
Chapter 9  Theoretical Constructions (II): Euler 

Leonhard Euler 

Although Euler devoted numerous works to the development of fluid mechanics, 
his most outstanding contribution to the theorisation of this discipline centres on 
three monographic papers that appeared in the eleventh volume of the Mémoires 
de l’Académie de Sciences de Berlin, 1755, published in 1757. Their titles were: 
‘Principes généraux de l’état d’équilibre des fluides’, ‘Principes généraux du 
mouvement des fluides’ and ‘Continuation des recherches sur la théorie de mou-
vement des fluides’ (‘General principles of the state of equilibrium of fluids’, 
‘General principles of motion of fluids’, ‘Sequel to the researches on the motion 
of fluids’). The phased continuity of these titles, the fact that they follow a care-
ful unity of expression and method, and the clarity of the argument all indicate 
that they were the result of settled reflection upon which Euler wished to estab-
lish the basis of the new theory of fluid mechanics. The ideas he expresses are 
not completely new with him, as he had already written forerunners to some of 
the works, particularly the ‘Principia motus fluidorum’ containing the nucleus of 

petropolitanae, in the year 1756/1757, but which appeared in 1761, i.e., after the 
three Memoirs.1 The comparison of the contents of this work with the three pre-
vious ones enables us to understand the evolution of Euler’s thought.2 

The general principles upon which Euler bases himself are the Newtonian 
laws expressed in differential form, the complete acceptance of the concept of 
force, the use of pressure as force per surface unit, and the use of clearly defined 
systems of Cartesian coordinates. All are expressed with an absolute conceptual 
clarity, and with admirable accuracy in the formulation of the equations, so 
much so that, although some of the concepts that Euler deploys had already been 
underlined or used by previous treatise writers, the redefining, concision and 
accuracy to which he submits them greatly surpasses all his predecessors. Just as 
                                                      
1 Cf. Truesdell, ‘Rat. Fluid Mech.-12’, p. LXII. The date he quotes is the 31 August of this year. 
The source is Eneström. Euler quotes this work in the monographs. Concerning this see the second 
one in §.17 and §.29.  
2 In translating Euler’s works from Latin or French into English, we have taken as reference the 
translation made by Truesdell in the ‘Rat. Fluid Mech.-12’. 
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the theory, and which had been read in the Berlin Academy in 1752, although
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in solid mechanics, many of his formulations come down to us almost without 
any alteration; and what is more, some of his discoveries have been attributed to 
other authors.3 

In our attempts to follow the theoretical revolution of Euler, we begin with 
the ‘Principia motus fluidorum’, following with the other three works. As with 
d’Alembert, we shall limit ourselves only to the more relevant matters, as a 
detailed study would go significantly beyond the goals we have set ourselves. 

Finally, a note of a general nature: d’Alembert, as we have seen in the pre-
vious chapter, arrived at the constitutive equations of motion as a consequence 
of the study of a particular problem, which was the search for a new theory for 
resistance. Euler, by contrast, attacked the problems concerning fluids in a 
general and very pure way, without reference to any specific application. 

Principia motus fluidorum 

It is in this work that the ideas of Euler on how to deal with the movement of 
fluids appear for the first time with clarity, although its scope is limited to non-
compressible fluids. The work is divided into two parts: the first refers to the 
conditions of existence of motion and the second to the motion resulting when 
forces are applied. In both parts he begins with the assumption of two-
dimensional movement, then proceeding to three-dimensional motion. There is 
no qualitative difference between one and the other, but only one of complexity 
of the calculations and formulas. 

