
THE WAVE-THEORY OF LIGHT

forces whose action extends to a distance from the body as

great as that at which rays are inflected. We are equally
unable to admit that diffraction is caused by a shallow atmos-

phere which has the same thickness as the sphere of activity
of these forces, and whose refractive index differs from that of

the neighboring medium
;
for this second hypothesis, like the

first, would lead us.'to think that the inflection of light ought
to vary with the form and the nature of the edge of the screen,
and ought not to be the same, for instance, at the edge and at

the back of a razor. Now, on the emission-theory it is impos-
sible to explain in any other manner the expansion of a beam of

light passing through a narrow opening, and this expansion is

a well-established fact.* Consequently, the phenomena of dif-

fraction cannot be explained on the emission-theory.

SECTION II

33. In the first section of this memoir I have shown that
the corpuscular theory, and even the principle of interference
when applied only to direct rays and to rays reflected or in-

flected at the very edge of the opaque screen, is incompetent
to explain the phenomena of diffraction. I now propose to

show that we may find a satisfactory explanation and a general
theory in terms of waves, without recourse to any auxiliary
hypothesis, by basing everything upon the principle of Huygens
and upon that of interference, both of which are inferences
from the fundamental hypothesis.

Admitting that light consists in vibrations of the ether sim-
ilar to sound-waves, we can easily account for the inflection

of rays of light at sensible distances from the diffracting
body. For when any small portion of an elastic fluid under-

* The rise of a liquid in a capillary tube occurs between two surfaces

separated by a finite distance, although the attraction which these sur-
faces exert upon the liquid extends only to an infinitely small distance.
The reason of this is, that the molecules of the liquid, attracted by the
surface of the tube, also in their turn attract other molecules of the liquid
situated within their sphere of action, and so on, step by step ; but in the

emission-theory an analogous explanation is not admissible, for the funda-
mental hypothesis is that the luminous particles never exert any sensible
effect upon the path of neighboring particles. No interdependence of
motion is here admissible, for such an assumption would be the assumption
of a fluid medium.
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goes condensation, for instance, it tends to expand in all direc-

tions ; and if throughout the entire wave the particles are dis-

placed only along the normal, the result would be that all

points of the wave lying upon the same spherical surface would
simultaneously suffer the same condensation or expansion, thus

leaving the transverse pressures in equilibrium ;
but when a

portion of the wave-front is intercepted or retarded in its path
by interposing an opaque or transparent screen, it is easily seen
that this transverse equilibrium is destroyed and that various

points of the wave may now send out rays along new direc-

tions.

To follow by analytical mechanics all the various changes
which a wave-front undergoes from the instant at which a part
of it is intercepted by a screen would be an exceedingly diffi-

cult task, and we do not propose to derive the laws of diffrac-

tion in this manner, nor do we propose to inquire what hap-
pens in the immediate neighborhood of the opaque body, where
the laws are doubtless very complicated and where the form
of the edge of the screen must have a perceptible effect upon
the position and the intensity of the fringes. We propose
rather to compute the relative intensities at different points
of the wave-front only after it has gone a large number of wave-

lengths beyond the screen. Thus the positions at which we

study the waves are always to be regarded as separated from
the screen by a distance which is very considerable compared
with the length of a light-wave.

34. We shall not take up the problem of vibrations in an
elastic fluid from the point of view which the mathematicians
have ordinarily employed that is, considering only a single
disturbance. Single vibrations are never met with in nature.

Disturbances occur in groups, as is seen in the pendulum and
in sounding bodies. We shall assume that vibrations of lumi-

nous particles occur in the same manner that is, one after

another and series after series. This hypothesis follows not

only from analogy, but as an inference from the nature of the

forces which hold the particles of a body in equilibrium. To
understand how a single luminous particle may perform a large
series of oscillations all of which are nearly equal, we have only
to imagine that its density is much greater than that of the

fluid in which it vibrates and, indeed, this is only what has

already been inferred from the uniformity of the motions of
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the planets through this same fluid which fills planetary space.
It is not improbable also that the optic nerve yields the sensa-

tion of sight only after having received a considerable number
of successive stimuli.

