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Newton also derived this relationship and was disappointed to learn that Huy-
gens had already published the same results.

 Huygens’s train of thought is of great importance to the history of science be-
cause here it was established—contradicting the Peripatetics and even Galileo—
not only that to maintain circular motion, a force is always required (which, by the 
way, Descartes already knew), but also that a numerical value could be calculated 
for this force. In this way, Huygens smoothed the way for a precise determination 
of acceleration in motion along curved paths.

As we have already mentioned, Huygens was no philosopher; his strength lay—
as we have seen—in the establishment of simple, reasonable, but very productive 
fundamental physical principles. Nonetheless, Quotation 3.45, taken from the fore-
word to his book dedicated to problems of optics (Traité de la lumière), represents 
one of the most cogent formulations of the basic principles of natural philosophy.

3.7  Newton and the Principia: The Newtonian Worldview
3.7.1 The Tasks Awaiting the Advent of Newton

In the previous sections, we have sketched the path and followed the ideas leading 
to a new dynamics. Let us see—by summarizing the results of the first seven to 
eight decades of the seventeenth century—what was there for Newton to build 
on and what tasks were awaiting him.

We have spoken so far of three strands by which these ideas developed: free fall, 
collision, and circular motion.

 The problem comprises the kinematics of bodies moving with con-
stant acceleration, the proportionality of the distance traveled to the square 
of the time, and the surprising fact that every object—at least under ideal 
conditions—falls with the same acceleration. This fact greatly simplifies the 
kinematic description, but it also complicates its dynamic interpretation. 
Huygens’s wide-ranging investigation into the problem of free fall did not 
bring us significantly closer to the goal, even though it was indirectly very 
useful because it showed that the right choice of an initial starting point—
such as Huygens’s principle on the center of gravity that was discussed in 
detail—can yield a broad multitude of concrete results. 

 The momentum—that is, the product of the mass of the body and 
its velocity—as well as its change over time clearly play key roles.

 The important realization is that in order to maintain such 
motion, a force is necessary, contrary to the Peripatetic belief that circular 
motion can to some extent be seen as inertial, or naturally given, motion. 
More generally, it is precisely with circular motion, as the simplest form of 
curvilinear motion, that the vector nature of velocity and the change of ve-
locity are the most evident and are also quantitatively accessible. 

Behind all this lies a new law of inertia, recognized as final and irrevocable, ac-
cording to which motion is a state and not a process and an effective cause is needed 
not to maintain it but to change it. 

Finally, Descartes put his stamp on the worldview of physicists by requiring a 
unified explanation of celestial and terrestrial phenomena, and further requiring 
that this explanation be clearly formulated, meaning that interaction is possible 
only by immediately visible and perceptible contact.

��Figure 3.117 Important events and creative periods 
in NEWTON’s life. See also Plate XVII.

ISAAC NEWTON (1642–1727): According to the Julian calen-
dar then in use, born Christmas day in 1642; however, on 
the Continent, the new year had already begun. NEWTON’s 
father had died several months before his son’s birth. 
From 1661, NEWTON, with the support of his uncle, studied 
mathematics at Trinity College, Cambridge. During the 
plague epidemic in 1665, he withdrew to his estate in 
Woolsthorpe; this and the following year are known as 
Newton’s “anni mirabiles” (Plate XVII). At only 24 years 
of age, NEWTON conceived the fundamental ideas for the 
binomial theorem, differential calculus, theory of color, 
centripetal force, laws of motion, and theory of gravita-
tion. On his return to Cambridge, he dealt with problems 
of optics; in 1668, he completed a reflecting telescope. In 
1669, he was appointed to the Lucasian Chair of Math-
ematics at the University of Cambridge, to succeed ISAAC 
BARROW. In 1672, he presented his Theory of Light and 
Colors to the Royal Society; this book precipitated such 
dispute that he decided not to publish anything further. A 
summary of his work on optics was not published until
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Toward the end of the century, a fourth strand waiting to be spun together with 
the above three, the problem of planetary motion, moved to the forefront. In this 
manner Kepler’s laws could finally get the recognition they merited.

What was awaiting Newton was the task of uniting these more-or-less indepen-
dent problems into a single worldview (Figure 3.117, Plate XVII).

In the end, the unified development of mechanics and indeed of the entire physical 
worldview rest on two fundamental realizations made by Newton. The first is the 
law of motion, which established a quantitative relationship between the change of a 
state of motion and the underlying force, that is, the recognition of the relationship

force ! mass " acceleration.

The second is the universal law of gravitation, according to which the attractive 
gravitational force between any two bodies is proportional to the product of their 
masses and is inversely proportional to the square of the distance between them.

The first law can provide the force if we know the motion, or the motion if we 
know the force, reducing all the previous problems of this form in the history of sci-
ence to special cases; Newton himself provided posterity with an almost inexhaust-
ible supply of new applications.  The second law guarantees the unity of the celestial 
and terrestrial worlds because the path of a stone falling from a tower and the path 
traced by the Moon or any planet could now be calculated according to the same law.

In the following sections, we attempt to present as simply as possible, using to-
day’s common terminology, the train of thought that led Newton to these laws. 
In his Principia, the bible of classical physics, Newton’s ideas and results already 
appear in their final form and in great generality wrapped, as it were, in the cer-
emonial vestments inherited from Euclid and Archimedes of theorems followed 
by proofs. We may learn about the difficult process of the birth of his ideas partly 
from Newton himself and partly from his contemporaries. We can especially re-
joice in the fact that Newton had the habit of noting his yet unripe thoughts and 
calculations in a journal. This journal, which Newton called his waste book, is, 
with its collection of fragments of ideas, perhaps the most important surviving 
material in Newton’s own hand. In the modern reappraisal of these papers, many 
exciting pieces of information for the history of science have come to light; how-
ever, due to their large number, we can only occasionally touch on these.

3.7.2  A Force Is Not Required to Maintain a State of Motion but to 
Change It

Let us now consider the steps that led to the formulation of the law of motion. We 
have frequently spoken of the importance of collision processes for the discovery 
of this law. Let us consider the simplest of such processes, the head-on collision 
of two elastic balls of equal masses moving at equal speeds. The result of the colli-
sion—both balls ricocheting off each other with reversed directions and the same 
speeds—is so obvious that Huygens, as we have seen, used it as an axiom in his 
treatment of more general collisions.

Let us consider in a bit more detail what happens physically during the course of 
a collision, irrespectively of how quickly it takes place. As depicted in Figure 3.118, 
the two balls are elastically deformed, and therefore each pushes against the other. 
As a result of this force, each of the balls is slowed down, and there is a moment at 
which the velocities of the two balls are zero. Newton’s first significant insight in 

Figure 3.117 continued

 1704, in the book Opticks. In 1684, on the urging of 
HALLEY, he began to write the Principia; HALLEY then as-
sumed the costs of publication. In the years 1692 and 
1693, NEWTON suffered the consequences of a severe 
nervous breakdown; he recovered, retaining his full intel-
lectual capacities, although he made no further signifi-
cant scientific contributions in the remaining 35 years 
of his life. That he was capable of such is demonstrated 
by his solution in a single night of a problem posed by 
BERNOULLI (1696), although the task was estimated to take 
six months, and the solution of a problem posed by LEIBNIZ

almost in the moment that he became aware of it (1716).

In 1699, NEWTON was named warden of the Royal Mint, 
and in 1705, he was knighted by the queen. From 1703 
until his death in 1727, he was president of the Royal 
Society. He is buried in Westminster Abbey.

��Figure 3.118 The phases of a symmetric elastic 
collision.

Quotation 3.41
It is often said in explanation of the … force which 
prevents the quicksilver from falling down, as it 
would naturally do, [that it] is internal to the vessel, 
arising either from the vacuum or from some 
exceedingly rarefied substance; but I assert that it is 
external and that the force comes from without. On 
the surface of the liquid which is in the bowl there 
rests the weight of a height of fifty miles of air; then 
what wonder is it if into the vessel, in which the 
quicksilver has no inclination and no repugnance, 
not even the slightest, to being there, it should 
enter and should rise in a column high enough to 
make equilibrium with the weight of the external 
air which forces it up?
—EVANGELISTA TORRICELLI, Letter to MICHELANGELO RICCI, 
June 11, 1644
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connection with this is that a force is required to bring a moving object to a standstill 
(that is, to reduce a momentum to zero), and this force is due to the pressure from 
the elastic deformation of the balls.

In the next phase of the collision, as a result of the forces exerted by the deformed 
balls, both balls recover their original velocities, but in the opposite directions. 
Newton’s second observation is that the force needed to create a particular mo-
tion is the same as what is required to make that motion cease.

Newton’s third observation is that during their interaction, each body affects 
the other with an equal but opposite force. A generalization of this fact later led to 
Newton’s third axiom.

The collision, which lasts a very short time, is in fact a transition between two 
inertial states of the bodies, that is before and after the collision, they execute linear 
motion at constant velocity in the absence of any outside influence. The result of 
the collision can therefore be described quantitatively because uniform linear mo-
tion can be characterized by well-defined state parameters, namely, momentum 
and velocity (Figure 3.119).

The force acting on a body in motion along a curved path can be easily under-
stood if we reduce the effect to a series of collisions. Suppose a body is moving, as 
shown in Figure 3.120, along the linear path AB with constant velocity when it 
collides at point P with another body in such a way that, at impact, a momentum 
of magnitude mvP is transmitted to the body in the direction PC. The body then 
continues its path in the direction PP´, and suppose that at point P´ it collides 
with another body so that its direction changes once again. The result of this se-
quence of collisions is that the body travels along a polygonal path.

A very important step toward generalization is if we assume that an abrupt change 
in the state of motion does not have to be the consequence of a collision, in other 
words through direct contact, but that it could also be caused by any type of force. 
Even gravitational force can be regarded from this point of view as a consequence 
of brief impulses, as had already been done by Beeckman (see Section 3.3).

Here we call attention to a peculiarity in the terminology. In keeping with New-
ton, here we use the notion of “force” differently from the way it is used today. 
According to our current nomenclature, the quantity that results in a given change 
in momentum is not called a force; today, force means the change in momentum 
per unit of time. A given change in momentum is equal to the product of the force 
and the time over which the force acts, or more precisely, equal to the time integral 
over the force.

If we consider again what happens during the second phase of the elastic colli-
sion depicted in Figures 3.118 and 3.119. We see that, for example, the ball on 
the right is accelerated from its resting position due to the effective “force” of 
the pressure in the direction of that pressure, and as a result it acquires a certain 
momentum. This momentum is therefore proportional to the “force” and has the 
same direction. What happens now at point P of Figure 3.120? If no physical ef-
fects were acting here on the bodies, the ball would continue moving along the line 
AB. Keeping in mind the principle of “independence of motion” formulated by 
Galileo, we see that the motion in the direction PC combines with the original 
motion, and so we may formulate the following theorem on motion resulting from 
a collision: The change in momentum is proportional to and has the same direction as 
the effective “force.”