The first question Euler asks is how a fluid is to be understood, because the 
answer to this question depends on how we formulate the conditions of existence 
of motion, and how we distinguish possible and impossible motions:  
 

To this end we must find what characteristic is appropriate to possible motions, 
separating them from the impossible ones. When this is done, we shall have to de-
termine which one of all possible motions in a certain case ought actually to occur. 
Plainly we must then turn to the forces which act upon the water, so that the mo-
tion appropriate to them may be determined from the principles of mechanics. 
[§.5]4 

 

                                                      
3 Specifically, the equations for perfect, non-compressible fluids continue to be used even today. 
On the other hand, the fluid mechanics equations are formulated nowadays with respect to fixed 
axis, called Eulerian, or in moving axes fixed to the actual particle, which we call Lagrangian, 
even when they are also due to Euler. 
4 Inasmuch as the contrary is not stated, the quotes between inverted commas refer to the ‘Prin-
cipia motus fluidorum’. 



 
 
 
 
 

The conditions of fluidity that he uses are contiguity and impenetrability, with-
out any reference to whether the fluid is constituted by corpuscles or another 
type of particle. He supposes the fluid to be a continuous material, impenetrable 
and unable to be segregated, which is in accord with the hypothesis of the non-
compressibility. Here there is a convergence with Clairaut and d’Alembert, in 
the sense of escaping from possible physical reality, which all understand as 
being corpuscular, in order to adopt a continuous mathematical form that persists 
up to the present day. In the light of the methods of calculation available at the 
time, the hypothesis of a continuous medium allows differential analysis, which 
was already well developed, to be used. It is worth mentioning how the three 
mathematicians distanced themselves from what they believed to be reality, 
namely the corpuscular nature of the fluid, to go into an imaginary construct, 
i.e., a continuous fluid. 

Euler says: 
 

I assume the fluid to be such it is impossible for it to be forced into a lesser space, 
nor can its continuity be interrupted. I establish with certainly that no empty space 
remains in the middle of the fluid during movement, but that its continuity is con-
served uninterruptedly. [§.6] 

 
These conditions have to be established for the entire amount of the fluid and for 
any point of it whatsoever, and with this aim he calculates the mathematical 
conditions. 

In order to study the continuity, Euler begins by looking at two-
dimensional motion, that is to say motion in a plane. In this plane he takes a 
differential element of the fluid consisting in a rectangular triangle, and imposes 
the condition that the enclosed surface be constant during its temporal evolution. 
This is the equivalent of saying that the quantity of material contained in its inte-
rior must remain constant. Remember that d’Alembert had already imposed this 
condition with his requirement of the constancy of volume during motion. 

Let the triangle of fluid be designated as NML (Fig. 9-1) at the instant t, and 
which in t + dt had evolved up to NcM c L c , which would not necessarily be rec-
tangular, but which has the same initial surface. If the velocity of point L is the 
vector v(x,y) and the components along the axes OX and OY are designated as 
u(x,y) and v(x,y), the following equations will be verified: 
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Fig. 9-1. Triangle evolution 
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He supposes them to be exact differentials, therefore the equality of the cross-
derivatives must be established: 
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and its derivatives. Having chosen the vertex of the right angle L as base, he 
obtains5: 
 

jviuvL

KGG
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5 Hereinafter vectorial notation and the unitary vectors i and j will be used in order to simplify the 
presentation, although Euler wrote the components separately. 

velocities of the two vertices of the triangle, knowing the velocities of the other 
With the help of the equations [9.1] and [9.2] it is possible to determine the 
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r + vdt, both r and v being vectors. The result for each one of them will be: 
 

jvdtyiudtxjyixrL

GGGGG )()( �����  [9.8] 
 

( )N

v v
r x dx i yj x dx u dx dt i y v dy dt j

x y
w w

 � � � � � � � � �
w w

ª º§ ·ª º§ ·
¨ ¸ ¨ ¸« »« »© ¹¬ ¼ © ¹¬ ¼

G G G GG
 [9.9] 

 

( )M

u v
r xi y dy j x u dx dt i y dy v dy dt j

x y
w w

 � � � � � � � � �
w w

ª º§ ·ª º§ ·
¨ ¸ ¨ ¸« »« »© ¹¬ ¼ © ¹¬ ¼

G G G GG

 

[9.10] 
 

Where the initial coordinates and final coordinates of each vertex are expressed. 
The area of the initial triangle was ½dxdy, while that of the displaced one, after 
an involved calculation [§.19], turns out to be: 
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Which made equal with the first, leads to the following expression: 
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Neglecting the terms of a higher order it simplifies to: 
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When a time dt has elapsed, each vertex will travel from its position r to  
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To which Euler adds that ‘unless this condition holds, the motion of the fluid 
cannot take place’ [§.20]. 