However extended one may consider systems of wave-fronts
to be, it is clear that they have limits, and that in considering
interference we cannot predicate of their extreme portions
that which is true for the region in which they are superposed.
Thus, for instance, two systems of equal wave-length and of

equal intensity, differing in path by half a wave, interfere de-

structively only at those points in the ether where they meet,
and the two extreme half wave-lengths escape interference.

Nevertheless, we shall assume that the various systems of

waves undergo the same change throughout their entire ex-

tent, the error introduced by this assumption being inap-

preciable ; or, what amounts to the same thing, we shall

assume in our discussion of interference that these series of

light-waves represent general vibrations of the ether, and are

undefined as to their limits.

THE PROBLEM OF INTERFERENCE

35. Given the intensities and relative positions of any number

of trains of light-waves of the same length* and travelling in the

same direction, to determine the intensity of the vibrations pro-
duced by the meeting of these different trains of loaves, that is,

the oscillatory velocity of the ether particles. \

* We shall not here consider light-waves of different lengths which, in

general, come from different sources and which cannot, therefore, give
rise to simultaneous disturbances and cannot by their interaction produce
any phenomena which are uniform ; and even if they were uniform, the

rise and fall of intensity produced by the interference of two different

kinds of waves, after the manner of beats in sound, would be far too

rapid to be detected, and would produce only a sensation of constant in-

tensity. ^

f It was Mr. Thomas Young who first introduced the principle of inter-

ference into optics, where he showed much ingenuity in applying it to

special cases; but in the problems which he has thus solved he has con-

sidered, I think, only the limiting cases, where the difference in phase be-

tween the two trains of waves is either a maximum or a minimum, and has

not computed the intensity of the light for any intermediate cases or for

any number whatever of trains of waves, as I here propose to do.
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Employing the general principle of the superposition of

small motions, the total velocity impressed upon any particle
of a fluid is equal to the sum of the velocities impressed by
each train of waves acting by itself. When these waves do not

coincide, these different velocities depend not only upon the

intensity of each wave, but also upon its phase at the instant

under consideration. We must, therefore, know the law ac-

cording to which the velocity of vibration varies in any one

wave, and for this purpose we must trace the wave back to the

origin whence it derives all its characteristics.

36. It is natural to suppose that the particles whose vibra-

tions produce light perform their oscillations like those of

sounding bodies that is, according to the laws which hold for

the pendulum ; or, what is the same thing, to suppose that the
acceleration tending to make a particle return to its position
of equilibrium is directly proportional . to the displacement.
Let us denote this displacement by x. A suitable function of

this displacement can then be represented by the expression
Ax+ Bx*+ Cxs

-\-etc., since this will vanish when #=0. If, now,
we suppose the excursion of the particle to be very small when
compared with the radius of the sphere throughout which
the forces of attraction and repulsion act, we can neglect in

comparison with Ax all other terms of the series and con-

sider the acceleration as practically proportional to the dis-

tance x. This hypothesis, to which we are led by analogy,
and which is the simplest that one can make concerning the

vibrations of light particles, ought to lead to accurate results,

since the laws of optics remain the same for all intensities of

light.
Let us represent by v the velocity of vibration of a light par-

ticle at the end of a time t. We shall then have dvAxdt ;

but v=dxldt, or dt= dx/v. Substituting in the first equation,
we have vdvAxdx. Integrating, we have v*=C Ax2

;
and

hence

A
Substituting this value of x in the first equation, we have

dv
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which, on integration, gives

VA Vc'
If we measure time from the instant at which the velocity

is zero, the constant C' becomes zero, and we have

1 .
,

v
- or v=

If we employ as unit of time the interval occupied by the par-
ticle in one complete vibration, we have v= VU sin (M).
Thus, in isochronous vibrations, the velocities for equal values

of t are always proportional to the constant V 0, which, there-

fore, measures the intensity of the vibration.