We stress once more that here we have been using the term “force” in Newton’s 
sense; in today’s language we would substitute the product of force and time.

��Figure 3.119 In this particular collision, the ball on 
the left will come to a stop, while the equal but opposite 
effect will accelerate the other ball to its original velocity.

��Figure 3.120 We can force a body to traverse a 
polygonal path through a series of collisions. In passing to 
the limit, we obtain motion along a curved path.

Quotation 3.42
Let all the disciples of ARISTOTLE gather together all 
the strength in the writings of their master and his 
commentators in order, if they can, to make these 
things reasonable by means of the horror of the 
vacuum. Except that they know that experiments 
are the true masters that must be followed in 
physics. And that what has been accomplished in 
the mountains reverses the common belief of the 
world that Nature abhors a vacuum; it has also 
established the knowledge—which will never die—
that Nature has no horror of a vacuum, and that the 
heaviness of the mass of air is the true cause of all 
the effects which have previously been attributed 
to this imaginary cause.
—BLAISE PASCAL [Dugas 1957, p.171]
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As we have already explained, the forces acting on the vertices of the polygonal 
path can be of a quite general nature. For example, it can be a central force, directed 
toward one fixed point, the center, from any point in space. The importance of 
investigating this configuration is clear: Planetary motion involves precisely such a 
force. We assume now, following Figures 3.121 and 3.122, that the force directed 
toward a central point acts in the form of a rapid succession of impulses and that 
the path consequently has the form of a polygonal line. It is easy to see from the 
figure that the areas of the triangles that lie between the segments of the path and 
the center are equal; for example, the area of triangle OPP މ is equal to the area of 
triangle OP މP Ǝ, since the two triangles share the common side OP މ, and the corre-
sponding altitudes m1 and m2 are equal. This observation leads to Kepler’s second 
law—the law of areas—where we see that this law is valid for an arbitrary central 
force and that no additional assumptions about the dependence of the force on 
distance are necessary. In the following, we show that the dependence of the force 
on the distance follows from Kepler’s third law.

Let us return now to the polygonal path that arises under the influence of brief 
impulses and attempt to derive the quantitative relationships for circular motion 
as a limiting case, where we shall assume as known the geometric and kinematic 
characteristics of this path. Following Figure 3.123, we inscribe a square in the 
circle and assume that the body moves along the path described by this square with 
constant speed. At the vertices of the square, our object will presumably collide 
with an elastic circular ring, from which it will be reflected according to the laws 
of collision. Both the magnitude and direction of the force exerted by the elastic 
ring are easily specified. It is directed toward the center of the circle, and its mag-
nitude can be determined by geometric considerations. From the similarity of the 
triangles OPP މ and BP މA, we obtain

∆ mv
mv

a
r

( )
= ,

and therefore, for a collision at the vertex of the square, we have

∆ mv a
r
mv( ) = .

The net effect of the force exerted during a complete circumnavigation of the 
square path can now be determined from

 
4 4∆ mv a

r
mv( ) = .

 
 (1 )

Rewriting this relationship in today’s formalism, instead of the “effect of the 
force,” we employ the product FǻĲ, where F is the force itself, and ǻĲ is the time 
over which the force acts, where we have made the simplifying assumption that 
the force is constant during the time of action. This assumption is valid for a col-
lision only if we understand by “force” the average force. With these assumptions, 
equation (1) can be written as

F a
r
mv4 4∆τ( ) = .

Figure 3.124 shows a circle with an inscribed polygon of n sides. Because of the

	�Figure 
3.121 For central 
forces, the area law 
holds: The surfaces 
of the triangles OPP ƍ 
and OP ƍP Ǝ are equal. 
Since the time inter-
vals are equal, we 
have PP ƍ = P ƍQ, and 
therefore m m1 1= ′  
and OP ƍ || QP Ǝ, so 
that m1 = m2 and 
OP ƍm1 = OP ƍm2.

��Figure 3.122 The area law in NEWTON’s Principia.

Quotation 3.43
Mr. DESCARTES had discovered how to make his 
conjectures and fictions be taken for truths. And 
something similar happened to those who read his 
Principles of Philosophy as to those who read the 
Romans who are pleasing and give the impression 
of being true histories. The novelty of the figures 
and little particles and vortices make it very 
charming. It seemed to me, when I read this book 
of Principles for the first time, that everything went 
swimmingly, and I thought, whenever I had some 
difficulty with it, that it was my fault for not clearly 
understanding his thought. I was only 15 or 16 
years old. But having since then discovered things 
in it that are manifestly false, and others that are 
very unlikely, I have thoroughly returned from my 
former obsession, and at the present time I can 
find almost nothing that I can approve as true in 
his entire physics, or metaphysics, or meteorology. 
—CHRISTIAAN HUYGENS, Euvres Complètes, vol. 10 
[translated by Paul Franz]
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similarity of the triangles, we derive here as well the relationship

∆ mv
mv

a
r

( )
= ,

from which follows 
∆ mv a

r
mv( ) = ,

and in today’s usual notation, we have

F n na
r
mv∆τ( ) = .

This relationship and formula (1) can be summarized thus: In a complete cir-
cumnavigation, the net effect of the force—that is, the force multiplied by the sum 
of its times of action—is equal to the momentum multiplied by the quotient of 
the total length of the path and the radius of the circle.

If we increase the number of vertices without bound, in the limit we arrive at the 
circle. The validity of the conclusions that we have reached for polygonal paths is 
independent of the number of sides of the polygon, so that they remain true for 
arbitrary n and therefore for the circular path as well. The length of the path, of 
course, coincides with the circumference of the circle, and equation (1) becomes

F r
r

mv mvτ π π= =2 2 .

From this equation, we obtain the constant magnitude of the force directed to-
ward the center of the circle:

F mv
r v

mv mv
r

= = =2 2
2

2π
τ

π
π /

.
 

(2 )

Because of its direction, Huygens called this force a centripetal force. It is trans-
mitted by the circular ring to the body, and it forces the body to move along a 
circular path. Of course, the body traversing the circular path exerts an equal and 
opposite force outwardly against the ring.

Figure 3.125 shows a page from Newton’s waste book in which the square in-
scribed into the circle can be recognized as the starting point for the entire train of 
thought sketched above.

According to his waste book, Newton treated the problem of circular motion in 
perfect analogy with Huygens, but independently of him.

We have seen previously that circular motion can also be understood as motion 
with constant acceleration, given by the expression

a v
r

 
2

,

so that the force can be written as

F ma mv
r

  
2

.
 

(3 )

This expression is identical to formula (2), but now it can be interpreted according 
to the relationship force ! mass " acceleration.

	�Figure 
3.123 For the 
quantitative 
treatment of 
uniform motion 
along a circular 
path, we begin 
with motion 
along a square 
inscribed in the 
circle. Because 
of the similarity 
of the triangles 
ABP ƍ and OPP ƍ, 
we obtain  
∆( ) : :mv mv a r= .

��Figure 3.124 For motion along an inscribed polygon 
with n sides, the proportion ∆ ( ) : :mv mv a r=  is still correct.

Quotation 3.44
The weight of a body is not understood, here, to be the 
tendency which makes it move towards the centre of 
the Earth, but rather to be its volume together with 
a certain solidity or condensation of the parts of its 
material which is probably the cause of its heaviness.
—EDME MARIOTTE, Traité de la percussion ou choc des 
corps [Dugas 1957, p. 199]

Quotation 3.45
There will be seen in it demonstrations of those 
kinds which do not produce as great a certitude as 
those of Geometry, and which even differ much 
therefrom, since whereas the Geometers prove their 
Propositions by fixed and incontestable Principles, 
here the Principles are verified by the conclusions to 
be drawn from them; the nature of these things not 
allowing of this being done otherwise. It is always 

continued on next page
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Newton applied his results to circular motion—and that was the very first ap-
plication of Newtonian dynamics—to investigate the relationship between the 
gravitational force on a body at the surface of Earth and the force that results from 
the rotation of Earth. Already in antiquity, the objection against Earth’s rotation 
was raised—logically enough—that objects would be flung away from its surface. 
Newton showed that the force resulting from Earth’s rotation is too small and 
that this objection is invalid. At the same time, this force is still strong enough 
to be measured experimentally; that is, Earth’s rotation plays a role in the precise 
determination of the acceleration due to gravity (Figure 3.126).

3.7.3 The Law of Universal Gravitation
By the second half of the seventeenth century, a number of approaches toward a 
law of gravitational attraction had already appeared; it had even been generally 
formulated that all bodies mutually attract one another and that this attraction 
is responsible for the weight of objects on Earth’s surface and therefore for mo-
tion in free fall, and also for the motion of the celestial bodies. Furthermore, the 
conjecture had been advanced that this force should be inversely proportional 
to the square of the distance separating two bodies. All this, however, was mere 
conjecture unsupported directly by experimental observation, and what is most 
important is that the supposed law of forces could not be harmonized with the 
elliptical planetary orbits; all such attempts had been unsuccessful.

Legend has it that the famed Newtonian apple provided the first impulse for 
Newton’s formulation of the law of universal gravitation (Quotation 3.46).

According to Newton’s own recollections and those of his friends, in deriving 
the law of forces, Newton proceeded as follows (Quotation 3.47): Let us assume 
that the planets move in circular orbits, which for most of the planets is, in fact, a 
good approximation. A planet moving along such a path of radius R must be acted 
on by the centripetal force

F mv
R

m R
T R

m
R

T
cf = = ⎛

⎝⎜
⎞
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=
( )2 2 2

2

2 1 2π π
.

To determine the dependence on distance of the force arising from the Sun, we 
must compare the orbital data of the planets in their different orbits. Such a com-
parison is given by Kepler’s third law, according to which the squares of the orbital

��Figure 3.125 Here in NEWTON’s waste book these ideas appear for the first time.