This last equation had already been found by d’Alembert, starting, just as 
Euler did, from kinematic conditions, although d’Alembert had also extended it 
to compressible fluids, something Euler would not do until his monographs of 
1755. 

After the development of the plane movement he goes on to the three-
dimensional case [§.21]. The procedure is the same, now supposing that the ini-

mathematical calculation is considerably more involved and bothersome, as the 
factor adding a new dimension causes not only one more equation to appear, but 
the corresponding cross-equations. The final result is the following expression 
[§.35]: 
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We note6 that there now appear terms of the order dt2, which is one order more 
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With current calculus tools, if the field of velocities v(x,t) is assimilated to a 
vector field, which is certainly what it is, the last equation, nowadays called a 

                                                      
6 The following algorithm is used in the formula that follows in order to simplify its writing: 
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tial element of fluid is a rectangular tetrahedron instead of a triangle. The 

order, and justifying this on the grounds that they are differential quantities,
than in the plane case. Neglecting these just as much as those of an inferior

he ends with the equation: 



 
 
 
 
 

‘continuity’ equation, could be written with the help of a divergence7 operator 
such as: 
 

0·  � vvdiv GG
 [9.16] 

 
Where div is the aforementioned operator which is the scalar product of the 
‘nabla’ operator and the velocity, 

Up to now, Euler has used kinematic arguments. The next step is to intro-
duce dynamic conditions, that is to say forces, and, as a result, accelerations. In 
this respect, he makes the following reflection when beginning the second part: 

 
Once exposed these things that pertain only to possible motion, we now also inves-
tigate the nature of motion that can truly subsist in the fluid. [§.39]  

 
This is the same as saying that the conditions [9.13] and [9.15] are necessary, but 
not sufficient. The process that follows begins by determining the accelerations, 
starting from the kinematics of motion, in order to continue to introduce the 
forces of pressure and gravity. At the end he generalises the results for other 
classes of mass forces.8 He does this entire first in its two-dimensional aspect, 
and then afterwards in its three-dimensional aspect. In this approach he makes a 
clear separation between the kinematic aspects and the dynamic ones, which, 
according to Truesdell,9 occurs for the first time. However, this separation is 
possible exclusively because of the incompressibility of the fluid, and in the case 

                                                      
7 In a three-dimensional vector field, of which the two-dimensional is a particular case, divergence 
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The divergence is a scalar magnitude. A physical interpretation of it can be given as the tendency a 
particle would have of concentrating or diverging when moving throughout the field following its 
force lines. In the case that the field was of velocities, divergence would measure the tendency of 
the fluid to vary in volume, in such a way that the volume is invariable when the divergence is 
zero; which is precisely the case we are dealing with. It is customary to write f

G
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This operator is applicable to scalar and vectors and we shall make use of it from henceforth.  
8 Mass forces are understood to be those whose magnitude is proportional to the mass of the parti-
cle upon which it acts. 
9 Cf. ‘Rat. Fluid Mech. -12’, p. LXXI. 
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In order to find the accelerations of any particle whose velocity components 
are u and v, he takes the variation of these when they move in a time dt. Deriving 
with respect to time and space he obtains the result: 
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As the particle in question moves precisely with the velocities u and v, the dis-
placement will be dx = udt and dy = vdt, which introduced into the previous 
equations lead to: 
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Which are the ‘accelerating forces’ along the axes OX and OY, ‘by which the 
forces that are acting on particle of water must be equal’ [§.41]10 and which he 
goes on to make equal to the forces acting upon it. Among the possible acting 
forces he enumerates three: gravity, friction and pressure. Of the first he says its 
effect, 
 

