$\mathbf{25}$ Г 1

III. Experimental Researches in Electricity.—Twenty-eighth Series. By MICHAEL FARADAY, Esq., D.C.L., F.R.S., Fullerian Prof. Chem. Royal Institution, Foreign Associate of the Acad. Sciences, Paris, Ord. Boruss. Pour le Mérite, Eq., Memb. Royal and Imp. Acadd. of Sciences, Petersburgh, Florence, Copenhagen, Berlin, Göttingen, Modena, Stockholm, Munich, Bruxelles, Vienna, Bologna, &c. &c.

Received October 22,-Read November 27 and December 11, 1851.

§ 36. On Lines of Magnetic Force; their definite character; and their distribution within a Magnet and through Space.

3070. FROM my earliest experiments on the relation of electricity and magnetism (114. note), I have had to think and speak of lines of magnetic force as representations of the magnetic power; not merely in the points of quality and direction, but also in quantity. The necessity I was under of a more frequent use of the term in some recent researches (2149. &c.), has led me to believe that the time has arrived, when the idea conveyed by the phrase should be stated very clearly, and should also be carefully examined, that it may be ascertained how far it may be truly applied in representing magnetic conditions and phenomena; how far it may be useful in their elucidation; and, also, how far it may assist in leading the mind correctly on to further conceptions of the physical nature of the force, and the recognition of the possible effects, either new or old, which may be produced by it.

3071. A line of magnetic force may be defined as that line which is described by a very small magnetic needle, when it is so moved in either direction correspondent to its length, that the needle is constantly a tangent to the line of motion; or it is that line along which, if a transverse wire be moved in either direction, there is no tendency to the formation of any current in the wire, whilst if moved in any other direction there is such a tendency; or it is that line which coincides with the direction of the magnecrystallic axis of a crystal of bismuth, which is carried in either direction along it. The direction of these lines about and amongst magnets and electric currents, is easily represented and understood, in a general manner, by the ordinary use of iron filings.

3072. These lines have not merely a determinate direction, recognizable as above (3071.), but, because they are related to a polar or antithetical power, have opposite qualities or conditions in opposite directions; these qualities, which have to be distinguished and identified, are made manifest to us, either by the position of the ends of the magnetic needle, or by the direction of the current induced in the moving wire. MDCCCLII. Е

26 DR. FARADAY'S EXPERIMENTAL RESEARCHES IN ELECTRICITY. (SERIES XXVIII.)

3073. A point equally important to the definition of these lines is, that they represent a determinate and unchanging amount of force. Though, therefore, their forms, as they exist between two or more centres or sources of magnetic power, may vary very greatly, and also the space through which they may be traced, yet the sum of power contained in any one section of a given portion of the lines is exactly equal to the sum of power in any other section of the same lines, however altered in form, or however convergent or divergent they may be at the second place. The experimental proof of this character of the lines will be given hereafter (3109. &c.).

3074. Now it appears to me that these lines may be employed with great advantage to represent the nature, condition, direction and comparative amount of the magnetic forces; and that in many cases they have, to the physical reasoner at least, a superiority over that method which represents the forces as concentrated in centres of action, such as the poles of magnets or needles; or some other methods, as, for instance, that which considers north or south magnetisms as fluids diffused over the ends or amongst the particles of a bar. No doubt, any of these methods which does not assume too much, will, with a faithful application, give true results; and so they all ought to give the same results as far as they can respectively be applied. But some may, by their very nature, be applicable to a far greater extent, and give far more varied results, than others. For just as either geometry or analysis may be employed to solve correctly a particular problem, though one has far more power and capability, generally speaking, than the other; or just as either the idea of the reflexion of images, or that of the reverberation of sounds may be used to represent certain physical forces and conditions; so may the idea of the attractions and repulsions of centres, or that of the disposition of magnetic fluids, or that of lines of force, be applied in the consideration of magnetic phenomena. It is the occasional and more frequent use of the latter which I at present wish to advocate.

3075. I desire to restrict the meaning of the term line of force, so that it shall imply no more than the condition of the force in any given place, as to strength and direction; and not to include (at present) any idea of the nature of the physical cause of the phenomena; or to be tied up with, or in any way dependent on, such an idea. Still, there is no impropriety in endeavouring to conceive the method in which the physical forces are either excited, or exist, or are transmitted; nor, when these by experiment and comparison are ascertained in any given degree, in representing them by any method which we adopt to represent the mere forces, provided no error is thereby introduced. On the contrary, when the natural truth and the conventional representation of it most closely agree, then are we most advanced in our knowledge. The emission and the ether theories present such cases in relation to light. The idea of a fluid or of two fluids is the same for electricity; and there the further idea of a current has been raised, which indeed has such hold on the mind as occasionally to embarrass the science as respects the true character of the physical agencies, and may be doing so, even now, to a degree which we at present little suspect. The

ON THE LINES OF MAGNETIC FORCE.