Quotation 3.46
After dinner, the weather being warm, we went 
into the garden and drank tea, under the shade of 
some appletrees, only he and myself. Amidst other 
discourse, he told me, he was just in the same 
situation, as when formerly, the notion of gravitation 
came into his mind. It was occasion’d by the fall of 
an apple, as he sat in a contemplative mood. Why 
should that apple always descend perpendicularly to 
the ground, thought he to himself. Why should it not 
go sideways or upwards, but constantly to the earth’s 
centre? Assuredly, the reason is, that the earth draws 
it. There must be a drawing power in matter: and the 
sum of the drawing power in the matter of the earth 
must be in the earth’s center, not in any side of the 
earth. Therefore does the apple fall perpendicularly, 
or towards the center. If matter thus draws matter, 
it must be in proportion to its quantity. Therefore, 
the apple draws the earth, as well as the earth draws 
the apple. That there is a power, like that we here call 
gravity, which extends its self thro’ the universe.
—WILLIAM STUKELEY, Memoirs of Sir Isaac Newton’s 
Life, 1936 [pp. 19–20]

Quotation 3.45, continued
possible to attain thereby to a degree of probability 
which very often is scarcely less than complete proof. 
To wit, when things which have been demonstrated 
by the Principles that have been assumed correspond 
perfectly to the phenomena which experiment has 
brought under observation; especially when there 
are a great number of them, and further, principally, 
when one can imagine and foresee new phenomena 
which ought to follow from the hypotheses which 
one employs, and when one finds that therein the 
fact corresponds to our prevision. 
—CHRISTIAAN HUYGENS, Treatise on Light [pp. vi–vii]
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periods of the planets are in the same relationship as the cubes of the orbital radii:
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From this, we obtain the following relationship for the forces acting on the planets:
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From this relationship, it is clear that the force is inversely proportional to the 
square of the distance.

If the force exerted by Earth also satisfies this law, then we can compare the attrac-
tive forces of Earth on the Moon and on bodies near Earth’s surface, or simply the 
acceleration measured at Earth’s surface and the acceleration of the Moon in its orbit 
about Earth. The acceleration of the Moon in its orbit is given by the small value

a g
Moon ms= = = × − −
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9 8

3600
2 73 102

3 2. . ,

since the force decreases as the square of the distance, and the average distance of 
the Moon from Earth is about 60 Earth radii. From a knowledge of the orbital 
period of the Moon, the acceleration can be calculated as follows:
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We can see that results of both computations agree, and according to his reminis-
cences, Newton saw this agreement as very good. However, it would be closer to 
the truth (Quotation 3.47) to say that Newton was unable to obtain a satisfactory 
agreement with the imprecise data available to him and therefore put off further 
investigation of the problem for a long time (almost 15 years).

It was only a single step from here to the formulation of the law of universal 
gravitation: If an attractive force from a body of mass mA acts upon a body of mass 
mB, then this force must be proportional to the mass mA. However, in the process 
of interaction, the body of mass mB attracts the body of mass mA, and this force is 
proportional to the mass mB. But because both forces are the same, it follows that 

Quotation 3.47
[NEWTON’s] first thoughts, which gave rise to his 
Principia, he had, when he retired from Cambridge 
in 1666 on account of the plague. As he sat alone 
in a garden, he fell into a speculation on the power 
of gravity: that as this power is not found sensibly 
diminished at the remotest distance from the center 
of the earth, to which we can rise, neither at the tops of 
the loftiest buildings, nor even on the summits of the 
highest mountains; it appeared to him reasonable to 
conclude, that this power must extend much farther 
than was usually thought; why not as high as the 
moon, said he to himself? and if so, her motion must 
be influenced by it; perhaps she is retained in her orbit 
thereby. However, though the power of gravity is not 
sensibly weakened in the little change of distance, at 
which we can place our selves from the center of the 
earth; yet it is very possible that so high as the moon 
this power may differ much in strength from what 
it is here. To make an estimate, what might be the 
degree of this diminution, he considered with himself, 
that if the moon be retained in her orbit by the force 
of gravity, no doubt the primary planets are carried 
round the sun by the like power. And by comparing 
the periods of the several planets with their distances 
from the sun, he found, that if any power like 
gravity held them in their courses, its strength must 
diminish in the duplicate proportion of the increase 
of distance. This he concluded by supposing them to 
move in perfect circles concentrical to the sun, from 
which the orbits of the greatest parts of them do not 
much differ. Supposing therefore the power of gravity, 
when extended to the moon, to decrease in the same 
manner, he computed whether that force would 
be sufficient to keep the moon in her orbit. In this 
computation, being absent from books, he took the 
common estimate in use among geographers and our 
seamen, before Norwood had measured the earth, 
that 60 English miles were contained in one degree 
of latitude on the surface of the earth. But as this is a 
very faulty supposition, each degree containing about 
69½ of our miles, his computation did not answer 
expectation; whence he concluded, that some other 
cause must at least join with the action of the power 
of gravity on the moon. On this account he laid aside 
for that time any farther thoughts upon this matter. 
—HENRY PEMBERTON, A View of Sir Isaac Newton’s 
Philosophy, 1728
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the attractive force must be proportional to both masses; thus, the gravitational 
force is proportional to the product of the masses of the two bodies and inversely propor-
tional to the square of the distance between them. In mathematical form,

F G m m
R
A B 2 ,

where G is a universal constant.
The proportionality factor G can be expressed in terms of the Keplerian con-

stants and the Sun’s mass (see Figure 3.31). To this end, we write Kepler’s third 
law in a somewhat different form

R
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R
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R
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2
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2    $ Sun .

However, the equation of motion for a planet of mass mP is

G m m
R

m v
R

m R
T R
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P S
P P2

2 22 1π ,

	�� Figure 3.126 The “vellum manuscript” (after HERIVEL). In the years 1665 and 1666, NEWTON used 
a sheet of parchment that had been used to draw up a rental contract as scrap paper. The numerical 
comparison of the gravitational and centrifugal forces and the path to this comparison can be read on 
this scrap.

1.  Framed: 100 cubits in 5² (100 ells in 5 seconds), data for free fall taken from the Dialogo.

2.  1
4 x yy" . The relationship for the distance traveled by a body in free fall; x is the distance and y is the 

time. If we write this formula as x y" 1
2

28 and compare it with today’s notation x gt" 1
2

2, we then see 
that g = 8 ells (= cubits = braces)/s2 = 8 ´ 0.685 m/s2 = 5.480 m/s2. This is a very poor approximation, 
for the correct value (g = 9.8 m/s2) is almost twice as big. The formula x y" 8

2
2 corresponds exactly to 

the data given by GALILEO (y = 5, y x2 25 100= → = ).

3.  NEWTON determines g more precisely. A conical pendulum of length 81 inches and half conical angle of 
45º executes…

4.  … in one hour 1512 oscillations (1512 ticks in hora). With the help of this experiment, NEWTON deter-
mines the value of g in two different ways: He first assumes that in the case of a conical pendulum 
with half conical angle of 45°, the gravitational and centrifugal forces are equal ( g v R" 2 /  with 
R I= sinα , I " 81 inches, and he uses, moreover, the fact that the period of the conical pendulum 
agrees with that of the mathematical pendulum with length I cosF ; that is, it is equal to the projec-
tion of the pendulum length on the vertical. Thus Newton arrives…

5.  … at the conclusion: A heavy thing in falling moves 50 inches in 1 (crossed out and corrected) 1/2², 
200 inches in one ², or rather 196 inches = 5 yds. That is already quite a good approximation  
( g ~ 10 m/s2 ). The last conclusion is that …

6.  … vis terrae a centro movebit corpus in 229.09 minutes per distantiam 5,250,000 braces. Vis gravita-
tis in 229.09 minutes movet corpus per 755,747,081 braces. 

So that the force of the earth from its centre is to the force of gravity as one to 144 or thereabout. 

Or rather as 1 : 300 : vis a centro terrae : vim gravitatis.

NEWTON uses here the following properties of circular motion: If the force acting on a body moving along 
a circular path with radius R is used to accelerate this body along a linear path, then the body will tra-
verse in the time that it takes to traverse a distance R on the circular path, the distance R/2. (If one sets in 
the formula

 
s ta" 2

2 the values a v R" 2 / and t R v" / , then one obtains s R" / 2.)

The value 229.09 minutes = 3.818 hours (= 24/2p) is the time in which a point on the Earth’s equator 
traverses the distance REarth. A free-falling body under the influence of centrifugal acceleration would 
traverse in this time the distance REarth ells/ .2 5250 000" .

If for the case of actual free fall on Earth’s surface one substitutes the value for g and the time t = 229.09 
minutes into the formula s tg" 2

2, then one obtains 755,747,081 (ells). The ratio of the two path lengths 
is equal to the ratio of the centrifugal force to the gravitational force: 1:144. (The corrected value 1:300 
came from the recognition of the error made in the determination of g.)

With this, one can refute the argument against the rotation of Earth that the centrifugal force resulting 
from a rotating Earth would fling objects off the surface of Earth (1 cubit = brace = ell = ¾ yard = 0.685 
m; 1 inch = 2.54 cm).

mathematical pendulum

conical pendulum

(4)

(6)

��Figure 3.127 The book Philosophiae Naturalis Principia 
Mathematica is often cited as the most significant work in the 
history of science, or even in the history of mankind.

NEWTON wrote it, as he later recounted, in a period of 17–18 
months. In 1684, he began a series of lectures in Cambridge 
on this subject. The book appeared in 1687 with the financial 
support of HALLEY.

continued on next page
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from which follows the gravitational constant

G
m

R
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Sun S Sun ,

where kSun is Kepler’s constant for the Sun.
Available to Newton were not only data for the planets, but also for the orbits 

of four of Jupiter’s moons and five of Saturn’s. With these data, he was able to 
determine the masses of Jupiter and Saturn. We note that
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The gravitational constant G was determined in 1797–1798 by Cavendish with 
the help of a torsion balance. Its value is

G = × − −6 67 10 11 2. .Nm kg 2

With this value, it is now possible to specify the masses of the Sun and the planets 
numerically.

3.7.4 Selections from the Principia
Anyone who picks up Newton’s Principia (Figure 3.127) today will find two 
things greatly surprising. First, it will be seen that the law known as Newton’s fun-
damental law of mechanics, force ! mass " acceleration, does not appear anywhere 
in the book, neither in words nor in today’s usual form

F
v

 m
t

d
d

or even as
F v= ( )d

d t
m

(Quotation 3.48).
The second surprising observation is that Newton, as one of the fathers of cal-

culus, does not make use of this mathematical innovation anywhere in his book; 
all of his ideas are worked out on the basis of classical geometry.

We meet Newton’s second axiom in the Principia in precisely the form already 
quoted: The change in motion is proportional to the effective force and takes place along 
the line along which the force acts (Figure 3.128). We have also mentioned already 
that by “motion,” Newton means “momentum.” There is no mention of changes 
per unit of time, nor of limits, and so the “effective force” here is not what we call 
force today. Accordingly, there is no mention of acceleration, mass, or force (in 
today’s sense) in this law. In dealing with concrete cases, however, Newton uses 
the formulation of the law of motion familiar to us, and therefore it is apparent 
that he was aware of the relationship in that form as well (Quotation 3.49). The 
law of motion as it appears in the Principia can be written in today’s notation as

F
t

t
t mv

1

2

∫ = ( )d .∆

Regarding the lack of infinitesimal calculus, the general opinion is that while 
Newton made extensive use of the calculus of “fluxions” in his own calculations, 

Figure 1.327 continued

The goal of the book is to provide answers finally to the 
questions of celestial mechanics.

