CHAPTER IX,

GENERAL EQUATIONS OF THE ELECTROMAGNETIU FIELD.

604.] IN our theoretical discussion of electrodynamics we began
by assuming that a system of circuite earrying electrie currents
is a dynamical system, in which the eurrents may be regarded as
velocities, and in which the coordinates corresponding to these
velocitics do mot themselves appear in the equations. It follows
from this that the kinetic energy of the system, so far as it depends
on the currents, is a homogeneous quadratic funetion of the currents,
in which the coefficients depend only on the form and relative
position of the cireunits. Assuming these coefficients to he known,
by experiment or otherwise, we deduced, by purely dynamical rea-
soniug, the laws of the induction of currents, and of clectromagnetic
attraction. In this investigation we introdunced the conceptions
of the electrokinctie energy of a system of enrrents, of the electro-
magnetic momentum of a eireuit, and of the mutual potential of
two circuits.

We then proceeded to explore the field by means of various con-
figurations of the secondary eireuit, and were thus led to the
conception of a vector 9I, having a determinate maguitude and
direction at any given point of the field. We ealled this vector the
electromagnetic momentum at that point. This quantity may be
congidered as the time-integral of the electromotive force which
would be produced at that point by the sudden removal of all the
carrents from the field. It is identical with the quantity already
investigated in Art. 405 as the’ veetor-potential of magnetic in-
duction, Its components parallel to z, 7, and z are F, @, and H.
The electromagnetic momentum of a ecircuit is the line-integral
of 9 round the cireuit.

We then, by means of Theorem IV, Art. 24, transformed thg
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line-integral of 2l into the surface-integral of another vector, B,
whose components are @, 4, ¢, aud we found that the phenomena
of induction due to motion of a conduetor, and those of electro-
magnetie foree can be expressed in terms of B. We gave to B
the name of tho Magnetic induction, since its properties are iden-
tical with thoss of the lines of magnetic induction as investigated
by Faraday. .

We also established three sels of equations: the first set, (A),
are those of magnetic induction, expressing it in terms of the elee-
tromagnctic momentum, The sccond set, (B), are thosc of electro-
motive force, expressing it in terms of the motion of the conductor
across the lines of magnctic induction, and of the rate of variation
of the electromagnetic momentum, The third set, (C), are the
equations of electromagnetic force, expressing it in terms of the
current and the magnetie induction.

The eurrent in all these enses is to be understood as the actual
eurrent, which includes not oniy the current of eonduction, but the
current due to variation of the electric displacement;.

The magnetic induction B is the quantity which we have already
considered in Art. 400. In an unmagnetized body it is identical
with the force on a unit magnetic pole, but if the body is mag-
netized, either permanently or by induction, it is the force which
would be cxerted on a unit pole, if placed in a narrow crevasse in
the body, the walls of which are perpendicular to the direction of
magnetization. The components of B arve a, {, .

It follows from the equations (A), by which ¢, 4, ¢ are defined,
that dea db de

o + —%’— + = o.

This was shewn at Art. 403 to be a property of the magnetic
indaction.

605.7 We have defined the magnetic force within a magnet, as
distinguished from the magnetic induetion, to be the foree on a
unit pole placed in a narrow crevasse cut parallel to the direetion of
magnetization. This quantity is denoted by , aud its components
by a, 8, y. Sece Arvt. 398,

If & is the intensity of magnetization, and 4, B, U its com-
ponents, then, by Axrt. 400,

a=at+d7wd,
b=p+47n 8, (Equations of Magnetizntion.) (D)
¢ =y+4dnw C. )
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We may call these the equations of magnetization, and they
indieate that in the clectromagnetie system the magnetic induction
B, considered as a vector, is the sum, in the JJamiltonian sense, of
two vectors, the magnetic force §), and the magnetization I multi-
plied by ¢ 7, or B=H+4m3.

In certain substances, the magnetization depends on the magnetic
foree, and this is cxpressed by the system of equations of induced
magnetism given at Arts. 426 and 4385.