                                                      
10 In the text of Euler it says precisely: 

Vis acceleratirx secundum AL = 2(Lu + lv + L) 
Vis acceleratirx secundum AB = 2(Mu + mv + M) 

that correspond to the formulas above expressed with the exception of factor 2, whose reason to 
exist he radicates in the peculiar system of units which Euler employs, in which the value of the 
acceleration of gravity is ½. See his work ‘Découverte d’un nouveau principe de méchanique’ 
Mém. Acad. Berlin VI (1750), where he expounds for the first time the Newtonian equation of the 
second principle in a differential form to the time , in the following manner: 

2MX = P;   2MY = Q;    2MZ = R; 
The justification of this value is found in the ‘Théorie plus complete des machines qui sont mises 
en mouvement par la reaction de l’eau’ that appears in Vol. X of the Mém. Acad. Berlin (1754) He 
repeats the ‘2’ again now. We shall ignore it. See also Truesdell, ‘Rat. Fluid mech-12’, p. XLIII. 



 
 
 
 
 

[I]f the plane of motion is horizontal, is to be taken as zero. But if instead the plane 
is inclined, and the axis OY follows that slope, due to gravity a constant accelerat-
ing force of magnitude Į arises. [§.42]11 

 
He leaves friction to one side for the moment, and concentrates on pressure: 
 

Moreover, the pressure must be brought into the calculation. This pressure is the 
reciprocal action of the water particles upon each other. Each particle is pressed on 
every side by its neighbours, and as this pressure is not equal everywhere, to this 
extent motion is communicated to the particles. In all places the water will simply 
find itself in a certain state of compression similar to that of quiet water at a certain 
height finds itself. Therefore, this height (at which quiet water is found to be in a 
state similar to compression) can be conveniently employed to represent the pres-
sure at an arbitrary point l of the fluid. Therefore let that height (or depth) express-
ing the state of compression at l be p; a certain function of the coordinates x and y, 
and if the pressure at l varies also with the time, then the time will also enter into 
the function p. [§.43] 

 
This paragraph is important. On one hand Euler defines the concept of pressure 
as a force over a unit surface, although he still does not do this with total clarity. 
It is not that this is new, as it can be detected in d’Alembert, though he does not 
explain it so clearly, and other authors, such as Johann Bernoulli, liken the pres-
sure to a total force upon a section of a fluid. As regards measuring the magni-
tude of pressure, Euler identifies it with the height of water column, which is not 
new either. We recall that Daniel Bernoulli introduced a water height manometer 
in his experiments, and that Pitot based his experiments on these apparatus. 
There are inklings of this idea even in Newton, but in Euler the idea of acquires 
the value of the measurement, and not of an equivalent force, a very important 
difference. Nevertheless, the concept will become even clearer in the succeeding 
monographs 

In order to introduce the pressure equation he defines a differential element 
of fluid, which will now be a rectangle instead of triangle, designated as NLMO 
in Fig. 9-2, and which he imagines inside a fluid field whose pressure is the 
function of time and position. If the pressure on a vertex of this element is p(x,y), 
then on the others it will be: 
 

                                                      
11 This value depends on the choice of the system of axis. 
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Fig. 9-2. Pressure forces 
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Therefore, the result of the forces produced by the pressures on the sides of the 
rectangle along both axis, will be: 
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These forces, plus the gravity along the axis OX, will be the ‘accelerating 
forces’, and by making them equal to the accelerations given in equations [9.19] 
and [9.20] the following two equations are obtained12: 
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12 In the formulas that follows the density, ȡ, is introduced as the deviser of the pressure, the aim 
being to make the equations coherent. 
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Moreover, the variation of pressure with time and space can be written as: 
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Introducing the values of the two previous equations into this one, we arrive at 
the following expression for dp: 
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Which he says that it must be integrable. He states that ‘the term g is per se inte-
grable and nothing is defined for �p/�t, and by nature the differentials need to be 
exact’ [§.46]. Therefore, it will be necessary to comply with the equality of the 
cross-derivatives between the other two terms: 
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Which, after the corresponding manipulations become the following: 
 