Dr. Vincent presented to the Society a manuscript 
treatise entitled Philosophiae Naturalis Principia Math-
ematica, and dedicated to the Society by Mr. Isaac 
Newton, wherein he gives a mathematical demon-
stration of the Copernican hypothesis as proposed 
by Kepler, and makes out all the phaenomena of the 
celestial motions by the only supposition of a gravita-
tion towards the center of the sun decreasing as the 
squares of the distances therefrom reciprocally. 

—Minutes of the Royal Society, April 28, 1886 [West-
fall 1980, pp. 444–445]

The work begins in the introduction with definitions and 
axioms; there follow three books. The first book deals with 
the motion of bodies, where above all, motions along a 
conic section and under the influence of a central force 
(not only in the form 1/r2) are considered. Essentially, the 
motion of a single body (mass point) is examined, although 
NEWTON also investigated the attraction between bodies 
of finite dimensions. The second book has as its subject 
motion in a viscous medium. NEWTON investigates here the 
resistance of a medium that can depend linearly, quadrati-
cally, or in a more complex manner on the velocity.

With its description of vortical motion of viscous fluids, 
the presentation reaches its goal of refuting DESCARTES’s 
theory of vortices.

In the introduction to the third book, we meet the often 
quoted rules for philosophical thought. In the section 
Phenomena, we encounter tables of data for the moons 
of Jupiter and Saturn as well as for the five planets, with 
information contributed by a number of observers being 
compared. The section Theses of this book is the most 
important of the entire Principia. Here we find the law 
of universal gravitation and the inverse proportionality of 
the gravitational force to the square of the distance, an 
extensive description of the motion of the Moon, and an 
explanation of the precessional motion of Earth and an 
interpretation of the tides.

The Principia makes for quite difficult reading. It is tersely 
formulated, and theorems once stated are not repeated 
when they are applied, being merely cited by number. 
Thus, for example, NEWTON proves the assertion that the 
force acting on the moons of Jupiter acts in the direction 
of Jupiter and is inversely proportional to the square of 
the distance as follows:

The first part of the theorem follows from phenom-
enon 1 and from Theorems 2 and 3 of the first book; 
the second part follows from phenomenon 1 as well as 
Corollary VI of the fourth theorem in the same book.

The second edition appeared in 1713 under the editor-
ship of ROGER COTES with a large number of changes. The 
third edition (1726, published by HENRY PEMBERTON) con-
tains only a few further changes. The first English version 
appeared in 1729 with the title Mathematical Principles 
of Natural Philosophy.
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he feared that the Principia contained enough difficult material as it was, so in-
cluding the new method would simply serve to frighten readers away. Otherwise, 
Newton himself did not consider the fundamental law that bears his name to be 
of cardinal importance, so that in his reminiscences, in recounting his most impor-
tant works, he lists the theory of color and the law of universal gravitation, but he 
does not even mention the fundamental law of mechanics (Plate XVII); moreover, 
he quite erroneously attributes the basic idea to Galileo (Quotation 3.50).

As we have already mentioned, the Principia, with its definitions, axioms, propo-
sitions, and lemmas, is written according to the patterns of antiquity. With respect 
to the clarity of definitions and concepts as well as their arrangement in logical 
sequence, we note a certain carelessness of the creative genius. Thus, as we have 
mentioned, Newton used the concept of force in a sense different from that used 
by succeeding generations, up to the present day. Taken alone, there would be no 
cause for objection; but the trouble is that Newton himself did not use the con-
cept of force implicit in his own law of motion in a consistent manner.

Already the very first definition in the Principia, that of mass, is questionable, 
and indeed, it is seen by many as a circulus vitiosus: Newton defines quantity of 
matter, or mass, as the product of volume and the mass per unit volume, that is, 
as the product of density and volume. This definition is certainly a vicious circle 
if density is defined as mass per unit volume. However, if we regard the matter as 
being built up of identical atoms, then density could also be defined in such a way 
as to avoid this difficulty. Namely, density can be understood as a quantity pro-
portional to the number of atoms per unit volume, or, more simply, as the relative 
occupation of space by the material under investigation.

Clarifying the concepts used by Newton, primarily his notion of force, is a 
popular topic for many contemporary historians of science.

It is a bit difficult, but nevertheless worth the effort, to follow Newton’s method of 
determining the nature of the central force from the motion of a body along an ellipti-
cal path as set down in the Principia. Our goal here is of course once again to derive 

��Figure 3.128 The two pages of the Principia on which the three Newtonian axioms are to be 
found.

Quotation 3.48
Previously the relation F ! m " a was in fact 
generally inferred from the Definitions VII and VIII 
and Axiom II. However, this case resembles that of 
the Emperor’s clothes in the fairy tale: all people 
saw them because they were convinced of their 
existence, until a child said that the Emperor had 
nothing on. Similarly Axiom II of the introductory 
chapter of NEWTON’s Principia always used to be 
interpreted in the sense that a constant force 
produces a constant acceleration, and that their 
magnitudes are proportional, but if one looks at it 
impartially, nothing of the kind can be discovered. In 
order to interpret it this way, one has to assume that 
by change (mutatio) NEWTON means rate of change. 
Only then does it become possible to formulate the 
statement in a modern way as 

F = d/dt (mv) [where mv multiplies (d/dt)]
and if m is constant, this indeed amounts to

F = m"a.
It is, however, extremely unlikely that NEWTON, who 
was quite capable of expressing his thoughts, 
should have committed the very serious mistake of 
confounding a magnitude and the rate of change 
of that magnitude in so fundamental a passage as 
that containing the axioms. Before making such a 
charge, we should consider whether it is not possible 
to make sense of the statement as it stands. …
That he does not explicitly argue anywhere that 
a constant continuous force causes a uniformly 
accelerated motion (which after all is really the 
fundamental principle of the new dynamics which 
radically broke with the ancient and medieval 
conception) can probably be explained by the fact 
that he considered it perfectly self-evident ( just 
as HUYGENS had done) that if a particle is acted 
upon by a constant force, the velocity necessarily 
increases by equal amounts in equal times. Both 
scientists were already imbued with the new 
dynamic conceptions to such a degree that they did 
not even think it necessary to mention this most 
cardinal point of difference with the old notions: a 
striking illustration of the rapidity with which new 
conceptions that have at first been paradoxical 
become commonplace. However, from the point 
of view of axiomatization—and that is the main 
point here—the omission of the proportionality 
of momentum and time, i.e. of the constancy of 
the acceleration, amounts to a flaw: in fact, while 
the momentum increases as the time, the kinetic 
energy increases as the distance, and how is one 
to know either one or the other without either 
postulating or proving it? Moreover, according to 
the Aristotelian conception of axiomatization the 
fact that a thing is evident is precisely a reason for 
stating it as an axiom, not for omitting it. 
—E. J. DIJKSTERHUIS, The Mechanization of the World 
Picture [pp. 471, 473]
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the gravitational force field, which decreases as the square of the distance from the 
central body. However, this time we wish to arrive at it not starting from a simple cir-
cular orbit and using Kepler’s third law, but on the basis of the general law of motion.
We begin with the following general theorem (Principia, De motu corporum, Liber I, Propositio VI, 
Corollarium V):

Suppose a body is moving, as depicted in Figures 3.129 and 3.130, along a curvilinear path APQ 
around the central point S, and let ZPR be the tangent to the path at the point P. Let us draw the seg-
ment RQ parallel to the segment SP, and the segment QT perpendicular to it. Then the centripetal force 
is inversely proportional to the quantity

SP QT
QR

2 2u ,

or, more precisely, to the limiting value of this quantity as the point Q approaches P.
The proof of this relationship is simple using today’s methods. We specify the path by

r r ( ),t

and then we expand this equation into a power series around time t = 0 and the place r = r(0) = rp:
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If we now take into account the fundamental law
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as well as the relationship SP QT t× ∝ , then we obtain the given expression for the centripetal force 
(Figure 3.131(a,b)).

We return next to the original problem, keeping to the formulation that appears in the Principia 
(Propositio IX).

Given that a body is moving along an elliptical path, let us find the law for the centripetal force directed 
toward the focus of the ellipse.

Suppose that at a certain moment the body is located at point P. We begin by drawing the diameter 
DCK conjugate to the diameter GCP (Figures 3.129 and 3.130). Newton proves that the distance of the 
point P from the point E, which is the intersection of the conjugate diameter with SP P{ r , is equal to the 
length a of the major semiaxis, that is,

EP a .

� Figure 3.129 The pages of the Principia that discuss 
the question of how the force law can be derived when the 
path is known.

��Figure 3.130 The diagram from Figure 3.129 enlarged 
for clarity.

A

Quotation 3.49
For the velocity which a given force can generate 
in a given matter in a given time is directly as the 
force and the time, and inversely as the matter. 
The greater the force or the time is, or the less the 
matter, the greater the velocity generated. This is 
manifest from the second Law of Motion. 
—ISAAC NEWTON, Principia, Book II, Section VI

Quotation 3.50
Hitherto I have laid down such principles as 
have been received by mathematicians, and are 
confirmed by abundance of experiments. By the 
first two Laws and the first two Corollaries, GALILEO
discovered that the descent of bodies varied as the 
square of time (in duplicate ratione temporis) and 
that the motion of projectiles was in the curve of 
a parabola; experience agreeing with both, unless 
so far as these motions are a little retarded by the 
resistance of the air. 
—ISAAC NEWTON, Principia, Axioms, or Laws of 
Motion, Corollary VI
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We now draw the line Qxv parallel to the tangent RPZ. It can then be shown by making use of the similar 
triangles that

QR
Pv

PE
PC

a
PC

  .

Since we also have that QT is perpendicular to SP, and PF is perpendicular to the tangent, we obtain

Qx
QT

a
PF

 .

From a theorem of Apollonius on conic sections, we have

a
PF

CD
b

 ,

and from that, we obtain the relationship

QT PF Qx
a

bQx
CD

= × = ,

as well as

QR aPv
PC

 .