37. Let us now consider the wave produced in the ether by
the vibrations of this particle. The energy of motion in the
ether at any point on the wave depends upon the velocity of

the point-source at the instant when it started a disturbance
which has just reached this point. The velocity of the ether

particles at any point in space after an interval of time t is

proportional to that of the point-source at the instant txl\, x

being the distance of this point from the source of motion and
\ the length of a light-wave. Let us denote by u the velocity
of the ether particles. We then have

uci sin

We know that the intensity a of vibration* [oscillatory ve-

locity'} in a fluid is in inverse ratio to the distance of the wave
from the centre of disturbance; but, considering how minute
these waves are when compared with the distance which sep-
arates them from the luminous point, we may neglect the va-

riation of a and consider it as constant throughout the extent

of one or even of several waves.

38. By the aid of this expression one can compute the in-

tensity of vibration produced by the meeting of any number
of pencils of light whenever he knows the intensity of the

different trains of waves and their respective positions.
Let us first determine the velocity of a luminous particle in

a vibration which results from the interference of two trains

*
[See last sentence of section 57 below. ]
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of waves displaced, one with respect to the other, by a quar-
ter of a wave-length [i.e., differing in phase ~by 90], and hav-

ing intensities which we shall denote by a and a'. We shall

count time, t, from the moment at which the vibrations of the
first train begin. Let u and u' be the velocities which the first

and second trains of waves would impress upon a light particle
whose distance from the source of motion is x. We then have

ua sin 2-* It
j

and u' = a' sin \2-n-
(

4
)

,

or

=- -cos

Hence, the resultant velocity 7 will be

a sin ^TT It-- I a' cos 2?r 1 1 --j.

Putting a=A cos i and a'=A sin i, this expression may always
be placed in the following form :

A cos i sin 2-n- It
j
\A sin i cos 2* If

J
,

or

A sinin \2TT ( ^ ) i

'

.

Thus the wave produced by the meeting of two others will be

of the same nature, but will have a different position [phase]
and a different intensity. From the equations A cos i=a and
A sin i=a', we have for the value of A (that is, for the in-

tensity of the resultant wave) -v/rt
2

_j_#'
2

; but this is exactly the

value of the resultant of two mutually rectangular forces, a
and a'.

From the same equations it is easily seen also that the new
wave exactly corresponds in angular position [phase] to ,the

resultant of the two mutually rectangular forces a and a'; for

the equation

U=A sin

shows that the linear displacement of this wave with respect
i\

to the first is
;
but i is also the angle which the force a
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makes with the resultant A, because A cos i a. Thus we
have complete analogy between the resultant of two mutually
rectangular forces and the resultant of two trains of waves dif

fering in phase by a quarter of a wave-length.
39. The solution of this particular case for waves differing

by a quarter of a wave-length suffices to solve all other cases.

In fact, whatever be the number of the trains of waves, and
whatever be the intervals which separate them, we can always
substitute for each of them its components referred to two ref-

erence points which are common to each train of waves and which
are distant from each other by a quarter of a wave-length;
then adding or subtracting, according to sign, the intensities of

the components referred to the same point, we may reduce the
whole motion to that of two trains of waves separated by the
distance of a quarter of a wave-length; and the square root

of the sum of the squares of their intensities will be the inten-

sity of their resultant; but this is exactly the method employ-
ed in statics to ftrid the resultant of any number of forces ;

here the wave-length corresponds to one circumference in the
statical problem, and the interval of a quarter of a wave-

length between the trains of waves to an angular displacement
of 90 between the components.

40. It very often happens in optics that the intensities of

light or the particular tint which one wishes to compute is

produced by the meeting of only two trains of waves, as in the
case of [Newton's] colored rings and the ordinary phenomena of

color presented by crystalline plates. It is, therefore, well to

know the general expression for the resultant of two trains of

waves differing in phase by any amount whatever. The result

is easily predicted from the general method which I have

explained, but I think it will be wise to emphasize somewhat
the theory of vibrations, and to show directly that the wave
resulting from two others, separated by any interval whatever,
corresponds exactly in intensity and position to the resultant
of two forces whose intensities are equal to those of the two

pencils of light, making an angle with each other which bears
to one complete circumference the same ratio that the in-

terval between the two trains of waves bears to one wave-

length.
Let x be the distance from the origin of the first train of

waves to the light particle under consideration, and t the
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instant for which we wish to compute its velocity. The speed
impressed by the first train of waves will be

a sin
[fc (<-)],

where a represents the intensity of this ray of light.
Let us call a' the intensity of the second pencil, and let us

denote by c the distance between corresponding points on the

two trains of waves; the [oscillatory] velocity due to the second
train will then be

a' sin %TT ft -
j

,

and hence the total velocity impressed upon the particle will be

a sin 2nl t \ \-\-a' sin 2*1 1
)

,

or

an expression to which may always be given the following
form :

A cos i sin 2?r u -
J

A sin i cos %* u T
J

\,

or

arfn[fc-(<-|)-<],
where

#4-^' cos
(
2?r-

)
= J cos if

A
V A/

and

a' sin f 2r | = ^4 sin i.