0 ¸̧
¹

·
¨̈
©

§
w
w

�
w
w

¸̧
¹

·
¨̈
©

§
w
w

�
w
w

�
w
w

�
w
w

�
w
w

x
v

y
u

ty
v

x
u

y
v

x
u

 [9.30] 

 
 
That says [§.47] that it is completely satisfied by: 
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last condition will also verify the previous one, but the opposite is not true. This 
means that the condition [9.31] is sufficient, but not necessary. Euler limits the 
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possible motions to a single category, which later would be called ‘irrotational 
motions’. Later on, in successive works he rectifies having considered only this 
solution. D’Alembert had also found himself in a similar situation.13 Truesdell 
insisted that Euler’s mistake was due to d’Alembert’s influence,14 although one 
can easily interpret it as Euler having chosen the easiest and most obvious 
solution of the equation. 

Before continuing, we must introduce a specification which Euler fails to 
mention. In equation [9.30], the sum �u/�x + �v/�y is zero, as had already  
been found in equation [9.13] as a result of the continuity, which simplifies the 
formulation. 

We take note that having started from the pressure as the only acting force, 

returns, for which he introduces the results found in the expression containing 
the pressure, ‘hence now we shall be able to ascertain the pressure p itself, which 
is absolutely necessary for the perfect determination of the motion of the fluid’ 
[§.49]. With the condition [9.31], the pressure equation [9.28] becomes: 
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The condition that udx + vdy is an exact differential allows him to introduce the 
function S, which is the potential of the velocities.15 
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This is already an integrable equation whose result is: 
 

                                                      
13 Cf. Essai d’une nouvelle théorie de la résistance des fluides, §. 48–49. Although what 
d’Alembert really did was to demonstrate if the expression [9.31] was substituted by another of the 
type: O�ww ww yuxv  this will only fulfill the conditions of potentiality if Ȝ = 0. 
14 Cf. ‘Rat. Fluid. Mech.-12’, p. LXXIII. 
15 That is to say, it verifies Sv � K . 

favour of the velocities. Now, within the irrotationality hypothesis the pressure 
Euler arrived at some relationships in which this parameter disappeared in
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These equations may be written with vectorial notation as:  
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In which the nabla operator is used as the generator of the velocity gradient. It 
would be even simpler to use the concept of the substantial derivative, which 
would result in16: 

                                                      
16 The gradient function is applied to a scalar field or to each component of a vectorial field. In the 
first of the cases if the field is represented by ĳ the gradient would be the vector:  
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The direction of the gradient is the variation of the property ĳ when it moves through the field in 
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, what he obtains is Bernoulli’sAs the total velocity at a point is 
equation for a non-stationary motion. We shall come back to this potential func-
tion S once we have analysed the three-dimensional case.  

If we are dealing with motion in three dimensions, the arguments will fol-
low the same lines although, just as in the case of continuity, with a greater 
degree of complexity. There will be a third component of the velocity w, cor-
responding to the projection along the OZ axis, and on establishing the accele-
rations we shall have three equations that replace the two [9.19 and 9.20]. 

dM  �M ·dr  indicates the variation of ĳ when the position changes the distance dr.such a way that 
As regards the substantial derivative of  the property ĳ this is defined as follows: 
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The condition that the expression dp/ȡ is an exact differential, leads to three 
equalities among the cross-derivatives, which will be the equivalent of condition 
[9.29]. When he develops them he obtains the following three equations [§.59] 
equivalent to equation [9.30] of the two-dimensional case: 
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A system which is sufficiently established with the following three values: 
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 [9.44] 

 
Which correspond to an irrotational motion. The presentation of the equations 
obtained by Euler is simplified using modern vectorial notation. Firstly, the 
‘vorticity’ is defined as the curl17 of the velocity: 

                                                                                                                                   
MMM

���
w
w

 v
tDt

D G  

The significance is the variation of the property ĳ of a particle when this moves following a trajec-
tory.  That is to say with axis fixed to the particle. 
17 The curl of a vector field is another vector field defined as: 
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vvcurl GGG

u�  Z  [9.45] 
 