606.] Up to this point of our investigation we have deduced
cverything from purely dynamieal considerations, withont any
reference to quantitative experiments in clectricity or magnetism.
The only use we have made of experimental knowledge is to re-
cognise, in the abstract quantitics deduced from the theory, the
conerete quantities discovered by cxperiment, and to denote them
by names which indicate their physical relations rather than their
mathematical generation.

In this way we have pointed out the cxistence of the electro-
maguetic momentum ¥ as o vector whose direction and magnitude
vary from one part of space to another, and from this we have
deduced, by a mathematical process, the magnetic induction, B, as
a derived vector. We have not, however, obtuined any data for
determining either % or B from the distribution of currents in the
field. Tor this purpose we must find the mathematical connexion
between these quantities and the currents.

We begin by admitting the existence of permanent magnets,
the mutual action of which satisfics tho principle of the conservation
of energy. We make no assumption with respeet to the laws of
magnetic force except that which follows from this principle,
namely, that the force acting on a magnetic pole must be eapable
-of being derived from a potential.

We then observe the action between currents and magnets, and
we find that a enrrent acts on a magnet in a manner apparently the
same as another magmet would act if its strength, form, and position
were properly adjusted, and that the magnet acts on the current
in the same way as another current. These observations need not
be supposed to be accompanied with actual measurements of the
forces. They are not therefore to be considered as furnishing
numerical data, but are useful only in suggesting questions for
our consideration,

The question these observations suggest is, whether the magnctic
field produced by electric currents, as it is similar to that produced
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by permanent magnets in many respects, resembles it also in being
related to a potential ?

The evidence that an electric cireuit produces, in the space sur-
rounding it, magnetic effects precisely the same as those produced
by a magnetic shell bounded by the circunit, has been stated in
Arts. 482-486.

We know that in the case of the magnetic shell there is a
potential, which has a determinate value for all points outside the
substance of the shell, but that the values of the potential at two
neighbouring points, on opposite sides of the shell, differ by a finite
quantity.

If the magnetic field in the neighbourhood of an electric current
resembles that in the neighbourhood of a magnetic shell, the
magnetic potential, as found by a line-integration of the magnetic
force, will be the same for any two lines of integration, provided
one of these lines can be transformed into the other by continuous
motiou withont cutting the electric current.

If, however, one line of integration cannot he transformed into
the other without cutting the current, the line-integral of the
magnetic force along the one line will differ from that along the
other by a quantity depending on the strength of the current. The
magnetic potential due to an eleetric current is therefore a funetion
having an infinite series of values with a common difference, the
particular value depending on the course of the line of integration.
Within the substance of the conductor, there is no such thing as
a magnetic potential.

607.] Assuming that the magnetic action of a current has a
magnetic potential of this kind, we proceed to express this result
mathematieally.

In the first place, the line-integral of the magnetic force round

any closed eurve is zero, provided the elosed curve does not surround
the electrie current,
. In the mnext place, if the current passes once, and only once,
through the closed eurve in the positive direction, the line-integral
has a determinate value, which may be used as a measure of the
strength of the current. For if the closed curve alters its form
in any continuous manncr without entting the current, the line-
integral will remain the same.

In electromagnetic measure, the linc-integral of thc magnetie
force "round a closed curve is numerically equal to the current
through the elosed curve multiplied by 4.