We now let the point Q approach the point P. Then the quotient Qv/Qx approaches 1, so that we obtain 

lim .QT bQv
CD

 

We now calculate the expression appearing in the theorem given above as

 
lim lim .SP QT

QR
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(4 )

The equation of the ellipse in the coordinate system determined by the conjugate semiaxes CD and CP is
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and with this, we can eliminate the quotient Qv
2/CD2 appearing in equation (4):
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and thus we have
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We can state the conclusion of the above derivation in the original words of the 
Principia: The centripetal force is reciprocal to the quantity L × SP 2 and therefore 
inversely proportional to the square of the distance SP.

In this way, Newton, beginning with the general elliptical path, arrived at the 
law of the force being proportional to the inverse square of the distance.

Later, Newton raised the inverse question: given a central force that diminishes 
by the square of the distance, what is the path of a body in the general case? He

��Figure 3.131 Since 
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and the area SP · QT is proportional to the time t (in a neigh-
borhood of rP, that is, for small QT), it follows that

QR F SP QT∝ ⋅ ⋅2 2,

and finally, the proportion

1 2

F
SP QT

QR
= ⋅

.

��Figure 3.132 Cylindrically symmetric vortical flow of a 
viscous fluid.

(a)

(b)



268

showed that such a path will be a conic section and gave conditions under which 
an elliptical, parabolic, or hyperbolic path would be realized.

We select three topics from the second book of the Principia, of which the first 
two are of particular historical interest. Newton worked intensively on vortices in 
fluids, obviously with the goal of proving that the theory of vortices, which plays 
such a great role in Cartesian cosmology, was absurd.

In the case of a cylindrically symmetric vortex, Newton begins with the correct 
assumption that the frictional force deriving from the internal friction of the fluid 
“is proportional to the velocity with which the fluid elements move against one 
another.”

We describe, following Hund [1972], a simplified description of Newton’s train of thought.
Since the velocity at a particular point is given by the product of the radius and angular velocity, the 

relative velocity of the fluid elements to one another with respect to the relative velocities of the particles 
of a rotating rigid body are given by the first term of the total differential of the velocity,

d d d .ω ω ωr r r( ) = +

The second term describes the portion that is the result of rigid rotation. It follows then that the fric-
tional force is proportional to the surface area A(r) and to the relative velocity gradient r r

d
d
Z : 

A r r
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According to Figure 3.132, the equilibrium condition is
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from which follows
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d
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If we further consider that the area A is proportional to the radius, the angular velocity must satisfy the 
relationship

d
d

, .ω ω
r r r
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2

1

However, Newton’s argumentation for the derivation of the relationship ω ∝1 2/ r  between angular 
velocity and radius for the vortical flow around a sphere is not so convincing. But if the planets are carried 
along in their orbits by such vortices, then the relationship

T rv 2

for the orbital periods of the planets and their orbital radii would have to be satisfied, in contradiction 
to the relationship

T rv 3 2/

required by Kepler’s third law. From this contradiction, Newton concludes that the motion of the plan-
ets cannot be explained by vortices.

More convincing is the qualitative argument that the theory of vortices is in-
capable of leading to Kepler’s second law. To see this, consider two planets as in 
Figure 3.133, one of which moves in a nearly circular orbit, while the orbit of the 
other planet is an ellipse of greater eccentricity; that is, the second planet moves 
along an elongated ellipsis. The streaming substance carrying the planets along 
must have a greater velocity farther from the Sun than closer in, due to the smaller 
cross section of the stream’s channel; but then the same must hold for the planets, 

��Figure 3.133 For the planetary orbits shown,  
DESCARTES’s vortex theory would give higher velocities when 
the planets are further from the Sun, in contradiction to 
KEPLER’s law.

Quotation 3.51
I have endeavored in this Proposition to investigate 
the properties of vortices, that I might find whether 
the celestial phenomena can be explained by them; 
for the phenomenon is this, that the periodic times 
of the planets revolving about Jupiter are as the 
3/2th power of their distances from Jupiter’s centre; 
and the same rule obtains also among the planets 
that revolve about the sun. And these rules obtain 
also with the greatest accuracy, as far as has been yet 
discovered by astronomical observation. Therefore 
if those planets are carried round in vortices 
revolving about Jupiter and the sun, the vortices 
must revolve according to that law. But here we 
found the periodic times of the parts of the vortex 
to be as the square of the distances from the centre 
of motion; and this ratio cannot be diminished 
and reduced to the 3/2th power, unless either the 
matter of the vortex be more fluid the farther it is 
from the centre, or the resistance arising from the 
want of lubricity in the parts of the fluid should, as 
the velocity with which the parts of the fluid are 
separated goes on increasing, be augmented with 
it in a greater ratio than that in which the velocity 
increases. But neither of these suppositions seems 
reasonable. The more gross and less fluid parts 
will tend to be the circumference, unless they are 
heavy towards the centre. And though, for the sake 
of demonstration, I proposed, at the beginning 
of this Section, an Hypothesis that the resistance 
is proportional to the velocity, nevertheless, it is 
in truth probable that the resistance is in a less 
ratio than that of the velocity; which granted, the 
periodic times of the parts of the vortex will be in a 
greater ratio than the square of the distances from 
its centre. If, as some think, the vortices move more 

continued on next page
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in contradiction to Kepler’s second law. Newton concluded from this that the 
vortex theory could not be brought into accord with astronomical observation. 
The theory explained nothing and just caused confusion (Quotation 3.51).

In the second problem that we have selected, Newton deals with the question of 
how deeply a moving solid cylindrical body would penetrate into a fluid or anoth-
er solid body. He has this to say about the problem (Liber II, Propositio XXXVII): 
The resistance generated by the cross section of a cylinder that moves uniformly 
along its axis in a dense, unbounded, and inelastic liquid is in the same proportion 
to the force that could cause or stop its movement during the time during which it 
could traverse four times its length, as the density of the medium is to the density 
of the cylinder, approximately.

The meaning of this difficult proposition can be restated in a simplified form: As 
the cylinder moves in the fluid, its front face makes way by pushing the material 
ahead of it sideways. Today we would say that it continuously transfers its kinetic 
energy to the surrounding material. This continuous transfer of impulse is the break-
ing force, whose magnitude is specified by Newton’s statement. Let us investigate, 
says Newton, what force would be required to accelerate the cylinder of the given 
mass to its present speed within a well-defined time, namely, the time in which the 
cylinder traverses a path that corresponds to four times its length, that is, 

4
0

l
v

.

This force should be equal to the breaking force. This assertion is noteworthy in 
that from it, one can derive the surprising conclusion that the length of the path 
traversed by the cylinder in the fluid (until it comes to rest) depends not on the 
initial velocity but only on the length of the cylinder. Namely, to a good approxi-
mation, the ratio between the length of the path traversed by the cylinder to the 
cylinder’s own length is the same as that of the density of the cylinder’s material 
to that of the fluid. In connection with this, Gamow relates an interesting story: 
During the Second World War, it was surprising how little the depth to which 
bombs penetrated the soil depended on the height from which they were dropped. 
A theorem from Newton’s Principia provided a solution to the mystery.
 To investigate this problem in somewhat greater detail, we cast Newton’s assertion in the form
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from which we obtain the resistive force
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If now assume, by way of a crude approximation, that this force remains constant until the cylinder 
comes to rest, then the distance traveled by the cylinder is given by
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,

��Figure 3.134 We meet here for the first time in the 
history of physics the idea of an artificial satellite and the 
associated theory that is still valid today. (De mundi  
systemate liber Isaaci Newtoni, 1728.)

A body moves in a circular path about the Earth if the at-
tractive force GMm/R2 yields precisely the necessary  
acceleration V2/R. Therefore, for this (horizontal) initial 

continued on next page

Quotation 3.51, continued
swiftly near the centre, then slower to a certain 
limit, then again swifter near the circumference, 
certainly neither the 3/2th power, nor any other 
certain and determinate power, can obtain in them. 
Let philosophers then see how that phenomenon of 
the 3/2th power can be accounted for by vortices. 
—ISAAC NEWTON, Principia, Book II, Section IX
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and using the relationship given above, we conclude that
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We see that the ratio of the two lengths indeed depends only on that of the two densities.
Our crude approximation can be justified in that when a bomb penetrates a solid medium, only the 

impulses transferred at high speeds play a significant role, since with reduced velocity, the bomb simply 
“gets stuck.”

In Theorem XXIV of the second book, we encounter a statement of major theo-
retical significance: The concepts of weight (W ) and mass (m) are separated here—
in an experimentally measurable manner. If we do not use the relationship W = mg 
in the equation of the pendulum, then for the period, we obtain

T ml
W

= 2π ,

which yields the relationship

m T W
l

=
( )

×
2

22π

for the mass. At this point (Quotation 3.52), Newton points out the proportion-
ality between the weight W and mass m.

The third part of the Principia treats planetary motion on the basis of the gen-
eral law of attraction between masses. In addition to the assertion that the same 
laws hold for both terrestrial and celestial phenomena, Newton also specifies the 
precise conditions under which a terrestrial body can become a celestial one. With 
reference to Figure 3.134, let us consider the paths of projectiles fired horizontally 
with varying velocities from the peak of a high mountain. Of course, with increas-
ing velocity, the distance between the launching and landing sites of the projectile 
increases, and if the launching velocity is sufficiently great, then the projectile 
could—in principle—orbit Earth, landing at the spot from which it was launched. 
Let us suppose that the motion takes place in a vacuum. Then in this last case, the 
launching and landing velocities will be the same, so that the projectile can orbit 
Earth repeatedly like an artificial satellite. For today’s reader, this is perhaps the 
most interesting part of the Principia, since we are so familiar with satellites and 
Moon landings as memorable events of our modern era and therefore are aston-
ished that not only the requisite theoretical tools, but also the explanatory qualita-
tive illustration, can already be found in the Principia.

For Newton’s contemporaries it was of greater significance that besides the regu-
lar motion of the planets he also qualitatively explained a host of other phenomena 
whose interpretations had been attempted in vain by outstanding scholars before 
him. These include the tides, which, as we have mentioned, were investigated inten-
sively by both Galileo and Descartes without either of them arriving at a satisfac-
tory explanation. A similar once baffling problem was the precession of Earth’s axis, 
which is manifested—as we have already mentioned in connection with ancient 
natural science (Section 1.4)—in the shifting of the equinoxes along the ecliptic. 

Figure 3.134 continued

velocity—called the first cosmic velocity—one has the 
equation
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will leave Earth’s gravitational field along a parabolic path. 
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Newton’s theory could, of course, also be applied to the 
“mysterious” comets. NEWTON himself gave a graphical 
method for an approximate determination of comets’ 
paths and of the times of their reappearances, all from a 
small number of observations. EDMOND HALLEY (1656–1742), 
publisher and supporter of the book Principia, applied this 
method to the comet appearing in 1681/1682 and was 
able to identify it with other historical comets. The correct 
prediction of the comet’s return in 1758 was a triumph for 
Newton’s theory of great scientific and indeed psychologi-
cal consequence.