Squaring and adding, we have

A*=a?-i-a

Hence,

A = \/ ^2 + ^'
3
4- ###' cos ( 2?r

J
.

But this is precisely t*he value of the resultant of two forces,

a and a', inclined to each other at an angle %*.A
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41. From this general expression it is seen that the resultant

intensity of the light vibrations is equal to the sum of intensi-

ties of the two constituent pencils when they are in perfect
agreement and to their difference when they are in exactly
opposite phases, and, lastly, to the square root of the sum of

their squares when their phase difference is a quarter of a

wave-length, as we' have already shown.
It thus follows that the phase of the wave corresponds ex-

actly to the angular position of the resultant of two forces,
a and a'. The distance from the first wave to the second is c,

to the resultant wave ^-, and from the resultant wave to the
/*7T

second is c -
; accordingly, the corresponding angles are

(* C '

2TT., i, and 2ir. i. Let us multiply the equationA A

+ '

COS ( 2TT \=:A COS i

by sin t, and the following equation

a' sin ( %TT
J
=A sin i

by cos i. Subtracting one from the other, we have

a sin i=a' sin t 2?r i V

which, together with

a' sin ( 27T
j
=A sin i,

gives the following proportion:

I 2?r i\: sin i : sin 2?r- : : a : a' : A.

42. The general expression, A sin gyff -Y_t|, for the

velocity of the particles in a wave produced by the meeting of

two others shows that this wave has the same length as its

components and that the velocities at corresponding points are

proportional, so that the resultant wave is always of the same
nature as its components and differs only in intensity that is

to say, in the constant by which we must multiply the velocities

in either of the components in order to obtain the correspond-
107
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ing velocities in the resultant. In combining this resultant

with still another new wave., one again arrives at an expression
of the same form a remarkable property of a function of this

kind. Thus in the resultant of any number of trains of waves
of the same length the light particles are always urged by veloc-

ities proportional to those of the components at points located

at the same distance from the end of each wave. [This is seen

~by multiplying each of the last three terms in the preceding pro-

portion by sin tat. For then,

a sin wt : a 1

sin wi : A sin ut ::a : a' :A'

: : constant ratio. ]

APPLICATIONS OF HUYGENS'S PRINCIPLE TO THE PHENOMENA
OF DIFFRACTION

43. Having determined the resultant of any number of trains

of light-waves, I shall now show how by the aid of these inter-

ference formulae and by the principle of Huygens alone it is

possible to explain, and even to compute, all the phenomena
of diffraction. This principle, which I consider as a rigorous
deduction from the basal hypothesis, maybe expressed thus:
The vibrations at each point in the wave-front may be considered
as the sum of the elementary motions which at any one instant

are sent to that point from all parts of this same wave in any
one of its previous* positions, each of these parts acting inde-

pendently the one of the other. It follows from the principle
of the superposition of small motions that the vibrations pro-
duced at any point in an elastic fluid by several disturbances
are equal to the resultant of all the disturbances reaching this

point at the same instant from different centres of vibration,
whatever be their number, their respective positions, their

nature, or the epoch of the different disturbances. This gen-
eral principle must apply to all particular cases. I shall sup-

pose that all of these disturbances, infinite in number, are of

the same kind, that they take place simultaneously, that they

*I am here discussing only an infinite train of waves, or the most gen-
eral vibration of a fluid. It is only in this sense that one can speak of two

light, waves annulling one another when they are half a wave-length apart.
The formulae of interference just given do not apply to the case of a sin-

gle wave, not 'o mention the fact that such waves do not occur in nature.
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