607. ] ELECTRIC CURRENTS, 231

If we take for the closed curve the paralleloeram whose sides
are dy and dz, the line-integral of the magnetic force round the

parallelogram is dy dp
(@ - %) dy dz,

and if %, v, w are the components of the flow of electricity, the
current through the parallclogram is
% by dz.
Multiplying this by 4w, and equating the result to the line-
integral, we obtain the equation

dru = QZ - @E’ ]

dy dz
with the similar equations
' ti f

d7o = fa —_ @1, ( Elgft{zl-iuf C:‘::ezta.) (E)
gz dw
iR da

4w = T 23;3 )

which determine the magnitude and direction of the electric currents
when the magnetic force at every point is given.
‘When there is no current, these equations are equivalent to the

condition that izt Bdy+yde =—DQ,

or that the magnetic forec is derivable from a magnctic potential
in all points of the field where there are no currents,

By differentiating the cquations (E) with vespect to 2, y, and 2
respectively, and adding the results, we obtain the equation

du dv  dw
7 T 7 +5 =0
which indicates that the current whose components are #, v, w 1is
subject to the condition of motion of an incompressible fluid, and
that it must necessarily flow in closed circuits,

This equation is true only if we take », v, and » as the com-
ponents of that electric flow which is duc to the variation of electric
displacement as well as to true conduction,

We have very little experimenial evidence relating to the direct
electromagnetic action of currents due to the variation of electric
displacement in dielectrics, but the extreme difficulty of rcconciling
the laws of electromagnetisma with the existence of electric currents
which are not closed is one reason among many why we must admit
the existence of transient currents due to the variation of displace-
ment. Their importance will be seen when we come to the electro-
magnetic theory of light.
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608.] We have now determined the relations of the prineipal
quentities concerned in the phenomena discovered by Orsted, Am-
pére, and Faraday. To connect these with the pbenomena deseribed
in the former parts of this treatise, some additional relations are
necessary.

When clectromative force acts on a material body, it produces
in it two electrical effects, called by Faraday Induction and Con-
duetion, the first being most conspicuous in dielectrics, and the
second in conductors,

In this treatise, static elcetric induction is measured by what we
have called the electrie displacement, a directed quantity or vector
which we have denoted by D, and its components by 7, g, 4.

In isotropic substances, the displacement is in the same direction
as the electromotive force which produces it, and is proportional
to i, at least for small values of this force. This may be expressed
by the equation

1 (Equnti .
= — quation of Elactrio
D= 47 K¢, Displacement.) (¥)

where X is the dielectric capacity of the substance. See Art. 69,

In substances which are not isotropic, the components f, g, 4 of
the electric displacement D are linear functions of the components
P, @, R of the electromotive force .

The form of the equations of electric displucement is similar to
that of the equations of conduction as given in Art. 298.

These relations may he expressod by saying that X is, in isotropic
bodies, a scalar quantity, but in other bodies it is a linear and vector
function, operating oun the vector @.

609.] The other effect of electromotive force is conducblon The
laws of conduction as the resulf of electromotive force werc csta-
blished by Ohm, and ave explained in the sccond part of this
treatise, Art. 241. They may be summed up in the equation

£ = CG, (Equntion of Conduotivity.) (@)

where & is the intonsity of the olectromotive force at the point,
§ 18 the density of the current of conduction, the components of
which are p, ¢, 7, and C is the conductivity of the substance, which,
1 the ease of isotropic substances, is a simple sealar quantity, but
in other substances becomes a linear and vector function operating
on the vector & The form of this function is given in Cartesian
coordinates in Art. 298,

610.] One of the chief peculiarities of this treatise is the doctrine
which it asserts, that the true electric current €, that on whick the
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clectromagnetic phenomena depend, is not the same thing as £, the
current of conduction, but that the time-vamiation of D, the electric
displacement, must be taken into account in estimating the total
movement of electricity, so that we must write,

G = £+%9D, (Equation of True Currenta,) (H)
or, in terms of the components,

drf -
w=r+
v =g+ fig . (H*)
_ dh
w_'r+—d~z-_‘

611.] Since hoth £ and D depend on the electromotive force &,
we may expross the true current € in terms of the electromotive

force, thus 1 . d
G = (U-I' Z;K [*Zz)@s (I)
or, in the case in which C and X are constants,
J '
= CP+ —Kﬁa
dQ |
v =00+ "-; '{'E' (I*)

w—GR+—7_rKth

-

612.] The volame-density of the free electricity at any point
is found from the components of electric displacement by the

equation df ai
d+@+¢ ()
618.] The surface-density of electricity is
o= iftrmg+nk+lf +my +u'¥, (K)

wheve /, z, n are the direction-cosines of the normal drawn, from
the surface into the medium in which /] g, 4 are the components of
the displacement, and &/, m, 2" are those of the normal drawn from
the surface into the medium in which they ave 7/, 7/, #'.