Although HALLEY’s predictions were made more precise by 
the French mathematician ALEXIS CLAIRAUT (1713–1765), the 
comet is known today as Halley’s comet.

The first historical record of this comet comes from the year 
240 BCE Since then, it has been regularly observed at peri-
ods of 74 to 79 years (with a single exception). The most 
recent years of return were 1531, 1607, 1682, 1758, 1835, 
1910, 1986. Historical associations are linked with the years 
451 (battle against ATTILA), 1066 (Battle of Hastings), and 
1456 (Siege of Belgrade by the Turks).

Quotation 3.52
And hence appears a method both of comparing 
bodies one with another, as to the quantity of 
matter in each; and of comparing the weights 
of the same body in different places, to know the 
variation of its gravity. And by experiments made 
with the greatest accuracy, I have always found the 
quantity of matter in bodies to be proportional to 
their weight. 
—ISAAC NEWTON, Principia, Book II, Section VI
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3.7.5 Newton as Philosopher
Newton’s significance as a philosopher is threefold: he formulated and therefore 
determined the method of research for the natural sciences, for a long time to 
come; he set the basic goals of scientific research; and finally, he established a co-
herent, unified cosmology.

These contributions remained unchallenged in the three centuries that have elapsed 
since then—the Newtonian conception was at most refined in certain points.

Newton’s method of scientific investigation was already established in the fore-
word to the Principia (Quotation 3.53). The following sentence there deserves 
special emphasis: “[F]or the whole burden of philosophy seems to consist in this—
from the phenomena of motions to investigate the forces of nature, and then from 
these forces to demonstrate the other phenomena.” 

Our first glance into the third book of the Principia is sufficient to convince us of 
how much Newton respected facts and shows that his considerations started from 
facts and led back to facts. The subject of the book is the structure of the universe, 
and it starts with a most precise and detailed collection of observations. The sheer 
volume of tables and data in such a theoretical work is astounding. 

 Today, we are so accustomed to the scientific method as laid down by Newton 
that we consider it to be self-evident. However, we should recall that even Gali-
leo set out from considerations of a completely different sort. He argued, for ex-
ample, that motion with uniform acceleration must be realized in nature because 
it is the simplest form of change in velocity, or even that circular motion is the 
natural form of motion for celestial bodies. Or recall that Descartes forced his 
entire cosmology into a rationally clear and easily understandable starting point. 
In this sense, Newton realized Bacon’s program, but in contrast to Bacon, he 
gave mathematics its rightful place in scientific investigation.

Due to Newton’s influence, the criterion for truth in the natural sciences is no 
longer the logical derivability from some set of simple axioms, but rather agreement 
with the conclusions of fundamental laws that were read from nature, with experi-
ment having the final say. If theoretical conclusions and experimental observations 
cannot be brought into agreement, then the underlying theory needs to be revised; 
Newton expresses this categorically in the Philosophical Rules that preface the third 
book of the Principia (Figure 3.135). We quote here the following of the rules:

Rule I: We are to admit no more causes of natural things than such as are both true 
and sufficient to explain their appearances. …

Rule II: Therefore to the same natural effects we must, as far as possible, assign the 
same causes.

As to respiration in a man and in a beast; the descent of stones in Europe and 
in America; the light of our culinary fire and of the Sun; the reflection of light 
in Earth, and in the planets. …

Rule IV: In experimental philosophy, we are to look upon propositions inferred by 
general induction from phenomena as accurately or very nearly true, notwithstanding 
any contrary hypotheses that may be imagined, till such time as other phenomena occur, 
by which they may either be made more accurate, or liable to exceptions. 

This rule we must follow, so that the argument of induction may not be evad-
ed by hypotheses.

Even in his book Optics, Newton dealt with questions of natural philosophy. 
“In the beginning, God created the universe and the atoms.” These atoms were 
considered by Newton to be fixed and “indestructible,” and he reformulated the 

��Figure 3.135 The initial hypotheses.

Quotation 3.53
… the whole burden of philosophy seems to 
consist in this—from the phenomena of motions 
to investigate the forces of nature, and then from 
these forces to demonstrate the other phenomena 
….
I wish we could derive the rest of the phenomena 
of Nature by the same kind of reasoning from 
mechanical principles, for I am induced by many 
reasons to suspect that they may all depend upon 
certain forces by which the particles of bodies, by 
some causes hitherto unknown, are either mutually 
impelled towards one another, and cohere in regular 
figures, or are repelled and recede from one another. 
[These forces being unknown, philosophers have 
hitherto attempted the search of Nature in vain; 
but I hope the principles here laid down will afford 
some light either to this or some truer method of 
philosophy.]
—ISAAC NEWTON, Principia, preface to the first edition, 
1638
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old principle of Democritus that stated that changes in macroscopic bodies are a 
result of the association, disassociation, and motion of atoms. 

Although Newton used almost the same words as those used by the atomists of 
antiquity, their meaning was now deeper, in the sense that atomic theory had now 
become a program that could be quantitatively formulated. Specifically, if we can 
find the forces acting between particles, then the phenomena can also be described 
quantitatively. In the Newtonian world, we are dealing with centers of force and 
mechanistic motion that takes place under the influence of forces. Today, we say 
that Newton wanted to reduce all processes to mechanics, and the Newtonian 
worldview represents the completeness of the mechanistic worldview. However, 
we must note that Newton’s contemporaries—and here we are thinking of the 
most astute and critical contemporaries, such as Huygens and Leibniz—under-
stood something quite different by a mechanical explanation because, in their 
view, an interaction could be caused only by direct contact. They saw Newton’s 
introduction of attractive forces acting at a distance as a step backward that would 
smuggle back into physics such ancient occult qualities as affinity, desire, and af-
fection. Newton recognized the legitimacy of Huygens’s objections, but he justi-
fied himself, correctly, with the argument that with the help of the force acting at 
a distance that he had postulated, “the phenomena of the heavens and the oceans” 
could be correctly described. Newton also felt that there was something there that 
needed explaining; he himself had long thought about this and, being unable to 
come up with the cause of gravitation, declared, “Hypotheses non fingo” (I frame 
no hypotheses). By “hypothesis,” Newton meant an assumption that was unsup-
ported by observation and could not be derived from it (Quotation 3.54). Accord-
ing to Newton, the Cartesian vortices are such a hypothetical concept, whereas 
the law of gravitation should be seen not as a hypothesis, but as fact.

Ultimately, the results of Newton’s investigations and the creation of the New-
tonian worldview are not only scientific but also philosophical achievements. We 
must therefore note with a measure of surprise and disappointment that despite 
his achievements, Newton is accorded no mention or at best a minor place in 
the history of philosophy. Many books on the history of philosophy can be found 
in which Newton’s name does not appear in the index at all. This is all the more 
surprising when one considers that Aristotle and the Aristotelian cosmology is 
one of the favored topics in every such book. But it was exactly that cosmology 
that was replaced by the Newtonian worldview in the consciousness of mankind.

The old problem of a finite, closed universe was essentially restricted to the solar 
system: the regular motion of the sphere of fixed stars raised no particular questions, 
but the apparently irregular wanderings of the planets gave cause for much specula-
tion. In Figure 3.136 we can trace the visions of our solar system up to Newton, and 
then beyond Newton to the picture given by Einstein’s theory of general relativity. 
We should add that the corrections made to Newton’s theory by the most modern 
theories are almost imperceptible even today, at least on the scale of the solar sys-
tem. But the Newtonian cosmology goes beyond the solar system and attempts to 
describe a homogeneous and infinite universe through the connection of the laws of 
force and motion. By homogeneous we should understand a universe that is every-
where composed of the same matter and that is subject to the same laws, whether the 
matter is on Earth’s surface, even is a planet, or is the Sun itself.

The carrier of the phenomena of the Newtonian world and the arbiter of their 
rhythm are Newtonian absolute space and absolute time. Newton defined these 
two notions at the beginning of the Principia (Figure 3.137):

The Planets Move as
Gods Along Perfect
Paths

(PYTHAGORAS) (GALILEO)

The Planets have
Naturally Given
Paths

(KEPLER)

The Planets are Moved
by Magnetic Forces that
Act Along the Tangent
to the Path

The Planets are
Borne by Vortices

(DESCARTES)

The Attractive Force Acts Along the
Connecting Line

(NEWTON)

The Sun’s Mass Influences the
Geometry of Space

(EINSTEIN)

��Figure 3.136 Explanations for the motion of planets 
at different times in history.
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Absolute space, in its own nature, without relation to anything external,  
remains always similar and immovable. 
Absolute, true, and mathematical time, of itself, and from its own nature, 
flows equably without relation to anything external.

Absolute motion is the translation of a body from one location in absolute space 
to another.

Newton also defined a relative space and a relative, perceptible, time, which we 
are able to measure in some manner with our instruments. Newton’s notion of 
absolute space and time stands in sharp contrast to that of Descartes, who spoke 
only of relative position and relative motion. When Descartes discussed mo-
tion, he always meant a change of position of a body relative to the other bodies  
surrounding it. In this way, he could maintain that Earth does not move be-
cause its position does not change in relation to the surrounding vortical material  
(Section 3.4). However, Newton required the concepts of absolute space and 
time to relate the interaction of bodies separated by large reaches of space with 
the motion of those bodies. Newton clearly recognized the problems raised by 
his postulate of an absolute space. Leibniz sharply attacked this concept from the 
philosophical point of view and argued that we have no possibility of verifying any 
uniform motion of absolute space because it is not permitted to relate absolute 
space to any other object. Newton attempted to support his assumption of abso-
lute motion—at least with respect to circular motion—with his well-known buck-
et analogy, which we can also demonstrate experimentally (Figure 3.138). In sharp 
contradiction to his own principle not to fabricate hypotheses, he even surmised 
that in distant reaches of the universe there are large masses that fix absolute space.

Although Newton strove to establish even his very general principles on a sci-
entific and rational basis, he was deeply religious, and at many places in the Prin-
cipia—especially in the later editions—he made reference to the necessity of divine 
influence, which, however, he limited to the setting of the universe into motion. 
Without this divine impulse, a host of observations made no sense to him, for ex-
ample, the fact that all the planets orbit the Sun in the same direction and that the 
orbital planes are almost all coplanar. The Creator is even assigned the task in the 
Newtonian cosmology of intervening before a phenomenon could deviate from 
the laws. Leibniz commented sarcastically on this that God is apparently a poor 
mechanic, since he constructed a faulty machine that has to be repaired from time 
to time, and Dijksterhuis correctly remarked that Newton’s god is an engineer 
who designed the world and set it in motion, and now God may still be an engi-
neer, but He is in retirement.