Which is a vector whose three components are precisely the first members of the 
antepenultimate equation [9.44]. With the help of vorticity, equations [9.41]–
[9.43] can be written as the much simpler equation: 
 

v
Dt
D GGG

)( �� ZZ
 [9.46] 

 
Examining the foregoing confirms that it satisfied the cases of Ȧ = 0, that is, an 
irrotational motion, but it does not do so necessarily, as these cases are only one 
class of the possible motions that satisfies equation [9.46], but obviously there 
are more possible motions. For the two-dimensional motion, the previous equa-
tion becomes: 

0 
Dt
DZG

 [9.47] 

 
That corresponds to equation [9.30]. The disappearance of the term vGG )( ��Z  is 
easy to explain as the curl vector is perpendicular to the plane of motion, and 
this plane contains the gradient vector, therefore the scalar product of both will 
be zero18  

                                                                                                                                   
In order to capture the meaning of this vector field we suppose that small parallelepipeds move 
over the vector field. Now then, the curl will indicate the tendency to rotate upon themselves that 
these elements have. In the event that it as zero, they would shift without turning, which is desig-
nated as irrotational.  
18 These equations can be deducted starting from the equation of the momentum: 
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The first member can be written as: 
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Introducing this in equation [1], together with the definition of vorticity, and applying the curl 
function to both members we end up with: 
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 [9.48] 

 
This equation substitutes the two-dimensional one deduced previously [9.32]. 

An interesting detail, analysed by Euler, occurs where the field of velocities 
is integrable, S being its integral, i.e., there is a potential function.19 Simplifying 
his transformations, the velocities will be: 
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Therefore, it will also be established that: 
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Resulting in the expression for pressure: 
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In the assumption that the forces are derived from potential and that the density is constant, the 
two add-ins of the left are cancelled out, as is the second on the right.  Therefore, recalling the 
definition of vorticity, we arrive at: 
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Going on to the substantial derivative we end with: 
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Which like the density is constant G , giving the [9.46] results. We note that Truesdell [Rat. 
Fluid Mech.-12, p. LXXII] points out this transformation. However, he presents the previous 
equation [5] as being equivalent to equations [9.41] and [9.42] of Euler, which would only be true 
if the density were not constant.  
19 Euler takes two addends, one of which he calls U, which is variable with the time. We shall skip 
this step.   

arriving at the expression: 
As regards pressures, he repeats the process adding a new variable, thus

�v  0



 
 
 
 
 

which is the generalisation of the equation of Bernoulli for non-stationary  
motions. 

On the other hand, he recalls the existence condition of the motion, ex-
pressed in equation [9.15], in which he introduces the velocities derived from the 
potential S, as presented in equation [9.49]. The resulting equation is: 
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 [9.52] 

 
This is an equation which is called the potential equation or ‘Laplacian’ and 
which is usually written as 02  � S  or 0 'S . 

As a complement to this last formulation, Euler tries to find some kind of 
solution [§.68-ff] supposing that the function S takes the form: 
 

nCzByAxS )( ��  [9.53] 
  
He applies the previous condition [9.52] to this one and he arrives at the follow-
ing relation between the parameters: 
 

0))()(1( 2222  ����� �nCzByAxCBAnn  [9.54] 
 
He devotes a lot of attention to these functions, in particular to the solution cor-
responding to n = 1, where he finds that it is the equivalent to a shift in space at 
constant velocity, as can be easily deduced by applying equation [9.49] to the 
function S = Ax + By + Cz; and where the fluid behaves like a rigid solid. Fol-
lowing this thread Euler ponders whether ‘it is legitimate to suspect in other 
cases that the motion of the fluid can also be assimilated to the motion of a solid 
body, whether rotational or with any other anomaly’ [§.75]. With this aim, he 
launches himself into the search of relations having the velocities that makes 
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motion to be possible, the matrix 
to that of the shift. After a series of calculations, he finds that for this type of 
possible the motion of the fluid as a solid rotation, A situation complementary
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 [9.56] 

