fall must be different from
the accelerations which they

T,. ff would assume if their connec-
Fig. 166.

tions were severed and they fell

freely. There will be one point and one only, at the

distance x, as yet unknown, from A which will fall

with the same acceleration as it would have if it were

free, that is, with the acceleration g. This point is

termed the centre of oscillation.

If m and ;;/ were to be attracted to the earth, not

proportionally to their masses, but m so as to fall when
free with the acceleration cp

= grjx and m' with the

acceleration cp'
= gr'/x, that is to say, if the natural

accelerations of the masses were proportional to their

distances from A, these masses would not interfere with
one another when connected. In reality, however, m
sustains, in consequence of the connection, an upward
component acceleration g cp, and m' receives in virtue

of the same fact a downward component acceleration

cp' g; that is to say, the former suffers an upward
force of m(g cp)=g(x r/x)m and the latter a

downward force of m' (cp
f

g) = g (r' xjx) m'.

Since, however, the masses exert what influence

they have on each other solely through the medium of
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the lever by which they are joined, the upward force The law of
J J J r the distn-

upon the one and the downward force upon the other bution ofr r the effects

must satisfy the law of the lever. If m in conse- of the im-
pressed

quence of its being connected with the lever is held f ^-^r

back by a force /from the motion which it would take, nouiii's ex-

ample.
if free, it will also exert the same force /on the lever-

arm r by reaction. It is this reaction pull alone that

can be transferred to m and be balanced there by a

pressure /'== (r/r'}f, and is therefore equivalent to the

latter pressure. There subsists, therefore, agreeably
to what has been above said, the relation g (r' x/x)
m' = r/r' . g (x r/x} m or, (x r) m r = (r

r

x) m'r',

from which we obtain x = (mr2 + m'r'^/(inr + m'r'^) 9

exactly as Huygens found it. The generalisation of

this reasoning, for any number of masses, which need
not lie in a single straight line, is obvious.

3. JOHN BERNOULLI (in 1712) attacked in a different The prm-

manner the problem of the centre of oscillation. His John Ber-

performances are easiest consulted in his Collected lution of

Works {Opera, Lausanne and Geneva, 1762, Vols. Iloftnecen-

and IV). We shall examine in detail here the main lation.

ideas of this physicist. Bernoulli reaches his goal by
conceiving the masses and forces separated.

First, let us consider two simple pendulums of dif- The first

ferent lengths /, /' whose bobs are affected with gravi- Bernoulli's

tational accelerations proportional to the lengths of the

pendulums, that is, let us put ///' g/g'. As the time
of oscillation of a pendulum is T= nVIjg, it follows

that the times of oscillation of these pendulums will be
the same. Doubling the length of a pendulum, ac-

cordingly, while at the same time doubling the accel-

eration of gravity does not alter the period of oscilla-

tion.

Second, though we cannot directly alter the accel-
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The second eration of gravity at any one spot on the earth, we
1

can do what amounts virtually to this. Thus, imagine
a straight massless bar of length 2a, free to rotate about

its middle point; and attach to the one ex-
' tremity of it the mass m and to the other the

mass m. Then the total mass is m + m' at

j

the distance a from the axis. But the force

\

a which acts on it is (in ?;/) g, and the ac-

! m celeration, consequently, (m m'/m -\- ;;/) g.

Fig. 167. Hence, to find the length of the simple pen-

dulum, having the ordinary acceleration of

gravity g, which is isochronous with the present pen-
dulum of the length a, we put, employing the preced-

ing theorem,

m m m m

The third

determina

centre of

Third, we imagine a simple pendulum of length i

with the mass m at its extremity. The weight of m
produces, by the principle of the lever, the same ac-

celeration as half this force at a distance 2 from the

point of suspension. Half the mass m placed at the

distance 2, therefore, would surfer by the action of the

force impressed at i the same acceleration, and a fourth

of the mass m would surfer double the acceleration
; so

that a simple pendulum of the length 2 having the orig-
inal force at distance i from the point of suspension
and one-fourth the original mass at its extremity would
be isochronous with the original one. Generalising
this reasoning, it is evident that we may transfer any
force / acting on a compound pendulum at any dis-

tance r, to the distance i by making its value rf9 and

any and every mass placed at the distance r to the

distance i by making its value r*m, without changing
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the time of oscillation of the pendulum. If a force /
act on a lever-arm a (Fig. 168) while at the distance r

from the axis a mass m is attached, f will be equiva-
lent to a force af/r impressed on
m and will impart to it the linear

acceleration af/m r and the angu-
lar acceleration af/mr2

. Hence,
to find the angular acceleration

r J j i
FiS- l68-

of a compound pendulum, we
divide the sum of the statical moments by the sum of

the moments of inertia.