Two great scientific revolutions of our era, the theory of relativity and quantum 
theory, call the Newtonian cosmology into question from two different points of 
view. With its concepts of quantities that are the same from any point of reference, 
relativity theory clears up the ideas of space and time, whereas quantum mechan-
ics provides new equations of motion for particles of the micro world that replace 
those given by Newton. We have already mentioned that there is a great difference 
between the “wounding” of the Newtonian theory and attacks on the older, say the 
Aristotelian, theories in that Newtonian cosmology completely displaces the Aristo-
telian, taking on none of its results, whereas the Newtonian theory is a valid approxi-
mation of the theory of relativity and quantum theory in the limiting case of small 
velocity and large mass and therefore remains a solid component of the natural sciences.

��Figure 3.137 The page of Principia with  
the Newtonian definition of absolute space and  
absolute time.

��Figure 3.138 If a bucket of water is rotated, then the 
surface of the water takes the form of a paraboloid of revo-
lution, which does not depend on the relative motion of 
the bucket and the water. NEWTON argued that the rotation 
is to be understood relative to absolute space.

BERKELEY already pointed out that rotation can be imagined 
only with respect to something else, such as the system of 
fixed stars, for only the relative motion of the two makes 
sense. The correct comparison is therefore the following: 
rotating bucket, resting universe l resting bucket, rotating 
universe. The evident physical and epistemological problem 
that arises here was investigated by MACH (1872) and later 
EINSTEIN (1916, Quotation 5.2.7).

continued on next page
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Newton’s personal achievements did more than fill his educated contempo-
raries with admiration, many of whom devoted their lives to working out only a 
small portion of his contributions. Even those such as Huygens and Leibniz, who 
while understanding Newton’s work, criticized it, respected the greatness of his 
accomplishments. Newton’s apotheosis began already in his lifetime. Mauper-
tuis, whom we shall meet again later, asked people who had had direct contact 
with Newton, “Does he walk, eat, drink like other mortals?” Poets composed 
verses in his honor, of which the following couplet by Pope is the most famous:

All Nature and its laws lay hid in Night 
God said, let Newton be, and all was light.

The following inscription appears beneath the bust of Newton at Trinity Cha-
pel, Cambridge: Newton qui genus humanum ingenio superavit (Newton, who in 
genius towered above the human race).

In France, no less a personality than Voltaire propagated Newton’s teachings. 
Ten years after Newton’s death, in 1737, a book appeared in Italian with the title 
Neutonianismo per le donne, which was then translated into English with the title 
Sir Isaac Newton’s Philosophy explain’d for the use of the Ladies. The author was one 
Algarotti, on whose grave, for him the highest honor, appears the epitaph, “A 
student of Newton” (Figure 3.139).

The seventeenth century has been called the century of geniuses, and indeed, no 
other century seems to have brought forth so many great thinkers. In Table 3.4 
we provide a listing of the most important of these, and with this table we take 
leave of this remarkable century. All who are mentioned here knew of one another, 
frequently with mutual regard, seldom with love, often criticizing and even despis-
ing. To show this, we have provided in the table a characteristic quotation from 
each about the others and, when possible, how they regarded themselves.

We conclude with the observations of a towering figure of the eighteenth cen-
tury on two giants from the seventeenth:

The famous NEWTON, this destroyer of the Cartesian system, died in March, 
anno 1727. His countrymen honoured him in his lifetime, and interred him as 
though he had been a king who had made his people happy.
The English read with the highest satisfaction, and translated into their 
tongue, the Elogium of NEWTON, which FONTENELLE spoke in the Academy of Sci-
ences. FONTENELLE presides as judge over philosophers; and the English expect-
ed this decision, as a solemn declaration of the superiority of the English phi-
losophy over that of the French. But when it was found that this gentleman 
had compared DESCARTES to NEWTON, the whole Royal Society in London rose up 
in arms. So far from acquiescing with FONTENELLE’s judgment, they criticised his 
discourse. And even several (who, however, were not the ablest philosophers 
in that body) were offended at the comparison, and for no other reason but 
because DESCARTES was a Frenchman. 
It must be confessed that these two great men differed very much in con-
duct, in fortune, and in philosophy. 
Nature had indulged DESCARTES with a shining and strong imagination, whence 
he became a very singular person both in private life and in his manner of 
reasoning. This imagination could not conceal itself even in his philosophi-
cal works, which are everywhere adorned with very shining, ingenious meta-
phors and figures. Nature had almost made him a poet; and indeed he wrote 

Figure 3.138 continued

The effects which distinguish absolute from relative 
motion are the forces of receding from the axis of cir-
cular motion. For there are no such forces in a circu-
lar motion purely relative, but in a true and absolute 
circular motion, they are greater or less, according to 
the quantity of the motion. If a vessel, hung by a long 
cord, is so often turned about that the cord is strongly 
twisted, then filled with water, and held at rest to-
gether with the water; thereupon, by the sudden ac-
tion of another force, it is whirled about the contrary 
way, and while the cord is untwisting itself, the vessel 
continues for some time in this motion; the surface 
of the water will at first be plain, as before the vessel 
began to move; but after that, the vessel, by gradu-
ally communicating its motion to the water, will make 
it begin sensibly to revolve, and recede by little and 
little from the middle, and ascend to the sides of the 
vessel, forming itself into a concave figure (as I have 
experienced), and the swifter the motion becomes, 
the higher will the water rise, till at last, performing 
its revolutions in the same times with the vessel, it be-
comes relatively at rest in it. This ascent of the water 
shows its endeavor to recede from the axis of its mo-
tion; and the true and absolute circular motion of the 
water, which is here directly contrary to the relative, 
becomes known, and may be measured by this en-
deavor. At first, when the relative motion of the water 
in the vessel was greatest, it produced no endeavor to 
recede from the axis; the water showed no tendency 
to the circumference, nor any ascent towards the sides 
of the vessel, but remained of a plain surface, and 
therefore its true circular motion had not yet begun. 
But afterwards, when the relative motion of the water 
had decreased, the ascent thereof towards the sides of 
the vessel proved its endeavor to recede from the axis; 
and this endeavor showed the real circular motion of 
the water continually increasing, till it had acquired its 
greatest quantity, when the water rested relatively in 
the vessel. And therefore this endeavor does not de-
pend upon any translation of the water in respect of 
the ambient bodies, nor can true circular motion be 
defined by such translation. 

—ISAAC NEWTON, Principia, Book I, Definitions, Scholium

Newton’s experiment with the rotating vessel of wa-
ter simply informs us, that the relative rotation of the 
water with respect to the sides of the vessel produces 
no noticeable centrifugal forces, but that such forces 
are produced by its relative rotation with respect to the 
mass of the earth and the other celestial bodies. No one 
is competent to say how the experiment would turn out 
if the sides of the vessel increased in thickness and mass 
till they were ultimately several leagues thick. 

—ERNST MACH, The Science of Mechanics: A Critical and 
Historical Account of Its Development [p. 284]
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My theory—which in large measure I have taken from 
others—shows clearly whether I prefer truth or fame. I 
have namely built my entire astronomy on the basis of the 
Copernican cosmological hypothesis, the observations of 
Tycho Brahe, and the magnetic philosophy of the English-
man William Gilbert. He also seems to me 

particularly praiseworthy 
for his many new and 

reasonable observations and 
conclusions with which he puts to 

shame a great number of idiotic and 
mendacious writers who write not 

only what they know, but also 
generally every crazy idea that they 

happen to hear without testing its 
accuracy with experimentation. Perhaps 

they operate in that way so that their books 
will not be too thin. What I would still wish 

of Gilbert is a bit more of a mathematical, in 
particular a solid geometric, basis… His 

proofs are, to put it frankly, not rigorous 
enough, and they lack the force of being 

convincing, which we expect when conclusions 
are presented as necessary and final.

Copernicus
1473-1543

Kepler
1571-1630

Gilbert
1544-1603

Galileo
1564-1642

Mersenne
1588-1648

Descartes
1596-1650

Huygens
1629-1695

Newton
1643-1727

Leibniz
1646-1716

All that has up to now been assumed about the ebb and flow of the 
tides seems to me to be completely mistaken. But of all the great men 
who have expressed their ideas about this phenomenon, it is Kepler 
at whom I am the most surprised. Despite his inquiring mind and 
keen understanding, and despite the fact that he has an excellent 
feeling for the motions of the Earth, nevertheless, he has lent his ear 
to occult properties and other such childishness, such as the 

dominance of the Moon over the oceans, and expressed his 
approval of them.

This is also one 
of those to whom 
every fiction suffices if it 

happens to confirm his            
calculations

Bacon
1561-1626

Verulamius [Bacon] 
has not only taken note 

of the shortcomings of 
Scholastic philosophy, but 
also offered reasonable 
methods that can lead to 
improvements: one should 
carry out experiments and 
make use of their results. 
He has given as a 
successful instance how he 
concluded that heat 
consists in the motion of 
particles that make up 
bodies. Otherwise, he 
understood nothing of 
mathematics and he lacked 
a deeper understanding of 
physics; he could not even 
imagine the motion of 
the Earth and made 
light of it as sheer 
nonsense.

 I raise the question whether 
Galileo ever carried out any 
experiments on objects falling 
along an inclined plane, for 
he has nowhere asserted 
this and the proportions 
that he gives frequently 
contradict experiment.

All in all, I maintain, he philosophizes 
better than what one usually sees: namely, in the sense that he 

avoids, as much as possible, the errors of the Scholastics and investigates 
physical phenomena based on mathematical ideas. In this connection we are 

entirely of one opinion, since I am convinced that there is no other method 
for discovering truth. Concerning his geometric proofs, of which his 

book contains a large number, I make no judgment, since I did 
not have the patience to read through them; however, they 

appear to me to be in order. As regards his assertions, one 
need not be, as I have noted, a great geometer to work 

them out, and a brief glance at some of them led me to 
conclude that he does not take the shortest 

route.

I hope 
that posterity will judge 

me kindly, not only with 
respect to the things that I have 

explained, but also to those that I 
have intentionally left 
unmentioned, so as to 
give others the 
pleasure of their 
discovery.

Good sir, I 
pray to God to 

make you the 
Apollonius and 

Archimedes of our 
time, or even more the 
next century, since your 
youth allows you to 
expect an entire 
century.