614.] When the magnetization of the medium is entirely induced
by the magnetic force acting on it, we may write the equation of
induced magnetization, B = u, (L)
where ;o is the coefficient of magnetic permeability, which may
be considered a scalar quantity, or a linear and veeftor function
operating on ), according as the medium is isotropic or not.
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615.] These may be regarded as the principel relations among
the quantities we have been considering. They may be combined
go as to eliminate some of these quantities, but our object at present
is not to obtain compnotness in the mathematical formulas, but
to express every relation of which we have any knowledge. To
eliminate a quantity whioh expresses a useful ides would be rather
a loss than a gain in this stage of our enquiry.

There is one result, however, which we may obtain by combining
equations (A) and (), and which is of very great importance.

If we suppose that no magnets exist in the field except in the
form of electric circuits, the distinction which we have hitherto
maintained between the magnetic force and the magnetic induction
vanishes, because it is only in magnetized matter that these quan-
tities differ from each other,

According to Ampére’s hypothesis, which will be explained in
Art. 833, the properties of what we call magmetized matter are due
to molecular clectric circuits, so that it is only when we regard the
substance In large masses that owr theory of magnetization is
applicable, and if our mathematical methods are supposed capable
of taldng aeconnt of what goes on within the individual molecules,
they will discover nothing but clectric circuits, and we shall find
the magnetic force and the magnetic induction everywhere identical.
In order, however, to be able to make use of the electrostatic or of
the electromagnetic system of measurement at pleasure we shall
retain the coefficient 4, remembering that its value is unity in the
electromagnetic system.

616.] The components of the magnetic induction are by equa-

tions (A), Axt. 591, all d@ A
Q= gy =y
dy dz
=t 4 |
T dz da’
_de_ar
“de  dy  J
The components of the electric cwrent are by equations (1),
Art.
bo% 4111.4:@—-4—-'9:1
dy de
da dy
7wy = pA — 7z’ r
_dB8 da
4aw = (-z.'-&'_ ~— (—23 . |
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According to our hypothesis &, §, ¢ are identical with ua, pﬁ, By
respectively. 'We therefore obtain

atq¢ d*F 43P dH

41rﬁzi=dw{ly-tlys_'a+dzdw. (1)

If we writ;_e J~%§+tf§+‘£f (2)
* 2 a

and vVi== (déﬂa + 5 d‘/g + dzg) (3)

we may write equation (1),
4mpn = 7 + 2 F,

Similarly, 4rpy = %+ viG, } (4)

_ W,
4wyw-;z-;+v H.

If we write V= Iliff ?;dwdydz, ]
, 1 v
¢ = ﬁff Yadyds, } (5)
H = 1fff-’3r£vdyclz, ]
47 J
x:;—ff L tadyd, (6)

where » is the distance of the given point from the element »y 2,
and the integrations are to be extended over all space, then

Q2
i
9
+
|

(7)

-t

The quantity y disappears from the equations (A), and it is not
related to any physical phenomenon. If we suppose it: to be zero
everywhere, J will also be zero everywhere, and equations (5),
omitting the accents, will give the true values of the components
of U,

* The negative sign is employed hero in order to ake our expressions consistent
with those in which Qualernions are employed,
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617.] We may therefore adopt, as a definition of 9, “that, it
is the vector-potontial of the electric current, standing in the same
relation to the electric current that the scalar potential stands to
the matter of which it is the potential, and obtained by a similar
process of integration, which may be thus described.—

From a given point let a vector be drawn, representing in mag-
nitude and divection a given element of an ¢lectric current, divided
by the numerical value of the distance of the element from the
given point. Let this be done for every element of the electric
current. The resultant of all the vectors thus found is the poten-
tial of the whole current. Since the current is a vector quantity,
its potential is also a vector. See Art. 422.