 
Now the last three equalities contradict the condition found for the existence of 
fluid motion, which was [9.44], which indicates that this motion will not be 
compatible with these conditions unless the velocities are constant. In response, 
he ends by saying: ‘thus, it is obvious that it is only in this case [vi = cte] where 
the motion of a fluid can be assimilated to that of a solid body’ [§.77] The inter-

20 
The next step he takes is to extend the forces to ones other than weight and 

pressure, these being the only ones he has handled up to now. In order to do this, 
he extends the theory to assumptions where other external forces exist. Instead 
of using a new approach to the equations, what Euler does do is to introduce an 
acceleration potential T, so that: 
  

t
SwvuT
w
w

��� )(
2
1 222  [9.57] 

 
If the new external forces are of the type Qdx + qdy + ĳdz, the expression for 
pressure will result in: 
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20 Truesdell (‘Rat Fluid Mech-12’, note 2, p. LXXIV) quotes Professor Kuert’s remark that makes 
plain his puzzlement that neither Euler nor d’Alembert found counter examples to their theories in 
these motions. That a solid rotation is not irrotational is very easy to see. A irrotational motion 
requires that a particle does not turn in its movement, which in turn requires that the law of veloci-
ties be inverse to the distance for the center of rotation, that is to say of the v = k/r type. Now, in a 
solid rotation the velocity is proportional to the distance, that is, v = kr.  

motions that are not covered by the conditions of existence.
est of this statement lies in the fact that the solid rotation is an example of

In concluding our treatment of the ‘Principia motus fluidorum’, the last point
of significance is the specification he makes for fluids moving in ducts, declar- 
ing that ‘everything which has hitherto been said concerning the motion of a fluid
through tubes is easily derived from these principles’ [§.87]. The final equation
he arrives at is: 



 
 
 
 
 

Where S0 and S(s) are the cross sections of the pipe and V0 the velocity in the 
cross section S0 taken as a reference. This equation is an extension of the one 
given by d’Alembert, and of course turns out to be the equation of Bernoulli, an 
equation that begins to occupy second place with respect to the general hypothe-
ses of hydrodynamics. 

Finally, it is useful to compare Euler’s method with that of d’Alembert. 
They clearly have differing approaches to the problem. The latter begins by ob-
taining an equation that links the pressures21 to the velocities for a pipe with a 
very narrow current tube; next, using kinematic and dynamic considerations, he 
obtains the field of velocities defined by differential equations in which only the 
velocities intervene, and whose solution depends on the shape of the body. Once 
these are solved, the pressures at each point in the fluid can be deduced. By con-
trast, Euler first introduces the pressures as forces, and with these, together with 

the end of the Bernoulli’s equations, which will give the pressures at specific 
points once the velocities are obtained. The elements brought into play are the 
same, although in a different order, and with a different methodology, in which 
Euler deals with the dynamic concepts with greater clarity. Apart from this, 
Euler tackles the three-dimensional problem, while d’Alembert limits himself to 
this last case, be it in the plane or axisymmetric case.  

General principles of the state of equilibrium of the fluids 

This first of the three monographs of the series is dedicated to hydrostatics. 
Euler begins by a declaration of his aims: 

 
Here I propose to develop the principles upon which all hydrostatics, or the science 
of the equilibrium in fluids, is founded. … I include in my investigations not only 
fluids that have the same density in all their parts … but also those fluids com-

tions to the single force of gravity, but will extend them to any forces. [§.1]22 
 

As a consequence of the general nature of the research, the earlier explanations 

he notes however 
 

                                                      
21 See Chapter 8, ‘Body in flowing currents’ of this book. 
22 The quotes between brackets follow the monograph ‘Principes généraux de l’état d’equilibre des 
fluides’. 
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the equations of general dynamics, he establishes some relations among the velo-
cities alone, just like d’Alembert. He goes back to introduce the pressures at 

posed of particles of different density. … Moreover, I shall not limit my investiga-

‘are only a very particular case of those which I am going to establish here’ [§.2] 
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