But M. Descartes, who, it seems to me, envied Galileo his fame, 
longed to become the founder of a new philosophy. If things had gone 

according to his hopes and efforts, one would have taught him in the 
academies instead of Aristotle; therefore, he would gladly have counted on the 

support of the Jesuits. But in pursuing this goal, he persisted stubbornly in many 
of his earlier positions, even though they were frequently mistaken…

 He assumed certain laws, even unproven ones, to be absolutely certain, 
for example, the laws of motion in collisions, and wished to have them 

accepted with the argument that all of physics would be false if 
these laws were false. That is almost as if he had wished to 

prove them by taking an oath on them. However, only 
one of his laws is correct, and it would not be 

difficult for me to prove this.

He 
will 
accom-
plish great 
things in 

this science, 
of which, I 

see, almost 
no one 

understands a 
thing.What 

this truly great 
man, Huygens, has said 

about my work suggests a 
keen understanding.

        But…since all phenomena 
of the heavens and oceans—at 

least so far as I know—arise 
most precisely as consequences, 

namely of gravitation, which acts 
according to the law that I have 
described, and since nature 
operates in as simple a way 
as possible, I see myself 
obliged to ignore all 
other causes. 

As for what 
concerns the cause 
of the tides, as given 
by Mr. Newton, I am 
in no way satisfied, just 
as little as by all other 
theories that rest on 
attraction, which seems 
to me absurd, … And I 

have often wondered 
how he could make the 

effort to carry out so many 
experiments and 

calculations that have no 
basis other than the given 

principle.

Right at the 
beginning of this 

philosophy [of 
Descartes], it turned out 

that one could understand what 
M. Descartes was saying, in contrast to other philosophers, who used words 
that did not promote understanding, such as qualities, substantial forms, 

intentional species, and so on. He rejected this shameless nonsense 
more completely than anyone before him. However, what 

particularly recommends his philosophy is not only that he 
speaks with repugnance of the old [philosophy], but that 

he has dared, for all that occurs in nature, instead of 
the old reasons, to give causes that can be 

understood.

It is not only the absurd conclusions from this 
theory [that is, the theory of the definition of true and 

absolute motion that Descartes gives in his Principia Philoso-
phiae] that prove how muddled and unreasonable it is, but Descartes 

himself appears to admit this, since he contradicts himself.

But too 
great a belief in 

his own abilities led him 
astray, and others were led 

astray by too great a belief 
in him.
Descartes was—like many 
great men—too sure of 
himself, and I fear that not a 
few of his adherents will 
imitate the Peripatetics 
—whom they nevertheless 
mock—by contenting 
themselves with consulting 
the books of their master 
instead of orienting 

themselves by plain 
common sense and the 

true nature of 
things.

He [Leibniz] uses 
hypotheses rather than arguments resulting from experimenta-

tion, accuses me of opinions that I do not hold, and instead of asking 
questions that should be answered by experiment before they are granted 

entrance into philosophy, proposes hypotheses that should be accepted and 
believed before they are examined.

I 
do not know 

what I may appear 
to the world, but to 

myself I seem to have 
been only like a boy 
playing on the seashore, and 
diverting myself in now and then 
finding a smoother pebble or a 

prettier shell than ordinary, 
whilst the great ocean of 

truth lay all undiscov-
ered before me.

After I was told that Newton had said something 
unusual about God in the Latin version of his Opticks, I had a 
look at it and had to laugh over the idea that space is the 
sensorium of God—as though God, the source of all things, 

had need of a sensorium. … In metaphysics, this man, it 
would seem, is not very successful.

	�Table 3.4  How the great 
figures of the seventeenth century 
judged one another.
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a piece of poetry for the entertainment of CHRISTINA, Queen of Sweden, which 
however was suppressed in honour to his memory.
He embraced a military life for some time, and afterwards becoming a com-
plete philosopher, he did not think the passion of love derogatory to his  
character. He had by his mistress a daughter called Froncine, who died young, 
and was very much regretted by him. Thus he experienced every passion in-
cident to mankind. 
He was for a long time of opinion that it would be necessary for him to fly 
from the society of his fellow creatures, and especially from his native coun-
try, in order to enjoy the happiness of cultivating his philosophical studies in 
full liberty. 
DESCARTES was very right, for his contemporaries were not knowing enough 
to improve and enlighten his understanding, and were capable of little else 
than of giving him uneasiness. 
He left France purely to go in search of truth, which was then persecuted by 
the wretched philosophy of the schools. However, he found that reason was 
as much disguised and depraved in the universities of Holland, into which he 
withdrew, as in his own country, for at the time that the French condemned 
the only propositions of his philosophy which were true, he was persecuted 
by the pretended philosophers of Holland, who understood him no better; 
and who, having a nearer view of his glory, hated his person the more, so that 
he was obliged to leave Utrecht. DESCARTES was injuriously accused of being 
an atheist, the last refuge of religious scandal: and he who had employed 
all the sagacity and penetration of his genius, in searching for new proofs of 
the existence of a God, was suspected to believe there was no such Being. …
At last DESCARTES was snatched from the world in the flower of his age at Stock-
holm. His death was owing to a bad regimen, and he expired in the midst of 
some literati who were his enemies, and under the hands of a physician to 
whom he was odious.
The progress of NEWTON’s life was quite different. He lived happy, and very 
much honoured in his native country, to the age of fourscore and five years. 
It was his particular felicity, not only to be born in a country of liberty, but in an 
age when all scholastic impertinences were banished from the world. Reason 
alone was cultivated, and mankind could only be his pupil, not his enemy. 
One very singular difference in the lives of these two great men is that NEW-
TON, during the long course of years he enjoyed, was never sensible to any 
passion, was not subject to the common frailties of mankind, nor ever had 
any commerce with women—a circumstance which was assured me by the 
physician and surgeon who attended him in his last moments. 
We may admire NEWTON on this occasion, but then we must not censure  
DESCARTES. 
The opinion that generally prevails in England with regard to these new phi-
losophers is that the latter was a dreamer, the former a sage.
Very few people in England read DESCARTES, whose works indeed are now use-
less. On the other side, but a small number peruse those of NEWTON, because 
to do this the student must be deeply skilled in the mathematics, otherwise 
those works will be unintelligible to him. But notwithstanding this, these 
great men are the subject of everyone’s discourse. NEWTON is allowed every 
advantage, whilst DESCARTES is not indulged a single one. According to some, 

Quotation 3.54
Hitherto we have explained the phenomena of the 
heavens and of our sea by the power of gravity, 
but have not yet assigned the cause of this power. 
This is certain, that it must proceed from a cause 
that penetrates to the very centres of the sun and 
planets, without suffering the least diminution 
of its force; that operates not according to the 
quantity of the surfaces of the particles upon which 
it acts (as mechanical causes used to do), but 
according to the quantity of the solid matter which 
they contain, and propagates its virtue on all sides 
to immense distances, decreasing always as the 
inverse square of the distances. Gravitation towards 
the sun is made up out of the gravitations towards 
the several particles of which the body of the sun is 
composed; and in receding from the sun decreases 
accurately as the inverse square of the distances as 
far as the orbit of Saturn, as evidently appears from 
the quiescence of the aphelion of the planets; nay, 
and even to the remotest aphelion of the comets, if 
those aphelions are also quiescent. 
But hitherto I have not been able to discover the cause 
of those properties of gravity from phenomena, and 
I frame no hypotheses, for whatever is not deduced 
from the phenomena is to be called an hypothesis; 
and hypotheses, whether metaphysical or physical, 
whether of occult qualities or mechanical, have no 
place in experimental philosophy. In this philosophy 
particular propositions are inferred from the 
phenomena, and afterwards rendered general by 
induction. Thus it was that the impenetrability, the 
mobility, and the impulsive force of bodies, and the 
laws of motion and of gravitation, were discovered. 
And to us it is enough that gravity does really 
exist, and act according to the laws which we have 
explained, and abundantly serves to account for all 
the motions of the celestial bodies, and of our sea. 
—ISAAC NEWTON, Principia, preface to the first edition, 
1638
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it is to the former that we owe the discovery of a vacuum, that the air is a 
heavy body, and the invention of telescopes. In a word, NEWTON is here as the 
Hercules of fabulous story, to whom the ignorant ascribed all the feats of 
ancient heroes. 
In a critique that was made in London on FONTENELLE’s discourse, the writer pre-
sumed to assert that DESCARTES was not a great geometrician. Those who make 
such a declaration may justly be reproached with flying in their master’s face. 
DESCARTES extended the limits of geometry as far beyond the place where he 
found them, as NEWTON did after him. The former first taught the method of 
expressing curves by equations. This geometry which, thanks to him for it, is 
now grown common, was so abstruse in his time, that not so much as one 
professor could undertake to explain it; and SCHOTTEN in Holland, and FERMAT in 
France, were the only men who understood it. …
Geometry was a guide he himself had in some measure fashioned, which 
would have conducted him safely through the several paths of natural phi-
losophy. Nevertheless, he at last abandoned this guide, and gave entirely into 
the humour of forming hypotheses; and then philosophy was no more than 
an ingenious romance, fit only to amuse the ignorant. He was mistaken in 
the nature of the soul, in the proofs of the existence of a God, in matter, in the 
laws of motion, and in the nature of light. He admitted innate ideas, he in-
vented new elements, he created a world; he made man according to his own 
fancy; and it is justly said, that the man of DESCARTES is, in fact, that of DESCARTES 
only, very different from the real one. 
He pushed his metaphysical errors so far, as to declare that two and two 
make four for no other reason but because God would have it so. However, it 
will not be making him too great a compliment if we affirm that he was valu-
able even in his mistakes. He deceived himself, but then it was at least in a 
methodical way. He destroyed all the absurd chimeras with which youth had 
been infatuated for two thousand years. He taught his contemporaries how 
to reason, and enabled them to employ his own weapons against himself. If 
DESCARTES did not pay in good money, he however did great service in crying 
down that of a base alloy. 
I indeed believe that very few will presume to compare his philosophy in any 
respect with that of NEWTON. The former is an essay, the latter a masterpiece. 
But then the man who first brought us to the path of truth was perhaps as 
great a genius as he who afterwards conducted us through it. 

—VOLTAIRE, “Letters on England” (“Lettres Anglaises”) XIV

��Figure 3.139 It was not only his contemporaries who 
were in awe of NEWTON. This verse appears on the reverse side 
of a manuscript page by EINSTEIN filled with complex formulas. 
EINSTEIN wrote a number of ironic verses for his own and his 
friends’ amusement, but this poem shows his great respect 
toward NEWTON:  

Seht die Sterne, die da lehren 
Wie man soll den Meister ehren 
Jeder folgt nach Newtons Plan 
Ewig schweigend seiner Bahn

(Look at the stars, which instruct us 
How to honor the master 
Each follows according to NEWTON’s plan 
Eternally silent its course)