‘When the distribution of electric currents is given, there is one,
and only one, distribution of the values of ¥, such that & is every-
where finite and continuous, and satisfies the eqnations

V2 = 47ut, S.VY =0,

and vanishes at an infinite distance from the electric system. This
value 1s that given by equations (5), which may be written

A= iff %—{Zmrlyrlz.

Quaternion Evpressions for the Electromagnetic Equalions.

618,] In this treatise we have endeavonred to avoid any process
demanding from the wender a knowledge of the Caleulus of Qua~
ternions. At the same time we have not serupled to introduce tho
iden of a vector when it was necessary to do so. When we have
had occasion to demote a vector by a symbol, we have used a
German letter, the number of different vectors being so great that
Hamilton’s favourite symbols would have been exhausted at once.
‘Whenever therefore, a German letter is used it denotes a Hamil-
tonian vector, and indicates not only its magnitude but its direction,
The constituents of a vector are denoted by Roman or Greek letters.

The principal vectors which we have to consider are :~—

g ?ﬁglhof Constituents.
The radius veetor of & point.......c.o.ovsvve p zy 2
The electromagnetic momentum at a point A F ¢ H
The magnetic induction ......c..c.ovvererer. B e & ¢
The (total) electric current .................. ¢ “ v w

The electric displacement..,.......c.covveen. D S g 4
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S ::!221‘.0f Constituents,
The electromotive force. ...........covvveree. & P QR
The mechanieal force ,..... beer e vrrerrrnes & XY Z
The veloeity of & poinb.......c.coviviiniinnen, Gorp oy 2
The magnetic force ........coeevvviiviniienes 9 a By
The intensity of magnetization ............ R 4B C
The current of conduction ,......co.c0vreen £ pqr

‘We have also the following scalar functions :—
.The electric potential ¥.
The magnetic potential (where it exists) Q
The electric density e.
The density of magnetic ‘ matter’ m.

Besides these we have the following quantities, indicating physical
properties of the medium at each point :—

C, the conductivity for electric currents.
K, the dielectric inductive capacity.
p, the magnetic inductive capacity.

These quantities are, in isotropic media, mere scalar functious
of p, but in general they are linear and vector operators on the
vector functions to which they are applicd. X and g arc certainly
always self-conjugate, and C is probably so also.

619.] The equations (A) of magnetic induction, of which the

first is, I 4G
a= -@7 — -[ZZ
may now be written B="rvy,
where V is the operator
A Ay X2
=ttt e

and 7 indicates that the vector part of the result of this operation
is to be taken.

Since 2 is subject to the condition §V- 9 = 0, V¥ is a pure
veetor, and the symbol 7 is unnocessary.

The equations (B) of electromotive force, of which the first is

aF d¥
P = 0‘/-—55 M —d—‘; ’
become C=7@B—-9—Vw.
The equations (C) of meehanical force, of which the first is
X=w- bw—e@-—m@p
div dx

become FE=VEB~eVE—mVQ.



238 GENERAL EQUATIONS, " [619.

The equations (D) of magnetization, of which the first is

a = at+4rd
become B=PH+473J.
The equations (E) of electric currents, of which the first is
dmu = %-I —_ ﬁ—g,
become in@G=7VH.
The equation of the current of conduction is, by Ohm’s Law,
R = CGC.
That of electric displacement is
D= ‘117} KGE.

The equation of the total current, arising from the variation of
the electric displacement as well as from conduction, is

€= R+9D.
- When the magnetization arises from magpetic induction,
B = ph.
We have also, to determine the electric volume-density,
e =8VD.
To determine the magnetic volume-dcusity,
m=_8V3.
Wlhen the magnetic force can be dertved from a potential
=-VQ,