27

same is the case with the idea of a magnetic fluid or fluids, or with the assumption of magnetic centres of action of which the resultants are at the poles. How the magnetic force is transferred through bodies or through space we know not; whether the result is merely action at a distance, as in the case of gravity; or by some intermediate agency, as in the cases of light, heat, the electric current, and (as I believe) static electric action. The idea of magnetic fluids, as applied by some, or of magnetic centres of action, does not include that of the latter kind of transmission, but the idea of lines of force does. Nevertheless, because a particular method of representing the forces does not include such a mode of transmission, the latter is not therefore disproved; and that method of representation which harmonizes with it may be the most true to nature. The general conclusion of philosophers seems to be, that such cases are by far the most numerous, and for my own part, considering the relation of a vacuum to the magnetic force and the general character of magnetic phenomena external to the magnet, I am more inclined to the notion that in the transmission of the force there is such an action, external to the magnet, than that the effects are merely attraction and repulsion at a distance. Such an action may be a function of the ether; for it is not at all unlikely that, if there be an ether, it should have other uses than simply the conveyance of radiations (2591. 2787.). Perhaps when we are more clearly instructed in this matter, we shall see the source of the contradictions which are supposed to exist between the results of COULOMB, HARRIS and other philosophers, and find that they are not contradictions in reality, but mere differences in degree, dependent upon partial or imperfect views of the phenomena and their causes.

3076. Lines of magnetic force may be recognized, either by their action on a magnetic needle, or on a conducting body moving across them. Each of these actions may be employed also to indicate, either the direction of the line, or the force exerted at any given point in it; and this they do with advantages for the one method or the other under particular circumstances. The actions are however very different in their nature. The needle shows its results by attractions and repulsions; the moving conductor or wire shows it by the production of a current of electricity. The latter is an effect entirely unlike that produced on the needle, and due to a different action of the forces; so that it gives a view and a result of properties of the lines of force, such as the attractions and repulsions of the needle could never show. For this and other reasons I propose to develope and apply the method by a moving conductor on the present occasion.

3077. The general principles of the development of an electric current in a wire moving under the influence of magnetic forces, were given on a former occasion, in the First and Second Series of these Researches (36. &c.); it will therefore be unnecessary to do more than to call attention, at this time, to the special character of its indi-

28 DR. FARADAY'S EXPERIMENTAL RESEARCHES IN ELECTRICITY. (SERIES XXVIII.)

cations as compared to those of a magnetic needle, and to show how it becomes a peculiar and important addition to it, in the illustration of magnetic action.

3078. The moving wire produces its greatest effect and indication, not when passing from stronger to weaker places, or the reverse, but when moving in places of equal action, *i. e.* transversely across the lines of force (217.).

3079. It determines the direction of the polarity by an effect entirely independent of pointing or such like results of attraction or repulsion; *i. e.* by the direction of the electric current produced in it during the motion*.

3080. The principle can be applied to the examination of the forces *within* numerous solid bodies, as the metals, as well as outside in the air. It is not often embarrassed by the difference of the surrounding media, and can be used in fluids, gases or a vacuum with equal facility. Hence it can penetrate and be employed where the needle is forbidden; and in other cases where the needle might be resorted to, though greatly embarrassed by the media around it, the moving wire may be used with an immediate result (3142.).

3081. The method can even be applied with equal facility to the interior of a magnet (3116.), a place utterly inaccessible to the magnetic needle.

3082. The moving wire can be made to sum up or give the resultant at once of the magnetic action at many different places, *i. e.* the action due to an area or section of the lines of force, and so supply experimental comparisons which the needle could not give, except with very great labour, and then imperfectly. Whether the wire moves directly or obliquely across the lines of force, in one direction or another, it sums up, with the same accuracy in principle, the amount of the forces represented by the lines it has crossed (3113.).

3083. So a moving wire may be accepted as a correct philosophical indication of the presence of magnetic force. Illustrations of the capabilities already referred to, will arise and be pointed out in the present paper; and though its sensibility does not as yet approach to that of the magnetic needle, still, there is no doubt that it may be very greatly increased. The diversity of its possible arrangements, and the great advantage of that diversity, is already very manifest to myself. Though both it and the needle depend for their results upon essential characters and qualities of the magnetic force, yet those which are influential, and, therefore indicated, in the one case, are very different from those which are active in the other; I mean, as far as we have been able as yet to refer directly the effects to essential characters: and this difference may, hereafter, enable the wire to a give a new insight into the nature of the magnetic force; and so it may, finally, bear upon inquiries, such as whether magnetic polarity is axial or dependent upon transverse lateral conditions; whether

^{*} A natural standard of this polarity may be obtained, by referring to the lines of force of the earth, in the northern hemisphere, thus:—if a person with arms extended move forward in these latitudes, then the direction of the electric current, which would tend to be produced in a wire represented by the arms, would be from the right-hand through the arm and body towards the left.