BROOK TAYLOR, an Englishman,* also developed The re-

. . searches of
this idea, on substantially the same principles, but Brook Tay-

quite independently of John Bernoulli. His solution,

however, was not published until some time later, in

1715, in his work, Methodus Incrementorum.

The above are the most important attempts to solve

the problem of the centre of oscillation. We shall see

that they contain the very same ideas that D'Alembert
enunciated in a generalised form.

4. On a system of points M, M', M". . . . connected Motion of a

with one another in any way,f the forces P, P', P". . . . polntssub-

are impressed. (Fig. 169.) These forces would im- straints.
n

part to the free points of the system certain determinate
motions. To the connected points, however, different

motions are usually imparted motions which could
be produced by the forces W, W, W". . . . These
last are the motions which we shall study.

Conceive the force P resolved into W and V, the

force P' into W and V [

',
and the force P" into W"

* Author of Taylor's theorem, and also of a remarkable work on perspec-
tive. Trans.

t In precise technical language, they are subject to constraints, that is,

forces regarded as infinite, which compel a certain relation between their
motions, Trans.
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statement and F", and so on. Since, owing to the connections,
of D'Alem- . , rrr rrrf r rru rr

berr&prin- only the components 17, W ,
///.... are effective,

lpe '

therefore, the forces V, V, V". . . . must be equilib-

rated by the connections. We will call the forces P, P',

P" the impressed forces,

the forces W9 W, W"
,

which produce the ac-

tual motions, the effective

forces, and the forces V,

V, V" . . . . the forces

gained and lost, or the

FI i6 equilibrated forces. We
perceive, thus, that if we

resolve the impressed forces into the effective forces

and the equilibrated forces, the latter form a system
balanced by the connections. This is the principle of

D'Alembert. We have allowed ourselves, in its expo-
sition, only the unessential modification of putting
forces for the momenta generated by the forces. In this

form the principle was stated by D'ALEMBERT in his

Traite de dynamique, published in 1743.
Various As the'system V, V,

V". ... is in equilibrium, the
which the principle of virtital displacernejits is applicable thereto,

may be ex- This gives a second form of D'Alembert's principle.
pressed. ...A third form is obtained as follows : The forces P, P'. . . .

are the resultants of the components W, W. . . . and

F, V. . . . If, therefore, we combine with the forces

W, W and F, W the forces P, P'
,

equilibrium will obtain. The force-system P, W, V
is in equilibrium. But the system Vis independently
in equilibrium. Therefore, also the system P, Wis
in equilibrium, or, what is the same thing, the system
P, Wis in equilibrium. Accordingly, if the effective

forces with opposite signs be joined to the impressed



THE EXTENSION OF TPIE PRINCIPLES. 337

Fig. 170.

forces, the two, owing to the connections, will balance.

The principle of virtual displacements may also be ap-

plied to the system P, W. This LAGRANGE did in his

Mccaniqite analytique, 1 788.

The fact that equilibrium subsists between the sys- An equiva-

tem P and the system W, may be expressed in still pie em-
i TTT i ployed by

another way. We may say that Hermann
,. . T

J
. ,,, ^ andEuler.

the system Wis equivalent to the

system P. In this form HER-
MANN (Phoronomia, 1716) and

EULER {Comment Acad. Petrop. ,

Old Series, Vol. VII, 1740) employed the principle.

It is substantially not different from that of D'Alembert.

5. We will now illustrate D'Alembert' s principle by
one or two examples.

On a massless wheel and axle with the radii R, r the illustration

loads -P and Q are hung, which are not in equilibrium, bert'sprm-
ciple by theWe resolve the force P into (i) W '

(the force which would produce the

actual motion of the mass if this were

freej and (2) V, that is, we put
P= W+ ^and also Q = W"+ V'\

it being evident that we may here

disregard all motions that are not

in the vertical. We have, accord-

ingly, V= P W and V'= Q W,
and, since the forces V, V are in equilibrium, also

V. R = V. r. Substituting for V, V in the last equa-
tion their values in the former, we get

motion of a
wheel and
axle.

Fig. 171.

(i)

which may also be directly obtained by the employ-
ment of the second form of D'Alembert's principle.
From the conditions of the problem we readily perceive


